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A theory of photoinduced directed bending of non-crystalline molecular films is presented. Our approach
is based on elastic deformation of the film due to interaction between molecules ordered through
polarized light irradiation. The shape of illuminated film is obtained in the frame of the nonlinear
elasticity theory. It is shown that the shape and the curvature of the film depend on the polarization and
intensity of the light. The curvature of an irradiated film is a non-monotonic function of the extinction
coefficient.
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1. Introduction

Polymer films and solids containing light-sensitive molecules
have the remarkable property to change their shape and size when
irradiated with light. Certain polymer films containing azobenzene
chromophores in the main and side chains exhibit strong surface
relief features under illumination: trenches under the action of
linear polarized light and mounds or wells under the action of
circularly polarized light [1,2]. Circular azobenzene polyester films
freely lying on a water surface become elliptically deformed un-
der the influence of linearly polarized light [3]. Large, reversible
shape changes can be induced optically by photoisomerization of
nematic elastomers [4]. Anisotropic bending and unbending be-
havior of molecular liquid-crystalline films containing azobenzene
chromophores has been discovered and studied in Refs. [5,6] where
it was shown that the films can be repeatedly and precisely bent
along any chosen direction by using linearly polarized light. Fast
(on the timescale of 10−2 s) light induced bending of monodomain
liquid crystal elastomers has been observed in [7]. Shape-memory
effects in polymers containing cinnamic groups induced by ultravi-
olet light illumination were reported quite recently in Ref. [8]. The
possibility of coupling between orientational and translational de-
grees of freedom in liquid crystals was first raised by de Gennes
[9] and extended to nematic elastomers in [10]. Based on this
idea a phenomenological theory of photoinduced deformations of
nematic elastomers was proposed in [4]. The case of inhomoge-
neous illumination was considered in [11]. A microscopic theory of
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photoinduced deformation of non-crystalline molecular films was
developed in [12]. The physical reason for surface-relief formation
presented in [12] is that azo-dyes have two isomeric states: cis and
trans. The molecules in these two states have significantly differ-
ent shapes. For example, in the case of azobenzene chromophores
the trans-isomer is highly anisotropic whereas the cis-isomer is ap-
proximately isotropic [13], so the multipole moments and sizes
may differ significantly. It was shown that there are two con-
tributions to the photoelastic interaction: from the orientational
interaction between molecules and from the interaction which is
due to the change of the van der Waals interaction energy between
a molecule and all surrounding molecules in its transition to the
cis-isomer state. The former causes the film deformation under the
action of linearly polarized light while the latter (together with the
orientational interaction) is responsible for the surface relief for-
mation under the action of circularly polarized light. The possibil-
ity of creation of wells and humps on the film surfaces under the
action of circularly polarized light was discussed. It is worth noting
that in the frame of this approach neither orientational order nor
orientational in-plane anisotropy of the film in the absence of ir-
radiation was assumed. One can say that the absorption of linearly
polarized light creates an orientational order in the film which in
turn produces anisotropic deformation. Quite recently, based on
the idea of isomeric states, a theory of the polarization-dependent
photocontractions of polydomain elastomers due to light-induced
director rotation, was proposed in [14].

The aim of the present report is to apply this approach to
anisotropic bending of molecular films by polarized light. We
present an elastic energy of the film in the presence of polarized
light and solving equations of equilibrium, we show that a change
in the polarization direction of light causes a corresponding change

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:alexei.krekhov@uni-bayreuth.de
http://dx.doi.org/10.1016/j.physleta.2010.03.023


Yu.B. Gaididei et al. / Physics Letters A 374 (2010) 2156–2162 2157
of the shape of the film. We also show that the curvature of an
irradiated film is a non-monotonic function of the extinction coef-
ficient.

2. Elastic energy of molecular film

We consider a film containing molecules with two different
isomeric states. Let the middle surface of the film coincide with
the xy-plane so that the undeformed film occupies the region:
|z| � h/2, x, y ∈ Ω . The film is irradiated from above by a linearly
polarized electromagnetic wave which propagates along the z-axis.
Its electric component has the form

�E(�r, t) = �E cos(kz + ωt), �E = E (cosψ, sinψ,0), (1)

where ω is the frequency, k = ω/c is the wave number (c is the
speed of light) and the angle ψ determines the polarization of the
electromagnetic wave.

The total energy of irradiated thin film may be written as fol-
lows

F = Fel + W g + W . (2)

Here the first term represent the elastic energy of thin film

Fel = E

2(1 − σ 2)

h/2∫
−h/2

dz

∫
Ω

dx dy
[
ε2

xx + ε2
yy

+ 2σεxxεyy + 2(1 − σ)ε2
xy

]
, (3)

where E and σ are Young’s modulus and Poisson’s ratio, respec-
tively [15] and εαβ is the strain tensor (α,β = x, y). We assume
here that the non-irradiated film is neither orientationally nor
translationally ordered in the xy-plane and therefore we model its
elastic properties by using the isotropic energy (3). The term

W g = P

∫
Ω

dx dy w (4)

in Eq. (2) presents the potential energy of the film in the gravita-
tional field. Here P = agrρ f h is the gravity force with ρ f being the
film density, agr being the acceleration of free fall, and w repre-
sents the vertical displacement of the film. The last term in Eq. (2)
gives the change of the total energy due to the interaction between
the electromagnetic wave (1) and the film. It has the form [12]

W = W1 + W2, (5)

where

W1 = −Va

h/2∫
−h/2

dz

∫
Ω

dx dy N (�r)[(εxx − εyy) cos(2ψ)

+ 2εxy sin(2ψ)
]

(6)

represents the anisotropic part of the photoelastic interaction
which describes the coupling of the shear deformation of the film
to the incoming light and

W2 = −V i

h/2∫
−h/2

dz

∫
Ω

dx dy N (�r)(εxx + εyy) (7)

determines the isotropic in-plane deformations. In Eqs. (6), (7) the
parameter of the photoelastic interaction Va is due to the orienta-
tional (e.g., dipole–dipole) part of intermolecular interaction while
the parameter V i is due to isotropic part of the intermolecular
interaction. For the sake of simplicity we assume them spatially in-
dependent. The function N (�r) gives the population of cis-isomers
for a given value of the radiation power E 2 [12]. Following the
Bouguer–Lambert–Beer law which determines how the intensity of
light decreases under its propagation inside an absorbing medium,
we shall model the function N (�r) as follows

N (�r) = N0 exp

{
(z − h/2)

ξ

}
, (8)

where N0 is the maximum population of the cis-isomers for a
given power E 2 and ξ is the extinction length of the light which
provides transition of chromophores from trans- to cis-isomeric
state (in the experiments [5,6] it was the light with the wavelength
366 nm); other distribution can of course be used, depending on
the actual arrangement of azo-dyes. Note that in Eq. (8) we ne-
glected the fact that upon bending the normal to the film surface
deviates from the z-direction which is legitimate when bending is
small.

Note that in the case of circularly polarized light when instead
of Eq. (1) we have

�E(�r, t) = E
{

cos(kz + ωt), sin(kz + ωt), 0
}

(9)

and therefore the contribution (6) vanishes; the energy of photoe-
lastic interaction is solely determined by Eq. (7).

Following the usual derivation of Föppl–von Karman equations
for bending of a thin plate (see, e.g., [15,16]), we write the strains
as a linear expansion in z from the middle plane and get(

εxx εxy

εxy εyy

)
=

(
uxx uxy

uxy u yy

)
+ z

(
∂xx w ∂xy w
∂xy w ∂yy w

)
, (10)

where

uαβ = 1

2
(∂βuα + ∂αuβ) + 1

2
∂α w∂β w (11)

are the components of the two-dimensional nonlinear deforma-
tion tensor and ∂α denotes differentiation with respect to the
coordinate xα = x, y. Referred to these coordinates, the compo-
nents of displacement are uα = (ux, u y, w), where we have named
the vertical displacement uz = w . Note, that in the framework
of the Föppl–von Karman approach the x, y-components of the
strain tensor linearly depend on the vertical coordinate z [15].
This means that when the illuminated side of the plate contracts
the opposite side of the plate extends and vice versa. Introducing
Eqs. (10), (11) into (2) we can represent the elastic energy of the
thin film in the form

Fel = Fb + Fs. (12)

The bending energy is written as

Fb = D

2

∫
Ω

dx dy
{
(�w)2 + 2(1 − σ)

[
(∂xy w)2 − ∂2

x w∂2
y w

]}
, (13)

where � = ∂α∂α is the two-dimensional Laplace operator and
D = Eh3/[12(1 − σ 2)] is the flexural rigidity of the film. For the
stretching energy one has [15]

Fs = h

2

∫
Ω

dx dy (σxxuxx + σyyu yy + 2σxyuxy), (14)

where uαβ are defined by Eq. (11) with the longitudinal stresses

σxx = E

1 − σ 2
(uxx + σu yy), σyy = E

1 − σ 2
(u yy + σuxx),

σxy = E
uxy . (15)
1 + σ
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In Eq. (2) the light-film interaction energy becomes

W = Wb + W s (16)

with the bending contribution Wb = Wb1 + Wb2, where

Wb1 = −h2
∫
Ω

dx dy
{

Ai�w + Aa
[(

∂2
x w − ∂2

y w
)

cos(2ψ)

+ 2∂xy w sin(2ψ)
]}

(17)

describes a linear interaction with bending deformation while the
term

Wb2 = −h

2

∫
Ω

dx dy
{

Ba
[(

(∂x w)2 − (∂y w)2) cos(2ψ)

+ 2∂x w∂y w sin(2ψ)
] + Bi

[
(∂x w)2 + (∂y w)2]} (18)

is due to the nonlinear character of the two-dimensional deforma-
tion tensor (11). The stretching contribution in Eq. (16) is

W s = −h

∫
Ω

dx dy
{

Ba
[
(uxx − u yy) cos(2ψ) + 2uxy sin(2ψ)

]

+ Bi(uxx + u yy)
}
, (19)

and the new light-film interaction parameters in Eqs. (17)–(19) are

Ai = V i zN , Aa = VazN , Bi = V i N , Ba = Va N .

(20)

The mean value of cis-isomers in the film is given by

N ≡ 1

h

h/2∫
−h/2

N (z)dz = N0
ξ

h

(
1 − e−h/ξ

)
, (21)

and the asymmetry of the cis-isomer distribution in the film is
characterized by

zN ≡ 1

h2

h/2∫
−h/2

zN (z)dz = 1

2
N0

ξ

h

[
1 − 2

ξ

h
+

(
1 + 2

ξ

h

)
e−h/ξ

]
.

(22)

By using Green’s formula for the two-dimensional integrals,
Eqs. (17) and (19) can be presented in an equivalent form

Wb1 = −h2
∮

dl

{[
Ai + Aa cos 2(ψ − θ)

]∂ w

∂n

+ Aa sin 2(ψ − θ)
∂ w

∂l

}
, (23)

W s = −h

∮
dl

{
Bi�n · �u + Ba cos(2ψ − θ)ux

+ Ba sin(2ψ − θ)u y
}
, (24)

where ∂/∂l is the derivative along the tangent �l to the contour and
it has together with the normal derivative ∂/∂n the form

∂

∂l
= cos θ∂y − sin θ∂x,

∂

∂n
= cos θ∂x + sin θ∂y . (25)

where the angle θ determines the direction of the outward nor-
mal to the boundary contour: �n = (cos θ, sin θ). Eqs. (17) and
(19) present two physically different mechanisms of film deflec-
tion. Eq. (19) describes the light-film interaction which causes the
change of the film area. The intensity of the interaction is propor-
tional to the mean value of cis-isomers in the film N and as it
is seen from Eq. (24), the action of light is equivalent to a uni-
formly distributed edge force applied in the plane of the film. In
the presence of the interaction (19) with Bi > 0 the area of the
film increases while the opposite sign corresponds to the com-
pression of the film. On the other hand the interaction given by
Eq. (17) is due to asymmetric distribution of cis-isomers in the film
(22). As Eq. (23) shows, in this case the light produces a bending
moment applied to the boundary contour.

3. Deflections under the action of polarized light

The Euler–Lagrange equations for the functional (2) [with (12)–
(14), (16)–(19)] (Föppl–von Karman equations) have the form

D�2 w − h
∂

∂xβ

σαβ

∂ w

∂xα
+ hBi�w

+ hBa
[(

∂2
x w − ∂2

y w
)

cos 2ψ + 2∂xy w sin 2ψ
] = −P , (26)

∂

∂xβ

σαβ = 0. (27)

The boundary conditions for these equations may be obtained in
the same way as it was done in [15] and in the case of free bound-
ary (the edge of the film is free) the variations of the vertical
component δw and its normal derivative ∂(δw)/∂n on the edge
are arbitrary. This gives the following set of equations

D

[
∂

∂n
�w + (1 − σ)

∂

∂l

{
sin θ cos θ

(
∂2

y w − ∂2
x w

) + cos 2θ∂xy w
}]

−h2 Aa
∂

∂l
sin 2(ψ − θ) = 0, (28)

D
[
�w − (1 − σ)

{
sin2 θ∂2

x w + cos2 θ∂2
y w − sin 2θ∂xy w

}]
− h2[Ai + Aa cos 2(ψ − θ)

] = 0, (29)

σxβnβ − (Bi + Ba cos 2ψ) cos θ − Ba sin 2ψ sin θ = 0,

σyβnβ − (Bi − Ba cos 2ψ) sin θ − Ba sin 2ψ cos θ = 0. (30)

By introducing the Airy potential χ(x, y), so that Eqs. (27) are au-
tomatically satisfied:

σxx = ∂2
yχ, σyy = ∂2

x χ, σxy = σyx = −∂xyχ, (31)

and presenting the Airy potential as a sum

χ(x, y) = 1

2
(Bi − Ba cos 2ψ)x2 + 1

2
(Bi + Ba cos 2ψ)y2

− Ba sin 2ψxy + T (x, y), (32)

we rewrite the Föppl–von Karman equation (26) in the form

D�2 w − h
(
∂2

x T ∂2
y w + ∂2

y T ∂2
x w − 2∂xy T ∂xy w

) = −P . (33)

This equation is to be completed by the compatibility condition
[15]

�2T + E
[
∂2

x w∂2
y w − (∂xy w)2] = 0. (34)

Note that owing to the fact that we extracted from the Airy po-
tential χ(x, y) the parabolic contribution, the Föppl–von Karman
equation (33) does not contain light-induced driving terms. In-
troducing Eqs. (31), (32) into (30), we obtain that the boundary
conditions for the potential T (x, y) have particularly simple form

∂2
x T sin θ − ∂xy T cos θ = 0, ∂2

y T cos θ − ∂xy T sin θ = 0. (35)
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Fig. 1. Typical shape of the circular film illuminated by a circularly polarized light (a) and by a linearly polarized light (b). The vertical scale is expanded compared with the
horizontal scale.
4. Bending of circular film

We consider the photoinduced bending of a circular film of ra-
dius R . In the polar coordinates ρR(cos θ, sin θ), where ρ = r/R
(r = √

x2 + y2) is a dimensionless radial coordinate and θ is the
azimuthal angle we obtain from Eqs. (33), (34) that equations for
new dimensionless variables ζ = w/h, τ = T h/D take the follow-
ing form

�2ζ − 1

ρ2

{(
∂2
θ ζ + ρ∂ρζ

)
∂2
ρτ + (

∂2
θ τ + ρ∂ρτ

)
∂2
ρζ

− 2

ρ2
(∂θ τ − ρ∂ρθτ )(∂θ ζ − ρ∂ρθ ζ )

}
= − f , (36)

�2τ + 12
(
1 − σ 2) 1

ρ2

{(
∂2
θ ζ + ρ∂ρζ

)
∂2
ρζ

− 1

ρ2
(∂θ ζ − ρ∂ρθ ζ )2

}
= 0, (37)

where f = P R4/(hD) is a dimensionless gravity force. The bound-
ary conditions (28), (29), and (35) at ρ = 1 (r = R) become

[
∂ρ�ζ + 1 − σ

ρ
∂ρ

(
1

ρ
∂2
θ ζ

)]
− 2

ρ
aa cos 2(ψ − θ) = 0, (38)

[
∂2
ρζ + σ

(
1

ρ
∂ρζ + 1

ρ2
∂2
θ ζ

)]
− [

ai + aa cos 2(ψ − θ)
] = 0,

(39)

(1 − ρ∂ρ)∂θτ = 0,ρ∂ρτ + ∂2
θ τ = 0. (40)

Here dimensionless parameters ai = AihR2/D , aa = AahR2/D char-
acterize the intensity of the light-film interaction. To have some
insight we consider first the case of weak light-film interaction:
ai < 1, aa < 1. Then we compare these results with numerics.

4.1. Circularly polarized light

In this subsection we consider the case of photoinduced film
deformation when the light is circularly polarized (9) [the pa-
rameter aa is set to zero in Eqs. (38), (39)]. Assuming azimuthal
symmetry of solutions (∂θ ζ = ∂θ τ = 0) from Eqs. (36)–(40) one
can obtain approximately (see Appendix A for details) that the di-
mensionless vertical displacement of an irradiated film fixed in the
center [ζ(ρ = 0) = 0] is determined by the expression
ζ0(ρ) = ρ2

2

{
ai

1 + σ
−

(
3 + σ

2(1 + σ)
+ ρ2

4
− 2 lnρ

)
f

8

}
. (41)

Typical shape of the film given by Eq. (41) is shown in Fig. 1(a).
The distinctive shape of the film results from the competition be-
tween the photoinduced deformation (term proportional to ai ) and
the gravity force (term proportional to f ).

In order to verify the range of validity of the approximate solu-
tion (41), full numerical simulations of Eqs. (36)–(40) have been
performed for the case of azimuthal symmetry. We used finite
difference method solving the resulting set of nonlinear algebraic
equations by Newton iterations. The results of numerical calcula-
tions for the shape of irradiated film ζ(ρ) are shown in Fig. 2 for
the different values of the dimensionless gravity force f and the
parameter ai together with the approximate dependence (41). For
large values of parameter ai the relative difference between nu-
merical solution and the approximation (41) does not exceed 25%
for ai = 10 and becomes smaller for smaller ai . For ai = 1 the nu-
merical and approximate solutions are undistinguished in Fig. 2.

4.2. Linearly polarized light

Let us consider now the case of photoinduced film deforma-
tion caused by the linear polarized light (1). Expanding solutions
of Eqs. (36)–(40) in a Fourier series

ζ(ρ, θ) =
∞∑

n=0

ζn(ρ) cos
[
2n(ψ − θ)

]
,

τ (ρ, θ) =
∞∑

n=0

τn(ρ) cos
[
2n(ψ − θ)

]
, (42)

and assuming the weak light-film interaction ai < 1, aa < 1 [the
condition aa < 1 allows to take into account only the zeroth and
the first terms in the Fourier series (42)] one finds

ζ(ρ, θ) = ζ0(ρ) − aa
ρ2(3 − 2ρ2)

6(3 + σ)
cos 2(ψ − θ) (43)

for the vertical component of the displacement [see Fig. 1(b)].
For comparison full numerical simulations of Eqs. (36)–(40)

have been performed by use of finite difference method. The re-
sults of calculations are shown in Fig. 3. For small values of param-
eter aa the high order terms ζn , τn in the expansion (42) decrease
for n > 1 and the numerical solution for ζ(ρ, θ) practically coin-
cide with approximation (43). For large values of parameter aa the
difference between approximation (43) and full numerical solution
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Fig. 2. Dimensionless displacement ζ(ρ) of the circular film illuminated by a circularly polarized light. Numerical (solid lines) and approximate (dashed lines) solutions for
σ = 0.5 and f = 1 (a), f = 10 (b), and different values of ai .

Fig. 3. Dimensionless displacement ζ(ρ) of the circular film illuminated by a linearly polarized light for ψ = 0 in the cross sections θ = 0 and θ = π/2. Numerical (solid
lines) and approximate (dashed lines) solutions for σ = 0.5 and f = 10: ai = aa = 1 (a), ai = aa = 5 (b), and ai = aa = 10 (c).
increases and for aa = 10 the maximal inaccuracy of Eq. (43) is ob-
served for the cross section θ = 0 at the edge of the film (ρ = 1).

5. Bending of rectangular films

Let us now consider the case of rectangular film x ∈ (−L/2, L/2),
y ∈ (−L/2, L/2) interacting with a linearly polarized light. We will
consider the case of weak light-film interaction and use the linear
theory (neglect the stretching contributions). We will also neglect
the action of the gravity force. As a solution to Eq. (26) we choose

w = 1

2
ax2 + bxy + 1

2
cy2, (44)

where a, b, and c are some constants. These constants can be
found by using the boundary condition (29). However a more sim-
ple way to find them is to introduce Eq. (44) into Eqs. (13), (17)
and get

1

L2
F = D

2

[
(a + c)2 + 2(1 − σ)

(
b2 − ac

)] − h2 Ai(a + c)

− h2 Aa
[
(a − c) cos 2ψ + 2b sin 2ψ

]
. (45)

The elastic energy (45) has a minimum for

a = h2 Ai(1 − σ) + (1 + σ)Aa cos 2ψ

D(1 − σ 2)
,

c = h2 Ai(1 − σ) − (1 + σ)Aa cos 2ψ

D(1 − σ 2)
,

b = h2 Aa sin 2ψ
. (46)
D(1 − σ)
Thus under the action of linearly polarized light (1) an initially flat
molecular film takes the shape

w = 1

2
κ1(x cos ψ + y sin ψ)2 + 1

2
κ2(−x sin ψ + y cos ψ)2, (47)

which is characterized by the following two principal curvatures

κ1 = h2 Ai(1 − σ) + Aa(1 + σ)

D(1 − σ 2)
,

κ2 = h2 Ai(1 − σ) − Aa(1 + σ)

D(1 − σ 2)
, (48)

and has the equilibrium energy given by the expression

F = − h4L2

D(1 − σ 2)

[
A2

i (1 − σ) + A2
a(1 + σ)

]
. (49)

To characterize the global shape of the film it is convenient to
introduce the mean curvature H = (κ1 + κ2)/2 and the Gaussian
curvature K = κ1κ2.

When K > 0 the point (x = 0, y = 0) is an elliptic one and
the film has a paraboloid shape. For K = 0 it becomes cylinder-
like. Let us assume first that |κ1| > |κ2|, then an irradiated film
takes a shape close to a cylindric one. This is probably the case in
the experiments of Refs. [5,6] where figures show that polymer
films are bent in a cylinder-like fashion. Note that in [5] poly-
mer films were anisotropic whereas we have considered isotropic
non-crystalline film. When the light is polarized along the x-axis
(ψ = 0) the bending occurs around the y-axis [Fig. 4(a)]. Un-
der the action of light polarized along one of the film diagonals
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Fig. 4. Typical shape of the rectangular film with Aa < Ai illuminated by a linearly polarized light for ψ = 0 (a) and for ψ = π/4 (b). The vertical scale is expanded compared
with the horizontal scale.
Fig. 5. Typical shape of the rectangular film with Aa > Ai illuminated by a linearly
polarized light for ψ = 0. The vertical scale is expanded compared with the hori-
zontal scale.

(ψ = π/4,3π/4) the film bends around a diagonal [Fig. 4(b)]. This
behavior is in a full agreement with the results of the Ref. [6].
When K < 0 the film takes a saddle-like shape and the corre-
sponding shape profile is shown in Fig. 5. Note that this is prob-
ably the case in the experiments of Ref. [7] where such kind of
deformation was observed for liquid crystal elastomers with azo-
dyes.

The principal curvatures of the film, κ1 and κ2, are linearly
proportional to the maximum population of the cis-isomers in
the film N0 and they are non-monotonic functions of the ex-
tinction length ξ . In Fig. 6 we present the normalized mean
curvature H/Hm (Hm is the maximum value of the mean cur-
vature) as a function of ξ , restricted to ξ < 2h (h is the film
thickness). The non-monotonic dependence of the mean curva-
ture on the extinction length is similar to the one given in
Ref. [11]. Note also that it is clear from Eqs. (20), (22) and
(48) that for a decreasing number of cis-isomers in the film
the curvature of the film becomes smaller and the film eventu-
ally returns to its initial shape. This is happening in the experi-
ments of Refs. [5,6] when the film is irradiated with light of the
wavelength λ > 540 nm when the cis-isomeric state is depopu-
lated.
Fig. 6. The normalized mean curvature H/Hm as function of scaled extinction length
ξ/h.

6. Conclusion

In conclusion, we presented a nonlinear elastic theory which
describes an anisotropic bending of molecular films under the ab-
sorption of polarized light. Photoinduced deformations of circular
and rectangular films studied in detail. Solving equations of equi-
librium, we showed that a change in the polarization direction
of light causes a corresponding change of the shape of the film.
Suitable approximate expressions for the shape of photoinduced
deformation were obtained and compared with full numerical sim-
ulations in the framework of nonlinear elasticity theory. We also
showed that the curvature of an irradiated film is a non-monotonic
function of the extinction coefficient.
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Appendix A

We look for the solutions of Eqs. (36)–(40) in terms of Fourier
series (42). Introducing Eqs. (42) into (36), (37) and taking into
account only the first two terms in the expansions (42), we get
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ρζ0 − 1

ρ

d

dρ

{
dτ0

dρ

dζ0

dρ
+ 1

2

dζ1

dρ

dτ1

dρ
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d

dρ

(
1

ρ
τ1ζ1

)}
= − f ,

(50)
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d
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= 0, (52)
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dρ
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ρ
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d2ζ0
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= 0, (53)

where �ρ = 1
ρ

d
dρ ρ d

dρ is the radial part of the Laplace operator. In-
serting Eqs. (42) into (38)–(40), we obtain the boundary conditions
at ρ = 1 for the zeroth harmonics in the form

d

dρ

1

ρ

d

dρ
ρ

dζ0

dρ
= 0,

d2ζ0

dρ2
+ σ

ρ

dζ0

dρ
− ai = 0,

dτ0

dρ
= 0, (54)

and for the first Fourier harmonics in the form

d
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(
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)
− aa = 0, (55)

τ1 = 0,
dτ1

dρ
= 0. (56)

As it is seen from Eqs. (55) the amplitude of the first harmonic ζ1
is proportional to the light-film interaction parameter aa . Assuming
that aa < 1, we neglect all terms proportional an

a with n � 2. Under
this assumption one can neglect the last two terms in Eqs. (50),
(51) and obtain
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Integrating each equation, we get
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= 0, (58)
where the condition of regularity at the center dζ0/dρ = 0 and the
boundary conditions (54) were used.

Eqs. (58) are simplified by introducing the new variables

g = 1

ρ

dζ0

dρ
, α = 1

4

1

ρ

dτ0

dρ
, z = ρ2. (59)

Then Eqs. (58) become

d2

dz2
(zg) − gα = − f

8

(
1 − 1

z

)
,

d2

dz2
(zα) + 3(1 − σ 2)

8
g2 = 0. (60)

The boundary conditions (54) at z = 1 become

d2

dz2
(zg) = 0, 2z

dg

dz
+ (1 + σ)g − ai = 0, α = 0. (61)

Assuming that ε ≡ 3(1−σ 2)/8 < 1 is a small parameter we expand
the functions g(z) and α(z) into series

g = g0 + εg1 + · · · , α = α0 + εα1 + · · · . (62)

Inserting (62) into Eqs. (60) we get in zeroth order

ε0: d2

dz2
(zg0) − g0α0 = − f

8

(
1 − 1

z

)
,

d2

dz2
(zα0) = 0. (63)

In the same way the boundary conditions (61) at z = 1 can be
expressed as

ε0: d2

dz2
(zg0) = 0, 2z

dg0

dz
+ (1 + σ)g0 − ai = 0,

α0 = 0. (64)

Solving Eqs. (63) with boundary conditions (64) one finds

g0 = ai

1 + σ
− f

8

{
1 − σ

2(1 + σ)
+ z

2
− ln z

}
, α0 = 0. (65)
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