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Ele
tri
ally driven hybrid instabilities in sme
ti
 C liquid
rystal �lms.Stefan Ried1, Harald Pleiner1, and Walter Zimmermann21Max{Plan
k{Institute for Polymer Resear
h, D-55021 Mainz, Germany2Theoretis
he Physik, University of the Saarland, D-66041 Saarbr�u
ken, Germany(re
eived ; a

epted )PACS. 47.20�k { Hydrodynami
 stability.PACS. 61.30�v { Liquid 
rystals.Abstra
t. { Novel stati
 hybrid instabilities in sme
ti
 C liquid (SmC) 
rystal �lms are de-s
ribed. The Frederiks transition, well known for nemati
 liquid 
rystals, also takes pla
ein sme
ti
 C layers, but here it is spatially periodi
 and 
oupled to undulations of the sme
ti
layer. The Helfri
h{Hurault undulational instability, typi
al for sme
ti
 A liquid 
rystals, o

ursin SmC liquid 
rystals too, but the wave ve
tor of the undulation of the layers is obliqueto the applied external �eld. In addition, this modi�ed Helfri
h{Hurault instability not onlyinvolves layer undulations, but also 
ontains deformations of the dire
tor �eld, whi
h are typi
alfor the Frederiks transition. The 
oupled deformations depend on all three 
oordinate axis,thus 
hara
terizing 3{dimensional patterns. There are parameter ranges, where both typesof stati
 instabilities, whi
h di�er by the spatial wavenumber, 
ompete with ea
h other near
odimension{2 bifur
ations.Introdu
tion. { Instabilities in liquid 
rystals have a long history and are very importantin liquid 
rystal displays, for studying material properties as well as for nonlinear physi
sand pattern formation. Due to the additional liquid 
rystalline degrees of freedom they 
anbe driven out of equilibrium not only by temperature or pressure gradients, or by imposedexternal 
ow, but also by external ele
tri
 and magneti
 �elds. This allows for 
ompletely newinstability me
hanisms as well as for 
omplex instability s
enarios even for the �rst instabilities.The additional advantage of using free standing sme
ti
 liquid 
rystal �lms lies in their superiorvisualization properties and to explore new geometries in the experimental setup. For a longtime instabilities in nemati
s on one hand, and those in sme
ti
 A on the other, have beenexplored separately. The nemati
 instabilities 
omprise the stati
 and te
hnologi
al importantFrederiks transition, a reorientation of the dire
tor under the in
uen
e of an external �eld, aswell as the dynami
 shear and ele
tro
onve
tive instabilities. In sme
ti
s A the undulationalinstability has found most interest, although others have also been 
onsidered. Of 
ourse,for instan
e the B�enard, the Marangoni and the Taylor instabilities are already known insimple liquids but they are modi�ed and enri
hed by the additional liquid 
rystalline degreesof freedom (examples, overviews and referen
es 
an be found in [1℄). Typeset using EURO-TEX



2 EUROPHYSICS LETTERSHere we dis
uss theoreti
ally the 
ombined or hybridized instabilities of nemati
 and sme
ti
types. They 
an o

ur in systems that show both kind of 
rystalline degrees of freedom,like sme
ti
 C or C� phases. A sme
ti
 C liquid 
rystal 
orresponds to a two{dimensionalnemati
, if the layers are �xed. Here the standard nemati
 instabilities, Frederiks transitionand ele
tro
onve
tion, 
an be expe
ted. In addition, rotating me
hani
al [2℄ and ele
tri
al�elds [3℄ give rise to interesting target and spiral wave patterns. In the 
hiralized version,sme
ti
 C�, an in{plane polarisation exists rendering the in{plane system ferroele
tri
{like.If the twist (the polarization helix) is suppressed or negligible as in very thin �lms, thepolarisation exists globally and allows for new 
oupling e�e
ts to an external ele
tri
 �eld.This leads to new features in the Frederiks instability (like restabilization or hysteresis e�e
ts[4℄), in ele
tro
onve
tion to a subharmoni
 regime [5℄ and to target waves in a rotating ele
tri
�eld [6, 7℄. An external ele
tri
 �eld 
an also undulate the layers due to the diele
tri
 anisotropy(Helfri
h{Hurault e�e
t [8℄) and both, nemati
 and sme
ti
{type of instabilities 
ome together.Due to the 
omplexity of the equations involved to des
ribe su
h hybridized instabilities thisanalysis is mostly numeri
al [9℄. In this work we fo
us on an approximate analyti
al des
riptionof stati
 instabilities negle
ting ele
tro
onve
tion, whi
h is an appropriate approa
h for 
leansamples (without free 
harges), for high frequen
ies of the driving �eld or for samples with alarge negative ele
tri
 
ondu
tivity anisotropy.Basi
 Equations. { In liquid 
rystals a few 
ontinuous symmetries are spontaneouslybroken and the related hydrodynami
 �elds are used as additional ma
ros
opi
 degrees offreedom [10℄. In the nemati
 phase the rotational symmetry is spontaneously broken due tothe orientational ordering of the mole
ules. The preferred mean dire
tion is des
ribed by thedire
tor �eld n̂(r; t), with the 
onstraint n̂2 = 1 and the symmetry n̂ = �n̂. In sme
ti
 liquid
rystals there is in addition a spontaneously broken translation symmetry along one dire
tionleading to a layered stru
ture with a the density modulation along the layer normal k̂(r; t)(j k̂ j= 1). Within the layers a sme
ti
 A phase is like an isotropi
 liquid and with the 'phase'variable �(r; t) the layers are numbered (it is integer in the middle of ea
h layer). The trueequilibrium state 
onsists of 
at, equidistant layers, where the layer normal k̂ is parallel tothe z-axis and �flat = z. For small deformations of 
at layers it is 
onvenient to introdu
e adispla
ement �eld (along the layer normal) u(r; t), by � = z�u. Rotations of the layer normalÆk̂ are then related to transverse gradients of the displa
ement u in linear order byÆk̂i = �(Æij � k̂ik̂j)rju : (1)In the sme
ti
 C phase (SmC) the dire
tor is tilted with respe
t to the layer normal
os = k̂ � n̂ = 
onst. $ k̂ � Æn̂� n̂ � Æk̂ = 0: (2)Thereby rotational symmetry within the layers is spontaneously broken and SmC is biaxial.Thus SmC 
ombines both, a sme
ti
 degree of freedom (u) and one that is nemati
-like [10℄,n3 = p̂ � Æn̂ with p̂ = n̂� k̂jn̂� k̂j (3)and whi
h des
ribes rotations of the dire
tor about the layer normal (thus 
onserving the tiltangle  ). In Fig. 1 the geometry is illustrated. The external ele
tri
 �eld, E = p̂E0, is appliedperpendi
ular to both, the undistorted layer normal and the undistorted dire
tor.Stati
 distortions of the SmC stru
ture subje
t to an external �eld are given by the freeenergy density [11, 12, 13℄f = �12 �1 (E � n̂)2 � 12 �2 (E � k̂)2 � 12 �3E2 � �4 (E � n̂)(E � k̂) + 12 Fij (rin3)(rjn3)



S. RIED et al.: ELECTRICALLY DRIVEN HYBRID INSTABILITIES IN SMECTICS 3+ 12 B (rzu)2 + 12 Tijkl (rirju)(rlrku) + Cijk(rin3)(rjrku) ; (4)where the �rst four terms des
ribe the diele
tri
 
oupling of the �eld to both, the layer normaland the dire
tor. The next term gives the orientational-elasti
 (generalized Frank) energy. Inthe se
ond line there is the elasti
 distortion energy due to layer 
ompression as well as layerbending and the stati
 
ross-
ouplings between dire
tor and layer distortions. A

ording tothe tri
lini
 symmetry of sme
ti
s C, the material tensors Fij , Tijkl, Cijk 
ontain 4 (F11, F22,F33, F13), 6 (C1,...,C6), and 9 (T1,...,T9) 
oeÆ
ients, respe
tively. The expli
it form of thetensors 
an be found in [13℄, whereby the Fij are generalized elasti
 Frank 
onstants [11℄.
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Fig. 1. { Sket
h of the geometry in the undistorted state. The 
̂-dire
tor is the proje
tion of n̂ ontothe layers. In the undistorted state n3 = 0.Stationary states are those that minimize eq. (4) for a given external �eld E0. The linearized
onditions for the extrema are�"1E20 + F11�2y + F22�2x + F33�2z + 2F13�z�y�n3 = (5)�~"1E20 � ~C1�z�y � C2�2y � ~C3�2z � C6�2x��xu ;�� ~"1E20 + ~C1�y�z + C2�2y + ~C3�2z + C6�2x��xn3 = �� ~"2E20�2x +B�2z � T1�4z (6)�T2�4y � T3�4x � 6T4�2x�2z � 2T6�2y�2z � 2T5�2y�2x� 4�3T7�2x + T9�2y + T8�2z��z�y�u ;whi
h will be solved for spe
ial 
ases in the following. We use the abbreviations ~C3 = C3+2C5,~C1 = 2(C1 + C4) and the e�e
tive diele
tri
 anisotropies ~"2 = "2 + 2"4 
os + "1 
os2  and~"1 = "1 
os + "4.Boundary 
onditions. { We 
onsider a sme
ti
 �lm 
on�ned between z = �d=2 either bytwo rigid plates or by air (free standing �lm). A

ordingly, n3 and u are �xed ("rigid" boundary
onditions), or their thermodynami
 
onjugate for
e is zero ("free" boundary 
onditions). Asindi
ated in Fig. 1, the ele
tri
 �eld between the two ele
trodes (at x = �Lx=2) is along thex-dire
tion. The ele
trodes 
an be in dire
t 
onta
t with the �lm (rigid b.
.) or separatedby air (free b.
.). In any 
ase, if the dire
tor or the layers are deformed periodi
ally, thewavenumbers are dis
rete with 
hara
teristi
 step width of �=d and �=Lx for kz and kx,respe
tively. However, we will assume rather thin �lms and large ele
trode spa
ing, d � Lx,su
h that the minimally possible kx
 � L�1x is small and kx is (almost) 
ontinuous on the s
aleset by the minimal kz
 � d�1. The y-dire
tion is assumed to be in�nite, so any distortionalong that dire
tion 
an show a 
ontinuous wave ve
tor ky .



4 EUROPHYSICS LETTERSFrederiks transition. { The anisotropies in the diele
tri
 (and diamagneti
) sus
eptibilitieslead to an orientation of the nemati
 dire
tor in external �elds. In thin 
ells the 
ompetitionbetween this �eld{driven orientation and the dire
tor orientation indu
ed by 
ontainer bound-aries leads to the so{
alled Frederiks transition, whi
h is well known sin
e the early days ofliquid 
rystals resear
h [12, 14℄. This orientational transition is 
ru
ial for the fun
tioning ofmodern liquid 
rystal displays [15℄. In order to see how the redu
ed symmetry of the sme
ti
C phase (
ompared to nemati
s) 
an in
uen
e the Frederiks transition, we will assume, for themoment, �xed layers (u � 0 with Ci = 0 = ~�1). In that 
ase eq. (5) redu
es to�F11 �2y + F22 �2x + F33 �2z + 2F13 �z �y + �1E0(t)2� n3 = 0 : (7)This equation re
e
ts the redu
ed symmetry of the SmC phase, requiring that all equationsare invariant under the repla
ement x ! �x, but only under the 
ombined repla
ement(y; z)! (�y;�z).Considering the stability of the ground state n3 = 0 we make the mode ansatz a

ording tothe tri
lini
 symmetry SmC liquid 
rystalsn3 =hn3;
 
os(kyy) 
os(kzz) + n3;s sin(kyy) sin(kzz)i 
os(kxx) : (8)Ansatz (8) leads to the wavenumber dependent expression for the 
riti
al ele
tri
 �eldE2fred � = 1�1 �F11k2y + F22k2x + F33k2z � 2F13kykz� : (9)The true threshold is found by minimizing (9) with respe
t to ky and kx. This leads to the
riti
al wavenumber ky
 = �kz
 F13=F11, where kz
 = O(�=d) due to the boundary 
onditionsat the top and the bottom of the �lm. For kx the minimum value would be zero, but the�nite ele
trode spa
ing requires kx
 = �=Lx for �xed boundary 
onditions. For the geometry
onsidered (d� Lx) kx
 � kz
 the threshold �eld is then given byE2fred;
 = 1�1 �2d2z �F33 � F 213F11�+ 1�1 �2L2xF22 (10)where the se
ond 
ontribution is negligible for d=Lx ! 0. This (almost) 2-dimensional solutionis due to the redu
ed symmetry in SmC allowing for a non-zero 
oeÆ
ient F13 unknown innemati
s (with F33F11�F 213 > 0 for thermodynami
 reasons). But (8) does not exa
tly �t theboundary 
onditions at the top and the bottom (neither �xed nor free ones), therefore formula(10) only gives the right order of magnitude of the threshold. In addition the approximationof �xed layers (all 
ross{
ouplings to undulations omitted) is used in this se
tion but essentialsfeatures of Frederiks instability survive 
ross{
oupling as des
ribed below.Undulations. { In the opposite spe
ial 
ase the dire
tor is kept �xed (i.e. n3 = 0) but thelayers 
an be distorted. An external �eld tends to reorient the layer normal a

ording to thediele
tri
 anisotropy. Sin
e the layers 
annot rotate homogeneously, they undulate and 
reateregions, where the layer normal is rotated. This is the so{
alled Helfri
h{Hurault instability[8℄ in SmA, whi
h happens if the ele
tri
 �eld is strong enough to over
ome the elasti
 andorientational{elasti
 energy involved. Negle
ting the 
oupling with n3 (i.e. Ci = 0 = ~�1) thestate is determined by eq. (4). Using a simpli�ed two-mode ansatz for u similar as for n3 ineq. (8), the threshold 
ondition for undulations as it follows from eq. (6) is of the formE2und� = 1k2x ~�2 hBk2z + T1k4z + T2k4y + T3k4x + 6T4k2xk2z + 2T6k2yk2z + 2T5k2xk2y�4 �3T7k2x + T9k2y + T8k2z� kykzi : (11)
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Fig. 2. { Neutral 
urves as fun
tion of the wavenumber kx for di�erent solutions: The dashed lineshows Eund�(kx) for eq. (11), the dash-dotted line Efred�(kx) for eq. (9), while the upper and lowersolid lines show Ehyb�2(kx) of eq. (15), respe
tively. The following parameters have been used:ky = kz = 0:8, F11 = 1, F22 = 0:4, F33 = 3, F13 = 1, Ci = 0:5, Ti = 1, "1 = 0:06, "2 = 1,"4 = 0.
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Fig. 3. { The neutral surfa
e Ehyb(kx; ky) a

ording to equation (15) is shown; in parti
ularEhyb�2(kx; ky) for ky > 0 and Ehyb�1(kx; ky) for ky < 0 (kz = 0:8), whi
h show three minimaea
h (inside the 
ir
les). The material parameters are as in Fig. 2.The expression E2und� 
orresponds to the lower threshold and has generally four minimawith di�erent (nonzero) values for the wavenumber 
omponents kx
 and ky
. This four{folddegenera
y is similar to the oblique{roll instability in ele
tro
onve
tion in nemati
s [16, 1℄,although in the latter system the di�erent spatial patterns are due to a spontaneous symmetrybreaking at the threshold, while in the present system they are due to the SmC symmetry. The
orresponding patterns are the two independent real modes 
os(kx
1;2x+ky
1;2y+�1;2) 
os(kzz),whi
h depend on all three spatial dimensions. A graphi
al representation ofE2und�(kx) is shownby the dashed line in Fig. (2).Hybrid Instabilities. { In the two pre
eding se
tions we have dis
ussed the two instability
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hanisms individually by setting the 
ross{
oupling terms in the free energy expression tozero. Lifting these arti�
ial 
onstraints the two degrees of freedom are 
oupled and the appro-priate instabilities get hybridized. That means in sme
ti
 C liquid 
rystals the undulationalinstability is no longer a matter of layer deformations only, but is also a

ompanied by dire
torreorientations and, vi
e versa, the Frederiks instability involves layer deformations, too.In order to get realisti
 threshold 
onditions one may expand the two �elds u and n3 intoa set of fun
tions that mat
h the boundary 
onditions. The threshold 
ondition that arisesafter an appropriate trun
ation of su
h an expansion usually is too high in dimension as to betreated analyti
ally, but standard methods are available. These numeri
al results (in
ludingdynami
 aspe
ts) [9℄ will be reported elsewhere. However, it turns out that a mu
h simpleransatz of two modes for ea
h variable, 
f. eq.(8), already 
overs the main features of theSmC symmetry in
luding the 
ross{
oupling and the main results qualitatively, although theboundary 
onditions are again not taken into a

ount exa
tly. Inserting su
h a 2x2-modeansatz into eqs. (5,6) results in four homogeneous 
oupled equations and therefore in theimpli
it threshold 
ondition for E20�(f)+ �(f)� �(u)+ �(u)� + S2+S2� � S2+�(f)� �(u)� � S2��(f)+ �(u)+ = 0 (12)with�(f)� = �1(E20 �E2fred�) ; �(u)� = ~�2k2x(E20 �E2und�) ; and S� = kx~�1(E20 + Ĉ�) ; (13)where E2fred� and E2und� are given by eq. (9) and (11), respe
tively, and whereĈ� = C2k2y + ~C3k2z + C6k2x � ~C1kykz : (14)Eq. (12) has the solutions S2� = �(f)� �(u)� whi
h 
an be solved for the threshold �elds of thehybrid instabilities (��2 � �1~�2 � ~�21 = �1�2 � �24)E2hyb�1;2 = 12��2 hG1;2 � (G21;2 � 4��2H1;2)1=2i (15)withG1;2 = �1~�2 �E2fred� +E2und��+ 2~�1Ĉ� and H1;2 = �1~�2E2fred�E2und� � ~�21Ĉ2� ; (16)where the subs
ripts f1,2g refer to the fupper, lowerg signs in the subs
ripts of E2fred, E2undand Ĉ. Due to the 
oupling the thresholds for undulations (dashed line in Fig. 2) and fordire
tor distortions (dash{dotted line in Fig. 2) are repla
ed by the threshold of the hybridinstabilities (solid lines in Fig. 2 for Ehyb�2). The threshold for the lowest bran
h Ehyb�2 (forky > 0) and Ehyb�1 (for ky < 0) is shown as a fun
tion of the wavenumbers kx and ky in Fig. 3.A

ording to this hybridization there is now a 
ertain parameter range where six minima ofEhyb�1;2 are degenerated and have the same value as indi
ated in Fig. 3. Hen
e, there maybe a 
ompetition between the three related modes / Aund1;2 
os(kx
1;2 + ky
1;2y + �und1;2) or/ Bfred 
os(ky
3y+�fred). However, only their nonlinear intera
tion beyond threshold de
idesabout a 
ompetition or a possible 
oexisten
e, whereby in the latter 
ase interesting patternsmay o

ur beyond threshold. The bran
h Ehyb+1 is not displayed, whi
h leads always, similaras Ehyb+2, to higher thresholds than the lowest ones shown in Fig.3.Con
lusion. { We have dis
ussed theoreti
ally the hybridization of the ele
tri
al �elddriven Frederiks and undulation instabilities in sme
ti
 C liquid 
rystal �lms. Both types ofinstabilities mix dire
tor reorientation and layer undulations. Nevertheless essential features ofea
h instability survive the hybridization as indi
ated in Fig. 2. In SmC both instabilities now
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ur simultaneously a

ompanied by a 
ompetition between ea
h other near 
odimension{2points, whi
h may give rise to interesting patterns beyond threshold. The patterns obtainedby linear stability analysis are 3{dimensional re
e
ting the low symmetry of SmC phases. Ouranalyti
al treatment with a simpli�ed 4{mode ansatz 
overs the SmC symmetry and leads to aqualitatively 
orre
t pi
ture when 
ompared to a multi{mode approa
h (with 
orre
t boundary
onditions) that has to be solved numeri
ally [9℄. The advantage of this trun
ated ansatz isthat it allows to write down analyti
ally the qualitatively 
orre
t threshold, whi
h is of greatvalue for further exploration of the huge parameter spa
e.We have omitted the possibility of layer bu
kling, where the �lm as a whole is benttransversely (in 
ontrast to undulations, where the �rst and last, or the middle, layer is kept
at). This is justi�ed for �xed boundaries at the top and bottom (whi
h sometimes is realizedin systems having a more 
ompli
ated stru
ture than SmC in the �rst and last layers). Fortruly free standing �lms, this instability type 
an also take part in the hybridization [9℄, butfor a large parameter range it does not 
hange the general pi
ture des
ribed here. We havealso refrained, for la
k of spa
e, from dis
ussing ele
tro-hydrodynami
 instabilities within thelayers. They also show 3-dimensional 
ow and dire
tor patterns [9℄, but are relevant only fordirty systems (
arrying 
harges) with positive (or only moderate negative) ele
tri
 
ondu
tivityanisotropy. ***Fruitful dis
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