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Abstract. At low Reynolds numbers, the hydrodynamic interaction between
dumbbells driven by an external rotating field can be attractive or repulsive.
Dumbbells of dissimilar asymmetric shape or different coupling to the external
field undergo conformational rearrangements that break the time-reversal
symmetry. The parameter ranges leading to attraction or repulsion are explored
numerically. The results of our simulations suggest that rotating fields may be a
useful avenue for the assembly, disassembly and sorting of particles of different
shapes, as well as for the study of collective micro-swimmers.
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1. Introduction

Suspensions of active or externally driven nanoparticles or micro-organisms are involved
in collective, biological, chemical and technical motion [1]–[9] of fascinating complexity.
The propulsion of micro-particles and micro-organisms differs substantially from the motion
of macroscopic objects like fish or birds due to the small scale motion at low Reynolds
numbers [2]. As a consequence, swimming macro- and micro-organisms transform chemical
into translational or rotational energy in different ways. Considerable progress has been
made in understanding the propulsion of micro-organisms by studying artificial active
swimmers [9]–[12] or active rotors [13]. Self-organization phenomena of assemblies of micro-
swimmers can teach us how their interactions via the fluid, the so-called hydrodynamic
interactions, synchronize the motion of swimmers or cilia. The importance of hydrodynamic
interactions at small Reynolds numbers has been emphasized by showing that by an
interplay with deformations they may cause a lift force on vesicles during their motion
close to a wall [14]–[16]. They also lead to interesting time-dependent phenomena [17, 18]
and cross-streamline migration of droplets, vesicles and deformable bead-spring models in
Poiseuille flow [19]–[21]. Additionally, the interplay between Brownian motion of small
particles and hydrodynamic interactions can cause surprising anti-correlations and cross-
correlations [22, 23].

Macroscopic rotors experience the attractive Magnus force that can easily be understood
using the concept of dynamic pressure. The balance of repulsive hydrodynamic forces and
attractive magnetic forces can give rise to dynamic, self-assembled structures [7, 24]. These
macroscopic hydrodynamic forces scale with the Reynolds number and thus vanish in the
Stokes limit [6]. The dynamic self-assembly of small scale rotors is therefore less obvious [25].
Magnetic dipole–hexapole interactions may be used for separating rotors with respect to their
shape [26]. Rotors also play an important role in bacterial motion, such as the propulsion of
Escherichia coli [3] with its rotating flagella. The dynamics of single flagella has recently been
modeled in numerical calculations [27]. One fundamental problem for active and driven low
Reynolds number motion is the understanding of the influence of hydrodynamic interactions on
the collective motion of an assembly of active components.

The aim of this work is to explore the effect of hydrodynamic interactions between two
externally driven anisotropic rigid dumbbell rotors (see figure 1). The rotation of these objects
is driven by a torque exerted due to a coupling of the dumbbells to a rotating external field.
In the case of two identically shaped objects with identical couplings to the external field,
symmetry considerations, as described in detail in section 3.2.1, forbid a net change of the
system’s conformation over one rotational period.

One major question explored here is how to induce attractive or repulsive interactions
between the rotors. As the relevant control parameters, we found the difference between the
shapes of the rotors and the difference between their couplings to the external field. For these
parameters we identified ranges for attractive or repulsive interactions between the rotors.

We demonstrate by numerical calculations that for dissimilar dumbbell shapes and
different couplings to the external field the time-reversal symmetry is broken. This broken
symmetry is the origin of the attraction and the repulsion between the dumbbells. Transitions
between these two effects are induced by changing the torques or the dumbbell shapes. Phase
diagrams separating regimes of attraction from regions of repulsion between the dumbbells are
constructed for several generic sets of parameters.
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Figure 1. Sketch of two dumbbells with unequal asymmetries, a1 6= a3 and
a2 = a4. The dumbbells are rotated by a driving field f (t), see equation (5).
1φ is the angle between the axes r̂21 and r̂43 of the dumbbells. The crosses
indicate the hydrodynamic centers c21 and c43 of the two dumbbells. The distance
between them is denoted by ch.

Our suggestion is to test our theoretical exploration with experiments on anisotropic
birefringent particles. Such particles may be rotated by circularly polarized light [28, 29].
Another possibility to apply a torque is to place paramagnetic or ferromagnetic particles
in a rotating magnetic field. As in nuclear magnetic resonance, magic angle spinning [30]
may be used to eliminate time averaged dipole–dipole interactions that might overshadow the
hydrodynamic attraction or repulsion.

2. Model

We investigate the motion of a single dumbbell and of two hydrodynamically interacting
dumbbells in a fluid of viscosity η in the low Reynolds number limit. Due to a torque created by
a rotating external field f the dumbbells perform a planar rotational motion. Each dumbbell is
composed of two beads that are connected by a bar of constant length, as indicated in figure 1.

The beads with the effective hydrodynamic radii ai (i = 1, 2, 3, 4) at the positions r i

(i = 1, 2, 3, 4) are described as point particles having drag coefficients ζi = 6πηai . The vectors
r21 = r2 − r1 and r43 = r4 − r3 describe the two dumbbell axes, which we assume to be of
constant length b = |r21| = |r43|. The hydrodynamic centers of the dumbbells, c21 and c43, are
given by

c21 = r1 +
a2

a1 + a2
r21 and c43 = r3 +

a4

a3 + a4
r43. (1)

The equation of the over-damped motion is given by

ṙ i = Hi j F j , (2)

with the Rotne–Prager mobility matrices for unequal spheres [31, 32]

Hi j =


1

6πηai
I for i = j,

1

8πηri j

[(
1 +

1

3

a2
i + a2

j

r 2
i j

)
I +

(
1 −

a2
i + a2

j

r 2
i j

)
r̂ i j ⊗ r̂ i j

]
for i 6= j,

(3)
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the unity matrix I, the connection unit vectors r̂ i j = r i j/|r i j | = r i j/ri j and the external forces
F j ( j = 1, 2, 3, 4) acting on the beads. In our model the rotation of the dumbbells is caused by
the potential

V = −V21 r̂21 · f − V43 r̂43 · f , (4)

with the external field

f =

(
cos(ωt)

sin(ωt)

)
(5)

rotating at a frequency ω in the xy plane and the coupling constants V21 and V43 between the
dumbbell axes and the external field f . The forces Fi = −∇i V in equation (2) can be expressed
in terms of the rotating field f as

F1 =
V21

r21
[(r̂21 × f )× r̂21] and F3 =

V43

r43
[(r̂43 × f )× r̂43]. (6)

The potential in equation (4) yields the following asymmetric relations between the forces: F1 =

−∇1V = ∇2V = −F2 and F3 = −∇3V = ∇4V = −F4. According to this property, together
with equation (6), the dumbbells are force free. Additionally, the forces acting on the individual
beads are perpendicular to the dumbbell axes, which results in a rotation of the dumbbells.

The form of the potential V for the driving field is similar to that of magnetic dipoles in an
external magnetic field where the interaction between the dipoles is neglected. But other means
to propel the dumbbells are possible. For example, non-spherical birefringent particles can be
rotated by circularly polarized light. The magnitude of the torques imposed on the dumbbells
can easily be tuned by the applied power of the light [28, 29].

3. Dumbbell dynamics

The balance between the driving and the viscous torques leads to phase angles φ21 and φ43

between the dumbbell orientations r i j and the driving field f (t)with cos(φi j)= r i j · f /|r i j · f |.
The dynamics of the dumbbells is analyzed in this section. The conditions under which both
dumbbells attract or repel are discussed.

3.1. Single dumbbell

The two beads of a single dumbbell (V43 = 0 and V21 = V0) move on circular trajectories around
their hydrodynamic center c21. The radii R1,2 of those trajectories depend on the effective
hydrodynamic radii a1,2 of the two beads and the length b of the dumbbell axis. In the Oseen
approximation they are given by

R1 =
a2 b

a1 + a2
and R2 =

a1 b

a1 + a2
. (7)

For a sufficiently strong external field

V0 > Vcrit =
πηωb2

1

6a1
+

1

6a2
−

1

4b

(
1 +

a2
1 + a2

2

3b2

) . (8)
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the dumbbell axis r21 rotates synchronously with the driving field f (t) at the same frequency
�= ω. The stationary phase angle φ21 between the dumbbell axis and the orientation of the
external field is given by the expression

sinφ21 = −
πηωb2

V0

[
1

6a1
+

1

6a2
−

1

4b

(
1 +

a2
1 + a2

2

3b2

)] . (9)

φ21 tends to zero for decreasing values of the ratio ω/V0, i.e. either for a decreasing frequency or
for increasing values of the coupling V0. If the expression on the right-hand side in equation (9)
takes values outside of the interval [−1, 1], the driving torque is too small to enforce a
synchronous rotation. These analytical results are in agreement with numerical integrations of
equation (2).

3.2. Two dumbbells

In the case of two rotated dumbbells, each experiences the perturbed liquid flow created by the
other. Due to this interaction the hydrodynamic centers ci j are set in motion. In the mean this
results in a circular or a spiral-like motion, as indicated in figure 2.

There are two time scales in the system. The typical time corresponding to the rotating
external field is τf = 1/ω, whereas the time scale of the dumbbell motion is given by τd =

ηb3/Vi j . The dimensionless ratio τf/τd = Vi j/(ηωb3) describes how quickly the dumbbells
follow the external field. In order to vary this ratio it is sufficient to change only the coupling
Vi j and keep the viscosity η = 10, the dumbbell length b = 3 and the angular frequency ω =

5 × 10−4 fixed. Whether the dumbbells attract or repel depends crucially on the asymmetries
a1/a2 and a3/a4 of the dumbbells, as will be shown later in this work. Therefore, we fix the
values a2 = a4 = 1 and vary the remaining two radii a1 and a3.

The complete conformation of the system (up to a rotation of the whole system) can be
described by the distance D(t) between the hydrodynamic centers of the dumbbells,

D(t)= |ch| = |c21 − c43| =

∣∣∣∣r1 +
a2

a1 + a2
r21 − r3 −

a4

a3 + a4
r43

∣∣∣∣ , (10)

as well as the conformation angles ψ21 and ψ43, which are given by

cos(ψi j)=
ch · r i j

|ch · r i j |
. (11)

The hydrodynamic interactions between the dumbbells induce a slow rotation of ch and
oscillations of D(t) around some mean distance as indicated by figure 2. The frequency �′

of these oscillations is the rotation frequency of the dumbbell axes r21 and r43 with respect to
ch. Therefore, the frequency of the slow rotation of ch is equal to the difference �−�′.

3.2.1. Two dumbbells having identical shapes and couplings. The dumbbell dynamics is
considerably simplified for equally asymmetric shapes of the two dumbbells, a1 = a3, and equal
couplings, V21 = V43. If the two dumbbells are also equally oriented, as sketched in figure 2(a),
the phase angles are equal, φ21 = φ43 = φ, and the conformation angles are identical for all
times, ψ21 = ψ43 = ψ . For two oppositely oriented dumbbells the phase difference has the
constant value 1φ = π , whereas the conformation angles add up to ψ21 +ψ43 = π .

New Journal of Physics 12 (2010) 073017 (http://www.njp.org/)

http://www.njp.org/


6

a) b)

Figure 2. In part (a), the trajectories of the centers of two rotating, equally
oriented and equally asymmetrically shaped dumbbells are sketched. In addition
to that, the coupling parameters, V21 = V43, are identical. The trajectories of
both hydrodynamic centers c21 and c43 have the same mean radius, which
corresponds to the mean length of the vector ch. Part (b) corresponds to the
case of two dumbbells with differently asymmetric shapes and different coupling
strengths (V21 6= V43). The resulting trajectories are open and the mean distance
D(t)= |ch| increases during the motion.

According to the symmetry of the system, the distance D(t) between the hydrodynamic
centers of two equally oriented dumbbells oscillates around a mean distance with the frequency
2�′, as indicated by the sketch in figure 2(a). The corresponding oscillation period is π/�′,
which is shown for a specific parameter set in figure 3(a). In contrast to this, the distance D(t)
for two dumbbells with opposite shape orientation oscillates with a period of τ�′ = 2π/�′ being
twice as long as in the former case. For comparison we show the x-component of the driving
field fx(t) in figure 3(c), which illustrates the inequality of the frequencies, �′ <�, and thus
the inequality of the oscillation periods τ�′ > τ� = 2π/�.

In figure 3(b), the oscillatory contribution ψ̃ to the phase ψ =�′t + ψ̃ is shown. Since
the coupling strengths of the dumbbells are constant, the oscillation of ψ about a linearly
growing part confirms that the rotational hydrodynamic drag changes as a function of the relative
orientation of the dumbbell axes with respect to ch. In the case of equally oriented dumbbells
the viscous drag is maximal in the ranges about the conformation angles ψ = (2n − 1)π/4
(n = 1, 2, 3, 4) where fluid between the dumbbells is squeezed out or sucked into the region
between the dumbbells. These are also the phases of the rotation during which the repulsion
(respectively attraction) between the dumbbells is strongest.

According to the symmetry of the system, the attractive forces acting between the
two dumbbells in one quarter of a period (0< t < τ�′/4) are compensated for during the
consecutive quarter (τ�′/4< t < τ�′/2) by repulsive forces of the same magnitude. This
causes an oscillation of D(t) with the frequency 2�′ around some mean value, but without
a net attraction or repulsion. In the case of oppositely oriented dumbbells, two consecutive
maxima of the viscous drag have different amplitudes and therefore the attractive and repulsive
hydrodynamic forces do not cancel each other completely during one half of an oscillation
period, but during a whole rotation with the period τ�′ .
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Figure 3. Part (a) shows the dimensionless distance D(t)/a for two equally
asymmetrically shaped and equally oriented dumbbells with a1 = a3 = 1.2 and
V21 = V43 = 0.7. In part (b), we present the periodic contribution to the phase
angle ψ̃ = ψ −�′t . For comparison the periodic variation of the x-component
of the driving field f is shown in part (c).

During the rotation the viscous drag acting on the inner beads, which are closer to the
respective other dumbbell, is higher than the drag on the outer beads of the dumbbells. These
differing drag forces induce an oscillation of the phase angles φi j during the rotation.

In the ranges of increasing (decreasing) viscous drag, the rotation frequency �′ of the
dumbbell axes decreases (increases). When �′ is larger (smaller) than ω, the phase delays φi j

of the dumbbells decrease (increase).
The oscillations of D(t) and φ(t) are shown as a function of time for two different values

of the coupling constants in figure 4. In part (a) the coupling to the driving field is weak,
V21 = V43 = 0.7, and in part (b) the coupling is strong, V21 = V43 = 100. The amplitudes of
the oscillations of the distance are the same in both cases. Is contrast to that, the phase lag φ of
the dumbbell axes with respect to the orientation of the external field is smaller in the case of
large values of the coupling. Moreover, the diagrams in figure 4 show that the oscillations of φ
are in phase with the oscillations of the distance in the case of strong couplings to the external
field. Contrary to that, φ(t) is delayed with respect to D(t) for weak couplings.

The reason for this delay is as follows. While the distance between the dumbbells increases,
the drag on the dumbbells also grows. So the rotation frequency �′ of the dumbbells must
decrease. As soon as it is below ω, the phase angle φ grows and so does the torque on the
dumbbells (∼sinφ). But for weak couplings the torque builds up much more slowly than for
strong couplings. So for small coupling constants even in the beginning of the domain where the
distance (and thus the drag) decreases, φ is still growing because the torque is too weak. At some
point the torque is large enough to overcome the drag so that φ decreases again afterwards. An
analogous argument holds in the ranges where D(t) is increasing. The shift between the curves
of D(t) and φ(t) has to be smaller than a quarter of an oscillation period in our considerations
because otherwise the field f (t) would be too weak to enforce a synchronous rotation of the
dumbbells at all.
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Figure 4. The distance D(t) (solid line) and the phase lag φ = φ21 = φ43 (dashed
line) are shown as a function of time for a1 = a3 = 1.2. In part (a) the coupling
is weak, V21 = V43 = 0.7, and in part (b), the coupling constants are large,
V21 = V43 = 100.

a)
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ψ

6

6.1

6.2

6.3

6.4

D
a

b)

0 45 90 135 180
ψ

6

6.1

6.2

6.3

6.4

D
a

Figure 5. Trajectories in the D–ψ plane for a system of two dumbbells with
a1 = a3 = 1.2 and equal coupling constants. In part (a) the couplings are V12 =

V34 = 0.7 and in part (b) V12 = V34 = 100. Both trajectories are invariant under
the transformation ψ → −ψ , showing the reciprocity of the motion. What is
more, the trajectories fall on top of each other, which illustrates the universality
of the trajectories. However, according to the two different couplings the rates
ψ̇ along the trajectories differ. The rates ψ̇ are color coded, where red denotes a
rate below the average, and blue a rate above.

For strong couplings there are small dips at the maxima of φ(t). These correspond to local
minima of the drag, which occur when the dumbbells are aligned with each other so that the four
beads lie on a single line. In this conformation the distance between the dumbbells is maximal.
An equivalent phenomenon can be seen in the plot of φ(t) for weak coupling. Of course there
is also a local minimum of the drag when the dumbbells are aligned with each other and the
distance is maximal. But due to the weak torque acting at that stage there is no dip but only a
slight flattening of the curve in this case.

In the coordinate system rotating with the connection vector ch the conformation after one
period τ�′ maps on top of the original conformation. The reciprocity of the motion is illustrated
in figure 5, where the distance D is plotted as a function of the conformation angle ψ for
weak couplings, V12 = V34 = 0.7, in part (a) and strong couplings, V12 = V34 = 100, in part (b).
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Figure 6. The upper parts show the phase difference 1φ between the two axes
of the rotating dumbbells as a function of time. The distance D(t) is plotted in
the middle parts and the lower parts show the x-component of the driving field
f . In part (a) the two dumbbells repel each other. The corresponding parameters
are a1 = 1.8, a3 = 0.6, V21 = 1.2 and V43 = 1.0. In part (b) the dumbbells attract
each other. There the parameters are a1 = 1.2, a3 = 1.1, V21 = 3.2 and V43 = 0.8.

Both curves are invariant under the transformation ψ → −ψ . This underlines the reciprocity
of the motion as it can already be seen in the plot of D(t), which is invariant under time
reversal t → −t . In addition to that, the curves for weak and strong couplings are identical in
the conformation space D–ψ , as shown in figure 5. In fact the trajectories shown are universal
for all values of the coupling constants as long as they are large enough so that the dumbbells
can follow the field f (t) synchronously.

However, the rate of change of the conformation angle ψ̇ along the curves depends very
much on the coupling parameters (see figure 4). This is indicated by the color code along the
two curves, where red and blue mark the rates ψ̇ below and above the angular frequency �′.
This shows that irrespective of the strength of the driving field, the dumbbells pass through the
same set of conformations during one cycle, although each conformation is passed at a different
rate, as indicated by the distribution of the different colors along both lines. The reciprocity of
the motion ensures that for a given rotational frequency the distance of the dumbbells described
by the Stokesian dynamics is locked to the individual orientation of the dumbbells with respect
to ch and returns to the same value after one period.

3.2.2. Two dumbbells of dissimilar shapes or couplings. For two differently shaped dumbbells
or for different couplings to the external field, the phase difference1φ and the distance D(t) are
plotted as functions of the time in figure 6 for two different sets of parameters. For comparison,
the x-component fx of the driving field is also shown. In contrast to the previous section,
the phase difference 1φ(t) oscillates in time. The time dependence is different for different
parameters, as indicated in figure 6(a) for the parameters a1 = 1.8, a3 = 1.0, V21 = 1.2 and
V43 = 1.0, and in figure 6(b) for the parameters a1 = 1.2, a3 = 1.1, V21 = 1.0 and V43 = 2.0.

In the previous section, D(t) was oscillating with the frequency 2�′ or �′, but in both
cases D(t) was symmetric with respect to a reflection of time (see figure 4). Here, both D(t)
and 1φ(t), are not symmetric anymore with respect to time reflection.

As in the case of equally asymmetric dumbbells, the viscous drag is a function of the angles
that the dumbbell axes enclose with the vector ch. There are also ranges of the phase angles,
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Figure 7. In part (a), the distance D(t) between two dumbbells is plotted as a
function of the conformation angle ψ21 between the axis of the first dumbbell
and the vector ch. Part (b) shows the derivative of D(t) as a function of ψ21. The
parameters are a1 = 1.2, a3 = 1.1, V21 = 3.2 and V43 = 0.8. The dynamics of this
system is much more complex than for equally asymmetric dumbbells with equal
couplings (see figure 5).

in which liquid is squeezed out between the dumbbells and others where fluid is sucked in. As
a consequence, the length of the vector ch is also oscillating here, i.e. there are phase ranges of
dumbbell attraction, which are followed by phases of dumbbell repulsion and so on.

For finite values of 1φ 6= 0, which are a consequence of the broken symmetry, the
conformation angles ψ21 and ψ43 differ from each other. Combined with the hydrodynamic
interactions, which depend nonlinearly on the distances between the beads, the magnitude and
the directions of the forces between the beads during one rotation cycle are quite complex.
Therefore, the trajectories in the configurational space are no longer universal.

For one parameter set the distance D(t) is plotted as a function of the conformation angle
ψ21 in figure 7(a). It is clear from first sight that the behavior is much more complex here than in
the case of equally asymmetric dumbbells with equal couplings, which was shown in figure 5.
In particular, the magnitudes of the attraction and repulsion between the dumbbells during the
different stages of the motion are different here. So, a priori, it is no longer clear whether the
dumbbells can attract or repel each other during a whole rotational period. In order to illustrate
the complex behavior of D as a function of ψ21 in more detail, figure 7(b) shows the derivative
(∂D/∂ψ21)(ψ21). In the ranges of the conformation angle ψ21, when this function is positive
the dumbbells repel each other and when the function is negative they attract each other. The
Fourier modes of this function are given in figure 8. In this spectrum, one can clearly see that
there is a non-vanishing coefficient of zeroth order, which means that the distance between the
dumbbells changes during a complete dumbbell rotation. But it is also obvious that this net
repulsive or attractive effect is superimposed by much stronger oscillations. So it is not possible
to determine in which phase of the motion the decisive effect takes place that causes the overall
repulsion or attraction. In fact all coefficients from n = 1 (∼ eiψ21) to n = 8 (∼ e8iψ21) are larger
than the zero-order coefficient.

As shown above, the mean distance between two unequally shaped dumbbells may
increase, as sketched in figure 2(b), or decrease as a function of time. In figure 9, we have
plotted D(t) for the same parameter sets as in figure 6, but for a longer time window. One can
easily see that in the mean the dumbbells repel each other in part (a) and attract each other in
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Figure 8. The Fourier modes of the function (∂D/∂ψ21) are shown. There is a
non-vanishing zeroth-order coefficient that leads to an attraction or a repulsion
between the dumbbells. However, there are eight higher-order coefficients that
have larger values, which indicate a quite complex motion.
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Figure 9. The distance D(t) between the centers of the dumbbell is shown as a
function of the time for the same two parameter sets as in figure 6. In part (a) the
dumbbells repell each other. The parameters are a1 = 1.8, a3 = 0.6, V21 = 1.2
and V43 = 1.0. In part (b) the dumbbells attract each other for the parameters
a1 = 1.2, a3 = 1.1, V21 = 3.2 and V43 = 0.8.

part (b). How the hydrodynamically induced repulsive or attractive dumbbell motion depends
on the parameters, describing the system’s asymmetry, is illustrated in terms of diagrams for
representative sets of parameters in figures 10–12.

In figure 10, areas of dumbbell attraction and repulsion are shown as a function of the two
coupling parameters V21 and V43 for the fixed parameters, a1 = 1.2 and a3 = 1.1, corresponding
to unequal dumbbell shapes. For combinations of the two couplings along the solid lines in
figure 10, the bead asymmetries of the dumbbells are compensated for by the difference between
V21 and V43, so that the distance D(t) is constant in the mean. If one coupling parameter is much
larger than the other one (V21 � V43 or V43 � V21) the dumbbells attract each other. Between
those two regimes there is a range of parameters for which the dumbbells repel each other. For
increasing coupling constants the repulsive area widens.

In figure 11, the regions of dumbbell attraction and repulsion are shown as functions of
the two bead radii a1 and a3 for fixed coupling constants, V21 = 1.2 and V43 = 1.0. For these
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Figure 11. Ranges of dumbbell attraction and repulsion are shown as functions
of the ratios of the bead radii a1/a2 and a3/a4 for unequal coupling parameters,
V21 = 1.2 and V43 = 1.0.

parameters there is only a narrow domain, in which the dumbbells attract each other. In this
area, the dumbbell asymmetries differ by only about 20–30%. The phase diagram in figure 11
also shows that for identical asymmetries of the two dumbbells, a1 = a3, one may have either
dumbbell repulsion, as in the case a1 = a3 = 0.6, or attraction, as in the case a1 = a3 = 1.8.

In figure 12 the coupling V43 = 1.0 and the asymmetry a3/a4 = 1.1 of one of the dumbbells
were fixed, whereas the asymmetry a1/a2, as well as the coupling parameter V21, is varied. For
a symmetric or slightly asymmetric dumbbell, i.e. a1/a2 ≈ 1, there is always attraction, but for
stronger asymmetries there are also regions where the two dumbbells repel each other. Even
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Figure 13. The mean relative velocity between the dumbbells is shown as a
function of the coupling strength V43 for the same parameter set, as in figure 10
and the fixed value V21 = 1.2.

for equal couplings (V21 = V43) one can find areas of dumbbell attraction as well as regions in
which the dumbbells repel each other.

Away from the solid lines of vanishing attraction and repulsion in figure 10, 11 or 12 the
modulus of the relative velocity between the dumbbells increases with the distance from these
lines. This is demonstrated in figure 13, where the mean relative velocity between the dumbbells
is shown as a function of the coupling V43. In this figure, the same parameter set as in figure 10
was used and V21 = 1.2 was fixed. In this case the transitions from attraction to repulsion and
back occur at the values V43 ≈ 1.17 and V43 ≈ 1.59 and there is only a small range of values of
V43 for which the dumbbells repel each other.

Is there a simple mechanism by which the attractive or repulsive behavior can be explained?
As shown before, the broken time-reversal symmetry of D(t) is necessary for the non-reciprocal
motion of the dumbbells to occur. Furthermore, for some parameter sets, the phase shift 1φ
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between the dumbbells, as well as its modulation amplitude, has a minimum in the repulsive
regime. However, this depends very much on the parameters being used. For other parameter
sets, 1φ takes its maximum value in the range in which the dumbbells repel each other. For a
third class of parameter sets, there is no obvious correlation between the phase shift and the fact
that the dumbbells behave in an attractive or a repulsive way. All in all, the mechanism leading
to dumbbell attraction or repulsion is a complex interplay between the applied torques resulting
from the coupling parameters and the drag forces, which depend on the bead radii and thus on
the asymmetries of the dumbbells.

4. Conclusions and discussion

Hydrodynamic interactions between two rotating asymmetric dumbbells in a fluid at a low
Reynolds number were investigated. We found either a temporally averaged attraction or
repulsion between the dumbbells if they had different shapes and/or their couplings to the
driving field differed. Differences in shape and/or coupling break the time-reversal symmetry
and are hence a pre-condition for attraction or repulsion. No generic rule could be identified
concerning whether a specific form of symmetry breaking leads to dumbbell attraction or
repulsion. We presented phase diagrams separating parameter regions of attraction from regions
of repulsion.

We suggest experiments where anisotropic birefringent particles are rotated by circularly
polarized light, similar to recent experiments [28, 29], in order to explore the hydrodynamic
attraction and repulsion between rotating small particles. In such experiments the torque on an
anisotropic particle may easily be tuned by varying the laser power. Different torques may also
be applied to the particles by using different shapes or materials for the particles. A spatially
varying power of the circularly polarized light can also cause different torques on neighboring
particles.

Dumbbells or anisotropic particles can also be constructed from super-paramagnetic
particles, which can be rotated using a magnetic field. In this case, the magnetic dipole–dipole
interactions have to be taken into account. Magic angle spinning may suppress the magnetic
dipole or multipole interactions [26] such that the hydrodynamic interactions dominate.

Recently, synchronization and phase-locking effects have been reported in related
systems [33, 34]. Both phenomena have not been observed for our model. This may be due
to the fact that in our system the dumbbells can perform free translatory motion, whereas the
locations of the objects in the cited works are more or less fixed.

If the hydrodynamic interactions of an assembly of asymmetric objects are investigated,
collective dynamics such as chaotic motion can be expected. Our findings might find
applications in designing an efficient way to micromix a fluid or to separate particles on the
small scale. It might also be useful for studies on the collective assembly of micro-swimmers.
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