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Abstract.
We study molecular motor-induced microtubule self-organization in dilute and semi-dilute fil-

ament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via
molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as po-
lar rods interacting through fully inelastic, binary collisions. Our model indicates that initially
disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous
ordering. We study the existence and dynamic interaction of microtubule bundles analytically and
numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear
coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow loga-
rithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several
others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean
orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer
alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a
force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of
the net force acting on a filament. We show that the transition to the oriented state can be both
continuous and discontinuous when the force-dependent detachment of motors is important.
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1. Introduction
Polar biofilaments, such as microtubules and actin, are known to form complex structures via in-
teraction with molecular motors. Some examples include the formation of the cytoskeleton [15]
and the assembly of mitotic spindles, which are used by eukaryotic cells to segregate chromo-
somes during cell division [17]. In each of these instances, microtubules undergo motor mediated
attachment, cross-linking, and sliding which ultimately leads to the formation of highly organized
structures [35]. The dynamics and self-organization of the cytoskeleton [27] is an important sub-
ject of study in the biological sciences as well as in soft matter physics as a natural realization of
an out-of-equilibrium, complex fluid.

Pattern formations and intrinsic nonequilibrium dynamics inside the cytoskeleton have been
investigated both experimentally [16, 29, 30, 37, 40, 41] and theoretically [1, 2, 24, 26, 44, 43]. In
highly dilute filament solutions, binary interactions between motors and filaments are dominant.
However, in the semi-dilute regime multiple motors can bind a filament to several other filaments.
When a critical motor density is reached, these interactions induce a transition to an ordered phase
with a nonzero mean orientation of filaments – the isotropic-polar transition – with the final state
exhibiting coherent structures. A complete description of the dynamics remains a formidable task,
since it involves nonequilibrium processes, intrinsic nonlinearities, structural anisotropies, and a
broad window of time and length scales over the range of densities. For low filament densities,
models based on binary rod interactions have been proposed [1, 2, 26, 44], but in reality the cytosol
is not sufficiently dilute to justify this approach. Additionally, hydrodynamic models have been
formulated [20, 34], but their validity is questionable due to the lack of scale separation between
the patterns formed and the filament size. Moreover, the connections between the phenomeno-
logical parameters and the underlying microscopic mechanisms are not yet known. In small-scale
simulations [37], interaction of rod like filaments by means of motor binding has been studied, and
patterns resembling experimental ones have been observed. In [23], a model including transport
of molecular motors along microtubules and motor-induced microtubule alignment was proposed.
Simulations showed that asters and vortices form in this model.

In this paper, we discuss theoretical approaches used to model dilute and semi-dilute, spatially
homogeneous filament solutions [2, 5, 38, 39]. We further introduce methods for extending the
models to spatially inhomogeneous regimes. In the dilute region, we begin by studying the nonlin-
ear dynamics of Aranson’s and Tsimring’s [2] spatially homogeneous master equation given that
the range of angular interaction is small. This limit is interesting because simulations of single
motor-induced alignment have shown the onset of many localized bundles [43]. Our analysis of
bundle coarsening dynamics shows that bundles have exponentially weak attraction accompanied
by coalescing.

In the semi-dilute regime, we address alignment dynamics prevalent in motor-filament systems
in which the filament density is too high for two-particle interaction models to be valid but still
below the isotropic-nematic transition occurring for systems of passive anisotropic particles [31].
We use a Landau-Lifshitz type equation [22] and in our modeling take advantage of knowledge
stemming from recently developed models for the alignment of two filaments [18, 45]. Specific
effects that are taken into account include angle-dependent noise (due to intrinsic motor force fluc-

2



S. Swaminathan et al. Motor-mediated microtubule self-organization

tuations) and force-dependent detachment of motors. Our main result highlights the importance
of the motor attachment dynamics in classifying the type of isotropic-polar transition; specifically,
the inclusion of a force-dependent detachment rate makes a discontinuous ordering transition pos-
sible. This is in contrast to the usual phase transitions in two-dimensional nematics, which are
second order as can be seen from the symmetry arguments of Landau and De Gennes [9]. Our
work also illustrates the importance of the intrinsic fluctuations of motor forces (or “effective tem-
perature”) on the macroscopic behavior of motor-filament solutions. We account for the fact that
the corresponding effective temperature exceeds the thermodynamic temperature by at least one
order of magnitude and that therefore the motor-induced fluctuations should be more important
than the thermal fluctuations. In principle, due to its multiplicative nature, motor fluctuations can
also promote ordering of filaments for some parameter ranges (in contrast to thermal fluctuations).

This paper is organized as follows. The first part of our analysis is focused on the dilute solu-
tion binary interaction models. In section 2., we recall the spatially homogeneous rod alignment
model proposed in [2], derive a limiting case for small angle interactions, and analyze unstable per-
turbations to the uniform state. In section 3. we discuss the framework for the asymptotic analysis
of bundle interaction. The results of the asymptotics are compared with numerical experiments.

In the second part of the paper, self-organization in semi-dilute filament solutions is addressed.
In section 4., we discuss the motor-filament interaction rules and develop the governing equations
for the spatially homogeneous, motor-mediated self-organization of microtubules. In section 5. we
show that discontinuous ordering transitions exist when motor detachment dynamics are important.
We conclude in section 6. with a discussion of results and open questions.

2. Binary interaction model
In the model introduced by Aranson and Tsimring [1], rods of orientation θ are aligned through
irreversible pairwise interactions. These motor-mediated inelastic interactions are treated as instan-
taneous collisions in which each rod changes its orientation according to the following collision
rule: (

θf1
θf2

)
=

(
γ 1− γ

1− γ γ

)(
θi1
θi2

)
,

where θi1,2 are the two rods’ orientations before collision and θf1,2 are the orientations after. The con-
stant γ characterizes the inelasticity of collisions (analog of the restitution coefficient in granular
media). The angle between two rods is reduced after collision by an ”inelasticity” factor ε = 2γ−1.
Purely inelastic collisions correspond to γ = 1

2
or ε = 0. In this analysis, we assume that two rods

interact only if the angle between the rods is smaller than θ0; this requirement, after incorporat-
ing 2π-periodicity in alignment, gives the following interaction criteria: |θi2 − θi2| < θ0 < π and
2π − θ0 < |θi2 − θi2| < 2π. Hence, rods collide inelastically through the aforementioned interac-
tion rules, each rod acquiring the average orientation θf1 = θf2 =

θi1+θi2
2

. Rods are further subject to
rotational diffusion due to random thermal fluctuations.

Consider P (θ, t) to be the probability distribution function of rods with orientation θ at time
t, with normalizing condition,

∫ π

−π
Pdθ = 1 Then, the master equation governing the spatially
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homogeneous self-organization of microtubules (derived in [1]) is given by,

Figure 1: (a) Depiction of motor mediated microtubule interaction and alignment for fully inelastic
collisions. (b)Angular interaction regions for colliding filaments

Pt = DPθθ + g

∫ θ0

−θ0

[
P
(
θ +

ω

2

)
P
(
θ − ω

2

)
− P (θ)P (θ − ω)

]
dω, (2.1)

where ω = θ2 − θ1. The ”collision” integral in (2.1) accounts for interaction with gains associated
with rods aligning to obtain the orientation, θ, and losses due to rods having orientation θ before
alignment.

In the case of interactions occurring only between rods initially nearly aligned, one can consider
θ0 to be small. This limit is employed in order to study the formation and subsequent dynamics
of microtubule bundles. For small θ0, the collision integral in equation (2.1) can be calculated via
Taylor expansion of P about ω = 0 to yield,

∫ θ0

−θ0

[
P
(
θ − ω

2

)
P
(
θ +

ω

2

)
− P (θ)P (θ − ω)

]
dω =

∫ θ0

−θ0

[
−ωPP ′ − ω2

4

(
PP ′′ + P ′2)+ ω4

(−7

192
P ′′′′P − 1

48
P ′P ′′′ +

1

64
P ′′2

)]
dω. (2.2)

Computing the integral in equation (2.2) and rearranging the derivatives in θ yields a nonlinear
PDE which we refer to as the small angle master equation:

Pt(θ) = D
d2P

dθ2
− g

θ30
12

[
d2

dθ2
(
P 2

)
+

θ20
80

(
7
d4

dθ4
(
P 2

)− 24
d2

dθ2

[(
dP

dθ

)2
])]

. (2.3)

The disordered state, consisting of all equiprobable filament orientations, is represented by P =
P0 = 1

2π
. Linear stability analysis about the uniform state reveals the unstable angular fourier

modes k as a function of the physical parameters. The band of unstable wave modes is given by,

|k| <
√

80

θ20

[
1− 6D

7gP0θ30

]
. (2.4)
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The parameters used in all of the numerical and analytical treatments to follow are, g = 100,
D = 0.1, θ0 = 0.5, P0 =

1
2π

. Substituting these parameters into (2.4) indicates that wave numbers
of k ≈ 18 and smaller yield instability in the linear limit.

The steady state small angle master equation can be evaluated both analytically as well as
numerically. First, we introduce the scalings,

t̃ = t

(
10D

3θ20

)
; θ̃ = θ

(√
10

3

1

θ0

)
; P̃ = P

(
θ30g

12D

)
, (2.5)

and write down the dimensionless small angle master equation (tildes are removed for brevity.),

Pt(θ) =
d2P

dθ2
− d2

dθ2
(
P 2

)− 7

24

d4

dθ4
(
P 2

)
+

d2

dθ2

[(
dP

dθ

)2
]
. (2.6)

Sample long time numerical states are shown in Figure 2 below; these results show the existence
of localized bundles of well aligned rods. P ,θ, and t axes in all of the figures are scaled subject

to (2.5) (i.e. 0 < θ < 2π becomes 0 < θ < 2π
(√

10
3

1
θ0

)
). An implicit steady state analytical

solution to (2.6) can also be calculated and was found in [38].
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Figure 2: Typical numerically calculated long time bundle states computed from the small angle
master equation. The initial conditions are the uniform density P = 1/2π plus small perturbations
of the form: (a)ε cos θ, (b) ε cos 2θ, (c) ε cos 4θ. Equation (2.4) indicates that each of these initial
conditions are unstable in the linear limit. The chosen parameters are, g = 100, D = 0.1, θ0 =
0.5,P0 =

1
2π

, ε = 0.01.

3. Bundle Interaction Dynamics
Numerical analysis reveals that after the initial exponential growth of the instability, a well-defined
multi-bundle configuration emerges. The intermediate stage follows, characterized by movement
and alignment of bundles which ultimately exhibit highly nonlinear interactions leading to attrac-
tive motion. The final stages corresponding to bundles coalescing involve complicated dynamics
which are not considered in this work.
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In this study, we address the intermediate dynamics by preparing a two bundle initial state
composed of two copies of a single bundle steady state configuration. This preparation is con-
venient because it allows us to skip the dynamics associated with shape change and focus on the
movement. We expect, as indicated by our numerical studies, a quantifiable attracting interaction
between bundles (refer to Figure 3). One can derive an analytical asymptotic expression for the
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Figure 3: Numerical results showing the time evolution and eventual coalescing of two bundles of
well aligned rods of different orientation:(a) Initial state, (b) Coalescing bundles, (c) Newly formed
single bundle. The data indicates that the intermediate dynamics of bump interaction associated
with movement is characterized by long term attraction.

time evolution of the distance between two bundles situated far from one another. In this large
separation limit, the sum of two bundles can be considered an approximate steady state solution
or leading order asymptotic steady state solution to (2.3). Through an application of the Fredholm
Alternative one can derive an expression governing the rate at which bundles move toward one
another. This procedure is outlined in exhaustive detail in [38]. The resulting expression is,

X =
1

k
ln
∣∣c1kt+ ekX0

∣∣ , (3.1)

where X is the relative distance between two bundles. Figure 4(a) below shows the time evolution
of the relative distance between two bundles as they move toward each other; Figure 4(b) shows
the calculated value of c1 for various θ̃0. The growth of c1 with larger θ̃0 in Figure 4(b) is consistent
with the notion that larger θ̃0 yields greater interaction. Figure 4(c) shows the time evolution of an
initial set of many bundles. The data in Figure 4(c) is fit to a function of the form,

(
1 + A

ln|Bt+C|

)
,

with fitting parameters A,B,C. This form was chosen because we know that the number of bun-
dles scales as N ∼ L

X
, where L is the domain length and X is the distance between bundles; the

distance between bundles changes logarithmically with time as indicated by (3.1).
The coalescing of bundles observed in simulations of two bundle and multi-bundle configura-

tions indicates that coarsening in the system occurs on a slow logarithmic time scale. This finding
is well illustrated in figures 4(a) and 4(c). Similar techniques for studying coarsening have been
used in the study of axial segregation of granular materials. In [3], the authors show that bands of
granular material coarsen on a similar logarithmic scale. Likewise, in [11], the authors find slow
coarsening when studying the dynamics of slurries in circular and square tubes. When studied in
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complex, higher dimensional geometries, bands of segregated material have been known to exhibit
slow coarsening but with more complicated dynamics [12]. Long term bundle formation is known
to occur in liquid crystal systems as well; however, ordering in such systems is due mostly to
thermodynamic considerations as opposed to active motor mediated effects [9].
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Figure 4: (a) Comparison between the numerical and analytical results for the time evolution of
the relative distance between bundles; (b) c1 as a function of θ0. c1 represents the decay rate in
the relative distance X ; the growth of c1 with increasing θ0 indicates that bundles coalesce more
easily when a larger range of interaction angles are accepted; (c) Time evolution of the number of
bundle orientations; the fit parameters are: A = 5.01, B = 1.94, C = −1.50.

4. Semi-dilute solution model formulation & associated Fokker-
Planck equation

Analysis in the previous sections was centered on bundle dynamics in dilute filament systems.
In the semi-dilute case, microtubules (or short actin filaments) interacting via molecular motors
are again modeled as a collection of N stiff rods of fixed length L. For the sake of simplicity
(and since most experiments are carried out in a quasi-two-dimensional geometry) we restrict
our modeling to two spatial dimensions; the orientation of filament i can then be described by a
unit vector τ i = (cosϕi, sinϕi), or alternatively by the angle ϕi (with respect to the x-axis, see
Figure 5(a)). The Landau-Lifshitz model [22], originally developed to describe the precessional
motion of the magnetization in a ferromagnetic solid and augmented by Gilbert [13], captures the
damped rotational dynamics prevalent in our system. In Gilbert’s work, A vector representing the
magnetization M in a magnetic field H moves so as to minimize |M × H|, which leads to the
equation:

Ṁ = −νM ×H − χM × (M ×H),

for some scalars ν and χ. Accordingly, in our case a rod of orientation τ relaxes toward a field F ,
which, coupled with the inextensibility requirement (the length of the rod is conserved), leads to
the following equation of motion for the i−th rod:

ζrτ̇ i = −τ i × (τ i × lmF )− τ i × T , (4.1)
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(a) (b)

Figure 5: (a) Multi-rod configuration showing the interaction of the i-th microtubule (marked in
red) with all other microtubules in the system. The dotted line indicates the direction of forcing due
to all binary interactions with the i-th rod. (b) Depiction of motor mediated, binary microtubule
interaction. Molecular motors attach at the rod intersection point, zip across the length of the rods
causing alignment, and detach.

where ζr is the rotational drag coefficient and lm is the average motor run length.
The mean field F represents the average force exerted on the i-th filament due to interactions

with all other filaments. We intend to study the case of high motor density; hence, for a homoge-
neous filament solution, each rod is in motor contact with every other rod, and the total number of
rods, N , is fixed. T is a thermal noise term given by,

T = ξ0ẑ . (4.2)

Here ξ0 is the stochastic torque and ẑ is the unit vector perpendicular to the plane of the system.
The stochastic force has zero mean, 〈ξ0〉 = 0, (brackets represent the ensemble average), and is
assumed to be δ-correlated,

〈ξ0(t)ξ0(t′)〉 = 2kBTζrδ (t− t′) (4.3)

where kBT is the thermal energy. The stochastic torque, as defined above, gives rise to rotational
diffusion with diffusion coefficient Dr =

kBT
ζr

.
For the field F we use the following form,

F =
N∑
j=1

τ j (σα + ξj) , (4.4)

which represents the sum over all (i, j) pairwise interactions (refer to Figure 5(a)); in the absence
of spatial variations, this amounts to N − 1 interactions. α is the average forcing strength for a
single motor and σ is the number of motors per filament pair. The stochastic term ξj describes
intrinsic fluctuations in the motor forces and enters as multiplicative noise.
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During rod alignment, motors spanning the i-th and the j-th filaments stretch as they move
away from the filament intersection point, exert a force on the ij pair, and experience a correspond-
ing restoring force. When motors attach, they quickly obtain a symmetric orientation perpendicular
to the bisecting line of any two interacting rods, see Figure 5(b). This is due first to the fact that
we assume negligible bending rigidity in the spring force which is supported by experimentation
[30]. Second, there is a well accepted force-velocity relation [6, 15, 19] given by,

VM = V

(
1− Fl

Fst

)
,

where VM is the motor head velocity, Fl is the projection of the motor spring force on the direction
of the rod, and Fst is the so-called stall force. Thus, if a motor attaches asymmetrically, the leading
motor head (corresponding to the larger distance from the filament intersection point) is slowed
down by the force due to extension of the motor spring while the trailing head is accelerated,
leading to fast relaxation towards a symmetric configuration. The force-velocity relation further
implies that motors stop when the pulling force (or load) reaches the value of Fst.

The number of motors σij spanning a filament pair takes the form,

σij = σ0 exp

(
−κal| sin(ϕi−ϕj

2
)|

kBT

)
, (4.5)

where σ0 is the average number of motors per microtubule. The exponential form in Eq. (4.5) is
motivated by experimental studies [8] and was developed in Refs. [14, 32]; The argument of the
exponential represents the ratio of the motor stretching energy to the thermal energy kBT . The
stretching of the motor is expressed by the average distance l (along the microtubule) between the
motor position and the intersection point of the two filaments (see Figure 5(b)) and by the angle
between the filaments. κ is the motor spring constant, known to be of the order of 200−400pN/µm
[7] for kinesin motors, and a is a molecular length scale (a few nm).

The noise terms occurring in the motor force, Eq. (4.4), are necessary to describe fluctuations
in non-equilibrium systems of active motors that can potentially induce an effective temperature
larger than the equilibrium (thermodynamic) temperature [24, 25, 28, 43]. Experiments in actin-
myosin mixtures [28] showed strong deviations from thermodynamic equilibrium behavior due to
motor fluctuations. We assume 〈ξi(t)〉 = 0 and

〈ξi(t)ξj(t′)〉 = 2
µζr
l2m

δ (t− t′) δij , (4.6)

for i, j = 1..N . The noise amplitude is comprised of µ = kBTa, where Ta is the effective (or
active) temperature. The effective temperature can be estimated in terms of the mean motor force
〈F 〉, motor step length 〈L〉, and kB as Ta = 〈F 〉〈L〉

kB
. Using known experimental values for kinesin

– average motor force, 〈F 〉 = 5pN and average motor step length, 〈L〉 = 8 nm [42] – we estimate
the effective temperature to be ' 3000 K (approximately 10 times room temperature), which is
consistent with [28, 43].
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If we write the orientation vector as, τ i = eiϕi and note the identities: τ i×τ j = − sin(ϕi−ϕj)ẑ
and τ i × ẑ = −iτ i, where ẑ is the unit normal to the plane, the equation of motion can be written
in the following compact Langevin-type form:

ζrϕ̇i = α

N∑
j=1

σijfij +
N∑

k=0

fikξk , (4.7)

with fij = −lm sin(ϕi − ϕj) and fi0 = 1.
Since we assumed Gaussian white noise, this generalized Langevin equation is stochasti-

cally equivalent to a Fokker-Planck equation for the N particle probability density P (N)(~ϕ) with
~ϕ = (ϕ1, ϕ2, ...ϕN). We interpret the stochastic differential equation (4.7) in the Stratonovich
sense. This is the natural interpretation if one assumes, as usually is the case in physical systems,
a high frequency cut-off for the spectral density of the noise (see e.g. [33] for a discussion of
multiplicative noise and Ito vs. Stratonovich interpretations). The Fokker-Planck equation for the
probability density is,

∂

∂t
P (N)(~ϕ) =

kBT

ζr

N∑
i,j=1

∂2

∂ϕi∂ϕj

P (N)(~ϕ)

+
αlm
ζr

N∑
i,j=1

∂

∂ϕi

[
σ(ϕi−ϕj) sin(ϕi−ϕj)P

(N)(~ϕ)
]

+
µ

ζr

N∑
i,j

∂

∂ϕi

[
sin(ϕi−ϕj)

∂

∂ϕj

(
sin(ϕi−ϕj)P

(N)(~ϕ)
)]
. (4.8)

A mean field approximation is applied by assuming independence of rods as follows:

P (N)(ϕ1, . . . , ϕN) = P (ϕ1)P (ϕ2) · · ·P (ϕN),

where
P (ϕ) = P (1)(ϕ) =

∫ π

−π

P (N)(ϕ, ϕ2, . . . , ϕN)dϕ2..dϕN

is the single-particle distribution function. This formulation is convenient because it converts a
many bodied system into a single body problem.

We now integrate Eq. (4.8) with respect to the last N − 1 angle variables. After rescaling
t 7→ (t̃ζr)/kBT , and defining α̃ = α lm(N−1)

kBT
, µ̃ = µ(N−1)

2kBT
, σ̃ = σ0σ and κ̃ = κa l

kBT
, we obtain the

mean-field equation for P (ϕ) (In the following, tildes on scaled quantities are suppressed for
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brevity):

∂

∂t
P (ϕ) =

∂2

∂ϕ2
P (ϕ)

+ α
∂

∂ϕ

∫
σ(ϕ− ϕ′) sin (ϕ− ϕ′)P (ϕ)P (ϕ′)dϕ′

− µ
∂

∂ϕ
[(γ sin 2ϕ− δ cos 2ϕ)P (ϕ)]

+ µ
∂2

∂ϕ2
[(1− γ cos 2ϕ− δ sin 2ϕ)P (ϕ)] . (4.9)

We have introduced γ =
∫
cos 2ϕP (ϕ)dϕ and δ =

∫
sin 2ϕP (ϕ)dϕ as abreviations for the second

moments of P (ϕ). The rotational drag coefficient is estimated in [10] as, ζr ' πηL3

3 ln(L/b)
, where

L = 10 − 15µm is the microtubule length, b = 24 nm is the microtubule diameter, and η '
0.005 pNs/µm2 is the solvent viscosity. The time scale associated with thermal fluctuations is
computed to be, KBT/ζr ' 3 · 10−3 s−1.

Equation (4.9) is a nonlinear and nonlocal PDE governing the time evolution of the probability
density of filament orientations, P (ϕ). It is related to the binary interaction models of Ref. [2, 21]
in its incorporation of rotational diffusion due to thermal effects (given by the first term on the
right hand side) and motor-induced interactions (proportional to the renormalized motor-strength
α). However, previous models assumed a priori binary interactions, whereas Eq. (4.9) is effectively
quadratic in P explicitly because of the approximation of independence of particles. Moreover, the
derivation used here is unique in that it allows straightforward inclusion of the fluctuations in motor
force. These are represented by the terms proportional to the renormalized fluctuation strength µ,
which should in fact be more important than the thermal effects for realistic conditions.

The uniform density corresponding to P (ϕ) = Piso =
1
2π

, solves Eq. (4.9) upon application of
the normalization condition,

∫ 2π

0
P (ϕ)dϕ = 1. It represents an isotropic distribution of rods. If mo-

tor affects are sufficiently stronger than diffusion associated with thermal fluctuations, the uniform
state loses its stability resulting in the onset of spontaneous orientation. In [39], the formation of
oriented states is studied in two physical cases. The first case is that in which the motor detachment
dynamics are negligible (ie: for σ = σ0). In this case, one can perform weakly nonlinear analysis
in a parameter space near the instability threshold. These calculations lead to the Landau-type
equation for the time evolution of the mean orientation (respresented by the first Fourier mode).
Analysis of the Landau equation indicates that the ordering transition is always second order (or
continuous) in agreement with numerical analysis. In the following section, we address the gen-
eral case studied in [39] in which detachment dynamics are relevant. This analysis is interesting
because it shows that force-dependent motor detachment and intrinsic motor fluctuations can shift
the ordering transition from second order to first order.
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5. Influence of Force Dependent Detachment Rate
One can gain some insight into the dynamics of the master equation given by Eq. (4.9) by examin-
ing its terms. The exponential form of Eq. (4.5), for example, indicates that the strength of motor-
induced interactions is greatly diminished when the angle between interacting rods is large. Hence,
one would anticipate that the intermediate ordering dynamics would involve multiple steady state
rod bundles of disparate orientation similar to those found and studied extensively in the binary in-
teraction models previously presented. Furthermore, one would expect a more complex transition
to alignment due to the nonlocal, motor-induced alignment term, i.e. the term proportional to α in
Eq. (4.9).

The general master equation is highly nonlinear, and the convolutions in the integral term
indicate that analysis is more convenient in Fourier space. Consider the Fourier harmonics of
P (ϕ) given by,

P (ϕ) =
1

2π

∑
n

Pne
inϕ, Pn =

∫ 2π

0

P (ϕ)e−inϕ , (5.1)

Substituting Eq. (5.1) into Eq. (4.9) yields equations for the Fourier coefficients Pn:

Ṗn = −n2Pn (1 + µ)

+
1

2
αn

∑

k

Pn−kPk (qk−1 − qk+1)

−µn

2
(Pn−2P2 − Pn+2P−2)

+
µn2

2
(Pn−2P2 + Pn+2P−2) , (5.2)

where we have defined,

qk =
1

2π

∫ 2π

0

exp
[
−κ

∣∣∣sin
(ϕ
2

)∣∣∣− ikϕ
]
dϕ . (5.3)

One can identify the unstable angular wave modes near the isotropic state by linearizing Eq. (5.2)
about the uniform density corresponding to P = P0. The growth rate of the n-th Fourier mode,
λn, is found to be,

|n| 6= 2 : λn =
αn

2
(qn−1− qn+1)− n2(1 + µ) (5.4)

|n| = 2 : λ±2 = α (q∓1 − q±3)− 4− 3µ . (5.5)

Eqs. (5.4) and (5.5) indicate that several modes may lose stability depending on the magnitude of
the motor strength parameter α, the values of the qk, and the motor noise strength µ. This was not
the case for the limit of small detachment rate.

The type of ordering transition can be determined by deriving a Landau-type equation using
the following procedure: Expand P as,
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Figure 6: (a) Steady state distribution obtained from numerical treatment of (4.9) with parameters:
α = 16 µ = 2. (b) Bifurcation diagram showing the stable states with nonzero mean orientation
associated with the supercritical (3) and subcritical (2) transitions from the isotropic state. The
stable branch (5) was calculated for the limiting case of zero diffusion. The dotted branches (1)
and (4) show estimates of the repelling branches associated with the subcritical transitions.

P (ϕ, t) =
1

2π

(
1 + εP̃1(ϕ, tε) + ε2P̃2(ϕ, tε) + ...

)
, (5.6)

where,

tε = ε2t , (5.7)

and
P̃n = Pn(tε)e

inϕ + P−n(tε)e
−inϕ . (5.8)

Keeping terms up to O(ε2) and solving for P1 yields the familiar Landau-type equation,

Ṗ1 = Λ1P1 − A|P1|2P1 +R , (5.9)

A =
α2 (q0 − q2) (q−2 − q0 + q1 − q3)

2 [α (q−1 − q3)− 4− 3µ]
, (5.10)

Λ1 =
α

2
(q0 − q2)− 1− µ , (5.11)

where R represents higher order regularizing terms. These have to be included in the subcritical
case A < 0, where the lowest order nonlinearity of the Landau equation is insufficient to get
amplitude saturation. They can be calculated but are not specified here. In Eq. (5.9), both the
instability threshold Λ1 > 0 and the nonlinear Landau coefficient governing whether the transition
is supercritical (A > 0) or subcritical (A < 0), depend on the values of the qk. They have to be
computed approximately using known parameter estimates. We have κ̃ = κa l

kBT
. The motor spring

constant κ has been measured to be 200-400pN/µm for kinesin motors [7]. For the molecular
length scale a, one usually assumes a few nm [14, 32]. The parameter l, which represents the

13
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average distance from the point of motor attachment to the filament intersection can be estimated
to be about 100nm [45]. This indicates that κal

kBT
' 5− 10 at room temperature; we use a value of

5.1 to compute the qk-terms and write down the simplified Landau coefficients as,

A =
1.28 · 10−3 α2

2 (0.352α− 4− 3µ)

Λ1 = 0.176α− 1− µ .

The coefficient A changes sign depending on the relationship between the motor-induced align-
ment strength α and the motor noise µ. This suggests that there exists a qualitative difference in
the transition to alignment depending on the parameter selection, which is supported by numerical
simulations of Eq. (4.9). Figure 6(a) shows a long time oriented state for α = 16 and µ = 2.
The peak is steeper, i.e. the orientation is more perfect, as compared to that found in the small
detachment rate case. This is caused by the subcriticality. Figure 6(b) shows both a continuous bi-
furcation as well as a subcritical bifurcation from the isotropic state for fluctuation strengths µ = 1
and µ = 2 respectively. As a common feature of subcritical transitions, the stable branch below
the linear stability threshold indicates a type of hysteresis in which an oriented state exists below
threshold, depending on the initial conditions. The subcritical transition for µ = 10 was calculated
for the limiting case of zero thermal effects (i.e. rotational diffusion Dr = kBT/ζr → 0 or T → 0).
As the motor forcing strength is known to be 3-4 times the noise amplitude [42], the following re-
lationship holds for the renormalized parameters. α ' 3

√
µ. We can thus conclude that the limit

of vanishing thermal effects is always subcritical for reasonable parameters of κ (1 < κ < 10), α,
and µ.

5.1. Extensions to spatially inhomogeneous filament organization
The mean field formulation presented in the previous sections can be extended to include spa-
tially inhomogeneous motor-filament dynamics by analyzing the system’s conserved quantities.
The master equation given by (4.7), for example, is an expression of torque conservation. Specifi-
cally, motor-mediated torque is balanced by viscous drag effects. Inclusion of the respective force
balance in the formulation (similar to the construct used in [2]) leads to a system of equations
describing both the rotational and translational motion of each filament. Molecular dynamics type
simulations can then be used to evolve these master equations and study structure formation. The
details of this formalism are left for future discussion. Figure 7 below displays the output of a sam-
ple molecular dynamics simulation in which vortices arise arise from initially disordered filament
systems. These patterns are in qualitative agreement with those found in in vitro experiments on
self-organization in motor-filament systems [30, 37]. A detailed analysis of the parameter space
which leads to such patterns and an examination of the intrinsically fluctuating quantities (motor
forces and thermal effects for example) are both important topics for future research.
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6. Conclusions
In this paper, we reviewed a filament alignment model proposed in [1] and modified in [38] which
governs the self organization of microtubules for near alignment interactions. We found that ini-
tially disordered systems exhibit an ordering instability resulting in the onset of bundles of similarly
oriented microtubules. The analysis of the coarsening dynamics associated with these filament
bundle interactions was the focus of the study.

Our primary result was the derivation of an expression governing the relative motion of bundles.
Both numerical simulations and asymptotic methods show that bundles initially situated far from
one another exhibit attractive behavior. The subsequent coalescing shows a coarsening in the
system as bundles become concentrated in fewer orientations. The time scale of coarsening in 2
bundle and multi-bundle configurations is shown to be logarithmic.

The asymptotic calculations governing the time evolution of the relative distance between bun-
dles showed good quantitative agreement with numerical simulations. Deviations in the analytical
work from the numerics occured only when bundles were nearly aligned. This is, of course, ex-
pected as the asymptotic analysis was known to be accurate only when applied to bundles at large
relative distances. Further numerical simulations showed that the speed at which bundles move
toward each other increased with increasing θ0. This finding was in qualitative agreement with
simulations of the general alignment model proposed in [1].

We extended our analysis to semi-dilute filament solutions in which previous binary interac-
tion models [1, 2, 5, 38] are insufficient. In this limit, we employed a mean field formulation in
which any given filament interacts with all other filaments in motor contact. Both additive noise
associated with thermal fluctuations and multiplicative noise describing small scale fluctuations in
motor forcing were incorporated into this model. Finally, we accounted for force-dependence in
the detachment kinetics of the motors. With this approach we found that an initially disordered
system exhibits an ordering instability resulting in the onset of well aligned rod bundles; a finding

Figure 7: Select simulation results: (a)-(c) Molecular dynamics simulation of vortex formation
and coalescence arising from an initially disordered filament system. Snapshots are taken at times
(a) t = 0, (b) t = 170 and (c) t = 370 on the time scale of rotational diffusion (refer to the time
rescaling discussed in section 4.).
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that is consistent with previous binary interaction models.
The qualitative nature of filament ordering is studied via analysis of a Fokker-Planck equation

derived from the mean field model for the alignment of rods. We showed that first and second order
transitions to alignment exist when motor forcing dominates random forcing fluctuations. The
existence of a subcritical branch is shown to be a function of the motor spring strength and the ratio
of motor forcing to motor and thermal noises. At the moment we are not aware of experimental
validations for the subcritical scenario. However, the model predicts ordering hysteresis for in vitro
experiments on alignment dynamics in semi-dilute and dense solutions of biological filaments.

There are many open questions. First, we discussed an exact integral solution to the small
angle master equation which was derived in [38]. We are yet to obtain a great deal of meaning
from it, and further analysis could be useful, particularly in understanding the type, number, and
long time behavior of the numerically determined bundle states. Second, in the semi-dilute case,
the question of when and under which conditions the isotropic-to-polar transition is second or
first order should be investigated and clarified experimentally. Finally, we briefly discussed vortex
formation in simulations of spatially inhomogeneous microtubule self-organization, but we are yet
to do any rigorous analytical work. With the inclusion of spatial inhomogeneity, one could explore
the critical parameter space in which rods become disordered; we could then derive in a similar
fashion to Ref. [2], a coupled system of Ginzburg-Landau equations in both the mean field and
binary interaction limits. Additional molecular dynamics simulations could be used to investigate
structure formations like bundles and asters.

Ultimately, although our analysis is problem specific, we believe that the concept of inelastic
collisions in angle space resulting in alignment of rod directions is a primary mechanism driving
self organization in many physical systems. A few examples include rod-shaped swimming bacte-
ria, vibrated granular rod systems [4, 36], and solutions of charged nanorods. Further investigation
and modifications of our models could provide deeper insight into many other physical processes.
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