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We consider the nonlinear Schrödinger equation (NLSE) in 1 + 1 dimension with scalar-scalar self-interaction
g2

κ+1 (ψ�ψ)κ+1 in the presence of the external forcing terms of the form re−i(kx+θ) − δψ . We find new exact
solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where
vk = 2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r → 0.

In particular we study the behavior of solitary wave solutions in the presence of these external forces in a
variational approximation which allows the position, momentum, width, and phase of these waves to vary in
time. We show that the stationary solutions of the variational equations include a solution close to the exact one
and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition
for instability is that dp(t)/dq̇(t) < 0, where p(t) is the normalized canonical momentum p(t) = 1

M(t)
∂L

∂q̇
, and

q̇(t) is the solitary wave velocity. Here M(t) = ∫
dxψ�(x,t)ψ(x,t). Stability is also studied using a “phase

portrait” of the soliton, where its dynamics is represented by two-dimensional projections of its trajectory in the
four-dimensional space of collective coordinates. The criterion for stability of a soliton is that its trajectory is
a closed single curve with a positive sense of rotation around a fixed point. We investigate the accuracy of our
variational approximation and these criteria using numerical simulations of the NLSE. We find that our criteria
work quite well when the magnitude of the forcing term is small compared to the amplitude of the unforced
solitary wave. In this regime the variational approximation captures quite well the behavior of the solitary wave.

DOI: 10.1103/PhysRevE.85.046607 PACS number(s): 05.45.Yv, 11.10.Lm, 63.20.Pw

I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE), with cubic
and higher nonlinearity counterparts, is ubiquitous in a variety
of physical contexts. It has found several applications, includ-
ing in nonlinear optics where it describes pulse propagation in
double-doped optical fibers [1] and in Bragg gratings [2], and
in Bose-Einstein condensates (BECs) where it models con-
densates with two- and three-body interactions [3,4]. Higher
order nonlinearities are found in the context of Bose gases
with hard core interactions [5] and low-dimensional BECs in
which quintic nonlinearities model three-body interactions [6].
In nonlinear optics a cubic-quintic NLSE is used as a model
for photonic crystals [7]. Therefore it is important to ask the
question how will the behavior of these systems change if a
forcing term is also included in the NLSE.

The forced nonlinear Schrödinger equation (FNLSE) for
an interaction of the form (ψ�ψ)2 has been recently studied
[8,9] using collective coordinate (CC) methods such as time-
dependent variational methods and the generalized traveling
wave method (GTWM) [10]. In Refs. [8,9] approximate
stationary solutions to the variational solution were found
and a criterion for the stability of these solutions under
small perturbations was developed and compared to numerical

*cooper@santafe.edu
†khare@iiserpune.ac.in
‡niurka@us.es
§franzgmertens@gmail.com
‖avadh@lanl.gov

simulations of the FNLSE. Here we will generalize our
previous study to arbitrary nonlinearity (ψ�ψ)κ+1, with a
special emphasis on the case κ = 1/2. That is, the form of
the FNLSE we will consider is

i
∂

∂t
ψ + ∂2

∂x2
ψ + g(ψ�ψ)κψ + δψ = re−i(kx+θ). (1.1)

The parameter r corresponds to a plane wave driving term.
The parameter δ arises in discrete versions of the NLSE used
to model discrete solitons in optical wave guide arrays and is a
cavity detuning parameter [11]. We will find that having δ < 0
allows for constant phase solutions of the CC equations. The
externally driven NLSE arises in many physical situations such
as charge density waves [12], long Josephson junctions [13],
optical fibers [14], and plasmas driven by rf fields [15]. What
we would like to demonstrate here is that the stability criterion
for the FNLSE solitons found for κ = 1 works for arbitrary
κ � 2, and that the collective coordinate method works well in
predicting the behavior of the solitary waves when the forcing
parameter r is small compared to the amplitude of the unforced
solitary wave.

The paper is organized as follows. In Sec. II we show that
in a comoving frame where y = x + 2kt , the total momentum
of the solitary wave Pv as well as the energy of the solitary
wave Ev is conserved. In Sec. III we review the exact solitary
waves for r = 0 and κ arbitrary. We show using Derrick’s
theorem [16] that these solutions are unstable for κ > 2 and
arbitrary δ, which we later verify in our numerical simulations.
In Sec. IV we find exact solutions to the forced problem for
r �= 0 and find both plane wave as well as solitary wave and
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periodic solutions for arbitrary κ . We focus mostly on the case
κ = 1/2. We find both finite energy density as well as finite
energy solutions. In Sec. V we discuss the collective coordinate
approach in the laboratory frame. We will use the form of
the exact solution for the unforced problem with time de-
pendent coefficients as the variational ansatz for the traveling
wave for κ < 2. This is a particular example of a collective
coordinate (CC) approach [8,17–19]. We will assume the
forcing term is of the form re−i(kx+θ) − δψ. We will choose
four collective coordinates, the width parameter β(t), the
position q(t) and momentum p(t), as well as the phase φ(t) of
the solitary wave. These CCs are related by the conservation of
momentum in the comoving frame. We will derive the effective
Lagrangian for the collective coordinates and determine the
equations of motion for arbitrary nonlinearity parameter κ . In
Sec. VI we show that the equations of motion for the collective
coordinates simplify in the comoving frame. For arbitrary
κ we determine the equations of motion for the collective
coordinates, the stationary solutions (β = q̇ = φ = const) as
well as the linear stability of these stationary solutions. We then
specialize to the case κ = 1/2, and discuss the linear stability
of the stationary solutions. The real or complex solutions to the
small oscillation problem give a local indication of stability of
these stationary solutions. This analysis will be confirmed in
our numerical simulations. For κ = 1/2 and r � A, where A

is the amplitude of the solitary wave, we find in general three
stationary solutions. Two are near the solutions for r = 0, one
being stable and another unstable, and one is of much smaller
amplitude but turns out to be a stable solitary wave.

A more general question of stability for initial conditions
having an arbitrary value of β(t = 0) ≡ β0 is provided by the
phase portrait of the system found by plotting the trajectories of
the imaginary vs the real part of the variational wave function
starting with an initial value of β0. These trajectories are closed
orbits as shown in Ref. [9]. Stability is related to whether the
orbits show a positive (stable) or negative (unstable) sense of
rotation or a mixture (unstable). Another method for discussing
stability is to use the dynamical criterion used previously [9]
in the study of the case κ = 1, namely whether the p(q̇) curve
has a branch with negative slope. If this is true, this implies
instability. Here p(t) is the normalized canonical momentum
p(t) = 1

M(t)
∂L
∂q̇

, M(t) = ∫
dxψ�(x,t)ψ(x,t) and q̇(t) = v(t) is

the velocity of the solitary wave. These two approaches (phase
portrait and the slope of the p(v) curve) give complementary
approaches to understanding the behavior of the numerical
solutions of the FNLSE. In Sec. VII we discuss how damping
modifies the equations of motion by including a dissipation
function. We find that damping only effects the equation of
motion for β among the CC equations. This damping allows the
numerical simulations to find stable solitary wave solutions. In
Sec. VIII we discuss our methodology for solving the FNLSE.
We explain how we extract the parameters associated with
the collective coordinates from our simulations. We first show
that our simulations reproduce known results for the unforced
problem as well as show that the exact solutions of the forced
problem we found are metastable. On the other hand the
linearly stable stationary solutions to the CC equations are
close to exact numerical solitary waves of the forced NLSE
with time independent widths, only showing small oscillations
about a constant value of β. In the numerical solutions of both

the PDEs and the CC equations we establish two results. First,
for small values of the forcing term r the CC equations give an
accurate representation of the behavior of the width, position,
and phase of the solitary wave determined by numerically
solving the NLSE. Second, both the phase portrait and p(v)
curves allow us to predict the stability or instability of solitary
waves that start initially as an approximate variational solitary
wave of the form of the exact solution to the unforced problem.
In Sec. IX we state our main conclusions.

II. FORCED NONLINEAR SCHRÖDINGER
EQUATION (FNLSE)

The action for the FNLSE is given by∫
Ldt =

∫
dtdx

[
iψ� ∂

∂t
ψ −

(
ψ�

xψx − g

κ + 1
(ψ�ψ)κ+1

− δψ�ψ + rei(kx+θ)ψ + re−i(kx+θ)ψ�

)]
. (2.1)

As shown in Ref. [8] the energy

E =
∫

dx

[
ψ�

xψx − g

κ + 1
(ψ�ψ)κ+1 − δψ�ψ

+ rei(kx+θ)ψ + re−i(kx+θ)ψ�

]
(2.2)

is conserved. Varying the action, Eq. (2.1) leads to the equation
of motion:

i
∂

∂t
ψ + ∂2

∂x2
ψ + g(ψ�ψ)κψ + δψ = re−i(kx+θ). (2.3)

We notice that the equation of motion is invariant under the
joint transformation r → −r , ψ → −ψ , thus if ψ(x,t,r) is a
solution, then so is −ψ(x,t,−r) a solution. Letting ψ(x,t) =
e−i(kx+θ)u(x,t) we obtain the autonomous equation

i

[
∂u(x,t)

∂t
− 2k

∂u(x,t)

∂x

]
− (k2 − δ)u(x,t)

+ ∂2u(x,t)

∂x2
+ g(u�u)κu = r. (2.4)

Changing variables from x to y where y = x + 2kt = x + vkt

we have for u(x,t) → v(y,t)

i
∂v(y,t)

∂t
− (k2 − δ)v(y,t) + ∂2v(y,t)

∂y2
+ g(v�v)κv = r.

(2.5)

Note that with our conventions, the mass in the Schrödinger
equation obeys 2m = 1, or m = 1/2 so that k = mvk = vk/2.
This equation in the moving frame can be derived from a
related action

Sv =
∫

dtdy

[
iv� ∂

∂t
v −

(
v�

yvy − g

κ + 1
(v�v)κ+1

+ (k2 − δ)v�v + rv + rv�

)]
. (2.6)

Multiplying Eq. (2.5) on the left by v�
y and adding the complex

conjugate, we get an equation for the time evolution of the
momentum density in the moving frame: ρv = i

2 (vv�
y − v�vy),
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namely

∂ρv

∂t
+ ∂j (y,t)

∂y
= rv�

y + rvy. (2.7)

Here

j (y,t) = i

2
(v�vt − vv�

t ) + |vy |2

+ (δ − k2)|v|2 + g

κ + 1
|v|2κ+2. (2.8)

Integrating over all space we get

d

dt

∫
dyρv(y,t) = F [y = +∞] − F [y = −∞], (2.9)

where

F [y] = −j (y,t) + rv�(y,t) + rv(y,t). (2.10)

If the value of the boundary term is the same (or zero) at
y = ±∞ then we find that the momentum Pv in the moving
frame is conserved:

Pv = const =
∫

dy
i

2
(vv�

y − v�vy). (2.11)

Using the fact that ψ = ue−i(kx+θ) and defining

P =
∫

dx
i

2
(ψψ�

x − ψ�ψx), (2.12)

we obtain the conservation law

P (t) + M(t)k = Pv = const, (2.13)

where M(t) = ∫
dxψ�ψ . If we further define

p(t) = P (t)

M(t)
, (2.14)

then we get the relationship

Pv = M(t)[p(t) + k] = const. (2.15)

This equation will be useful when we consider variational
approximations for the solution.

The second action Eq. (2.6) also leads to a conserved
energy:

Ev =
∫

dx

[
v�

yvy − g

κ + 1
(v�v)κ+1

+ (k2 − δ)v�v + rv + rv�

]
. (2.16)

Using the connection that ψ(x,t) = e−i(kx+θ)v(y,t) we find
that E and Ev are related. Using the fact that

ψ∗
x ψx = k2v∗v + v∗

yvy + ik(v∗vy − vv∗
y ), (2.17)

we obtain

E = Ev − 2kPv. (2.18)

III. EXACT SOLITARY WAVE SOLUTIONS WHEN r = 0

Before discussing the exact solutions to the forced NLSE,
let us review the exact solutions for r = 0 since these will be
used as our variational trial functions later in the paper. We

can obtain the exact solitary wave solutions when r = 0 as
follows. We let

ψ(x,t) = A sechγ [β(x − vt)] ei[p(x−vt)+φ(t)]. (3.1)

Demanding that we have a solution by matching powers of
sech we find

p = v/2, γ = 1/κ, A2κ = β2(κ + 1)

gκ2
,

(3.2)
φ = (p2 + β2/κ2 + δ)t + φ0.

It is useful to connect the amplitude A to β and the mass M of
the solitary wave.

M = A2
∫

dxψ∗(βx)ψ(βx) = A2

β
C0

1 ;

(3.3)

C0
1 =

∫ +∞

−∞
dy sech2/k(y) =

√
π


(
1
κ

)



(
1
2 + 1

κ

) .

One can show that the energy E = ∫ +∞
−∞ dxε(x) of the solitary

waves is given by

E =
√

π

(

1
κ

)



(
κ+2

2

) (
β2−κ (κ + 1)

gκ2

)1/κ[
p2 − δ + β2(κ − 2)

κ2(κ + 2)

]
.

(3.4)

For δ = 0, κ > 2 these solitary waves are unstable [18,19].
For κ = 2 the solitary wave is a critical one. In this case,
the energy is independent of the width of the solitary wave.
Further, in the rest frame v = 0, the energy is zero when δ = 0.
When δ is not zero there is a special constant phase solution
of the form Eq. (3.1). The condition for φ to be independent
of t is

p2 + β2/κ2 + δ = 0, (3.5)

which is only possible for negative δ. For this solution, when
p = 0 we find the relationship

β2 = −κ2δ. (3.6)

This solution will be the r = 0 limit of some of the solutions
we will find below.

A. Stability when r = 0

For the unforced NLSE we can use the scaling argument
of Derrick [16] to determine if the solutions are unstable to
scale transformation. We have discussed this argument in our
paper on the nonlinear Dirac equation [20]. The Hamiltonian
is given by

H =
∫

dx

{
1

2m
ψ�

xψx − δψ�ψ − g

κ + 1
(ψ�ψ)κ+1

}
. (3.7)

It is well known that using stability with respect to scale
transformation to understand domains of stability applies to
this type of Hamiltonian. This Hamiltonian can be written as

H = H1 − δH2 − H3, (3.8)

where Hi > 0. Here δ can have either sign. If we make a
scale transformation on the solution which preserves the mass
M = ∫

ψ�ψdx,

ψβ → β1/2ψ(βx), (3.9)
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we obtain

H = β2H1 − δH2 − βκH3. (3.10)

The first derivative is ∂H/∂β = 2βH1 − κβκ−1H3. Setting the
derivative to zero at β = 1 gives an equation consistent with
the equations of motion:

κH3 = 2H1. (3.11)

The second derivative at β = 1 can now be written as

∂2H

∂β2
= κ(2 − κ)H3. (3.12)

The solution is therefore unstable to scale transformations
when κ > 2. This result is independent of δ. However, once
one adds forcing terms, it is known from the study of the
κ = 1 case [8] that the windows of stability as determined
by the stability curve p(v) as well as by simulation of the
FNLSE increase as δ is chosen to be more negative. In those
simulations the two methods agreed to within 1%.

IV. EXACT SOLUTIONS OF THE FORCED NLSE FOR r �= 0

For r = 0 one can have time dependent phases in the
traveling wave solutions, however when r �= 0 one is restricted
to looking for traveling wave solutions with time independent
phases. That is, if we consider a solution of the form

ψ(x,t) = e−i(kx+θ)f (y); y = x + 2kt, (4.1)

then f satisfies

f ′′(y) − k′2f + g(f �f )κf = r; k′2 = k2 − δ. (4.2)

A. Plane wave solutions

First let us consider the plane wave solution of Eq. (2.3):

ψ(x,t) = a exp [−i(kx + θ )], (4.3)

or equivalently the constant solution f = a to Eq. (4.2). This
is a solution provided a satisfies the equation (here a can be
positive or negative)

r = g(a2)κa − (k2 − δ)a. (4.4)

This solution has finite energy density, but not finite energy in
general. The energy density ε(x) is given by

ε(x) = g(2κ + 1)a2(κ+1)

κ + 1
− (k2 − δ)a2. (4.5)

Since Pv = 0, the energy is the same in the comoving frame.
This is the lowest energy solution for unrestricted g, a, k2, and
δ. The solitary wave solutions discussed below will have finite
energy with respect to this “ground state” energy. There is a
special zero energy solution that is important. This solution
has the restriction that

g(2κ + 1)a2κ

κ + 1
= (k2 − δ). (4.6)

B. 2κ = integer

When 2κ = integer then one also can simply find solutions.
The differential equation is

f ′′ − (k′2)f + g(f ∗f )κf = r. (4.7)

Note that again this equation is invariant under the combined
transformation f → −f and r → −r . Thus we look for
solutions of the form f± = ± [a + u(y)] with a > 0; u(y) > 0
so that for this ansatz we have

|a + u(y)| = a + u(y). (4.8)

It is sufficient to consider f+ = a + u(y) and generate the
second solution by symmetry (r → −r; a → −a; u → −u).
For f+ we have letting 2κ + 1 = N = integer

r = −k′2a + gaN, (4.9)

and

u′′ = (k′2 − gNaN−1)u − g

N∑
m=2

umaN−m

(
N

m

)
. (4.10)

Integrating once and setting the integration constant to zero to
keep the energy of the solitary wave relative to a plane wave
finite, we obtain

(u′)2 = (k′2 − gNaN−1)u2 − g

N∑
m=2

2um+1aN−mN !

(m + 1)!(N − m)!
.

(4.11)

This equation will have a solution as long as α = k′2 −
gNaN−1 > 0. We now discuss solutions to this equation when
N = 2 (κ = 1/2) and N = 3 (κ = 1).

C. κ = 1/2

For κ = 1/2, N = 2, the equation we need to solve for f+
is

(u′)2 = αu2 − 2gau3 − gu4/2; α = k′2 − 2ga. (4.12)

This equation has a solution of the form

u(y) = b sech1/κ (βy), (4.13)

so that f (y) has a solution of the form

f (y) = a + b sech2β(y,t), (4.14)

where both a,b > 0, and f obeys the equation

f ′′ − (k′2)f + g|f |f = r. (4.15)

The wave function is given by

ψ(x,t) = exp[−i(kx + θ )][a + b sech2β(x + 2kt)]. (4.16)

First consider the case that a > 0 and b > 0, so that |f | = f .
Substituting the ansatz Eq. (4.14) into Eq. (4.15) we obtain

a2g + 2abg sech2(βy) − a(k′)2 + b2g sech4(βy)

− b(k′)2sech2(βy) − 6bβ2 sech4(βy)

+ 4bβ2 sech2(βy) − r = 0. (4.17)
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Equating powers of sech we obtain the conditions

−k′2a + ga2 = r; 4β2 − k′2 + 2ga = 0;
(4.18)

−6bβ2 + gb2 = 0,

or, equivalently,

a = k′2 −
√

k′4 + 4rg

2g
, β2 = 1

4

√
k′4 + 4rg, b = 6β2

g
.

(4.19)

The assumption a > 0 and b > 0 requires for consistency that
k′2 > 0 and r < 0. So we can rewrite

a = k′2 −
√

k′4 − 4|r|g
2g

,

(4.20)

β2 = 1

4

√
k′4 − 4|r|g, b = 6β2

g
.

We also have the restriction that

α = k′2 − 2ga > 0. (4.21)

The energy density corresponding to this solution is easily
calculated and is given by

ε(x) = 4ga3

3
− (k2 − δ)a2 + b2[k2 − δ − 2ga + (2/3)bg]

× sech4[β(x + 2kt)] − (4/3)gb3 sech6[β(x + 2kt)].

(4.22)

Observe that the constant term is exactly the same as the energy
density of the solution (4.3) at κ = 1/2. Hence the energy of
the pulse solution [over and above that of the solution (4.3)] is
given by

E = 384β5

5g2
. (4.23)

Because of symmetry there is also a solution with f →
−f,r → −r so that we can write the two solutions connected
by this symmetry as follows:

f (y) = −sgn(r)[a + b sech2(βy)] (4.24)

with a, β, and b given by Eq. (4.20). Thus the wave function
can be written as

ψ(x,t) = −sgn(r)[a + b sech2β(x + 2kt)]e−i(kx+θ). (4.25)

Notice that the boundary conditions (BCs) on this solution
are that for ψ(x) at ±∞ the solution goes to the plane wave
solution

ψ(x = ±∞) → −sgn(r)a exp[−i(kx + θ )]. (4.26)

Thus the BC on solving this equation numerically is the mixed
boundary condition

ikψ(x = ±∞,t) + ψx(x = ±∞,t) = 0. (4.27)

On the other hand, if we go into the y frame where

u(y = ±∞,t) → −sgn(r)a, (4.28)

then the BC for the u equation is

uy(y = ±∞,t) = 0. (4.29)

FIG. 1. (Color online) Exact f (y) (red dashed line) versus
variational solution f2+(y) (black solid line) for k = −0.1, δ = −1,
g = 2, r = −0.01.

Consider the case where g = 2,k = −0.1,δ = −1,

r = −0.01. For this choice of parameters the exact solution is
given by

f (y) = 0.727 191 sech2(0.492 338y) + 0.010 103 1. (4.30)

The stationary solution found using our variational ansatz
which we will discuss below [see Eq. (6.65)] yields the
approximate solution:

f2+(y) = 0.745 042 sech2(0.498 345y), (4.31)

which is a reasonable representation of the exact solution as
seen in Fig. 1. We will show later by numerical simulation,
that this solution is metastable in that β remains constant for
a short period of time and then oscillates.

In the numerical simulation of Fig. 9 the parameters
used in the simulation are κ = 1/2,δ = −1,g = 2,k = 0.1,

r = −0.075. For that case,

f (y) = 0.486 113 sech2(0.402 539y) + 0.090 462 2. (4.32)

Note that here r is 14% of A so that the variational
solution is worse. The unstable stationary variational solution
corresponding to this is

f2+(y) = 0.745 535 sech2(0.498 509y). (4.33)

To make a comparison we plot the square of these solutions in
Fig. 2.

FIG. 2. (Color online) Exact f 2(y) (red dashed line) versus
variational solution f 2

2+(y) (black solid line) for δ = −1, g = 2,
k = 0.1, r = −0.075. These parameters were used in the simulations
shown in Fig. 9.
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FIG. 3. Finite energy solution for κ = 1/2, β = 1, normalized to
unit height.

D. Finite energy solutions

From Eq. (4.22) we notice that we can have a finite energy
solution [with energy as given by Eq. (4.23)] when the constant
term in the energy density is zero. This leads to the condition
4ga = 3k′2, and yields b = −a. This solution is not a small
perturbation on the r = 0 solution which has a = 0,b �= 0.
Instead for the finite energy solution a = −b and the form of
the solution is

f (y) = A tanh2 βy, (4.34)

which has the appearance of Fig. 3.
If we insert the solution Eqs. (4.34) into (4.15), we obtain

Ag|A| tanh4(βy) + 2Aβ2 − Ak′2 tanh2(βy)

+ 6Aβ2 tanh4(βy) − 8Aβ2 tanh2(βy) − r = 0. (4.35)

Thus Eq. (4.34) is a solution provided

r = 2Aβ2; β2 = −k′2/8; |A| = −6β2/g, (4.36)

which requires that both g < 0 and k′2 < 0. We see that this
solution has the symmetry that r changes sign with A and thus
the sign of f depends on the sign of r . Because the coupling
constant needs to be negative, the quantum version of this
theory would not have a stable vacuum. We can write this
solution as

f=
r

|r|
6β2

|g| tanh2 βy, (4.37)

where now β2 = |k′2|/8 and r has the special values r± =
±(3/16)(k′2)2/|g|.

1. Periodic solutions for κ = 1/2

For κ = 1/2 one can easily verify that there are periodic
solutions of Eq. (4.2) of the form

f+(y) = b dn2(βy,m) + a, (4.38)

where dn(x,m) is the Jacobi elliptic function (JEF) with
modulus m. Again for a > 0,b > 0 we have |f+| = f+.
Matching coefficients of powers of dn one obtains

a =
√

1 − m + m2k′2 − (2 − m)
√

4gr + k′4

2g
√

1 − m + m2
,

(4.39)

b = 6β2

g
, β2 =

√
k′4 + 4gr

4
√

1 − m + m2
.

The requirement that a > 0 translates into a restriction on r ,
namely r < −3(1 − m)k′4/4g(2 − m)2.

E. κ = 1

When κ = 1, the equation for f is

f ′′ − k′2f + g|f |2f = r. (4.40)

Again it is only necessary to consider f+ = [a + u(y)] with
both a > 0 and u(y) > 0. For κ = 1, N = 3, the equation we
need to solve for u(y) is

(u′)2 = αu2 − 2gau3 − gu4/2. (4.41)

This equation has two solutions of the form

u(y) = b

c ± cosh(βy)
(4.42)

(note that y = x + 2kt). These solutions were found earlier by
Barashenkov and collaborators [21,22]. Our condition on u for
f+ requires that b > 0,c > 0 and we choose the + solution.
This leads to

ψ+(x,t) = exp[−i(kx + θ )]

[
a + b

c + cosh β(x + 2kt)

]
,

(4.43)

provided

β = √
α; b =

√
2α√

2g2a2 + gα
;

(4.44)

c =
√

2ag√
2a2g2 + gα

; α = k′2 − 3ga2.

Since α > 0, we require k′2 > 3ga2 > 0. Here r = −k′2a +
ga3 < −2ga3 is negative. When we let a → −a,b → −b,

c → −c, then r changes sign and becomes positive. Thus we
can write

ψ±(x,t) = −sgn(r) exp[−i(kx + θ )]

×
[
|a| + |b|

|c| + cosh β(x + 2kt)

]
. (4.45)

These solutions are nonsingular since

1 − c2 = gα/[gα + 2g2a2] > 0. (4.46)

The energy density corresponding to these solutions is given
by

ε(y) = 3ga4

2
− k′2a2 + 2b2(k′2 − 3ga2)

[c + cosh(βy)]2
− 2b2(cβ2 + gab)

[c + cosh(βy)]3

+ b2[β2(c2 − 1) − (g/2)b2]

[c + cosh(βy)]4
. (4.47)

Note that the constant term is exactly the same as the energy
of the solution (4.3) as given by Eq. (4.5) at κ = 1. Hence the
energy of the κ = 1 pulse solution [over and above that of the
solution (4.3)] is again finite and given by

E = 8α5/2

gα + 2a2g2
I2 − 16

√
2α5/2ag

[gα + 2a2g2]3/2
I3 − 8gα7/2

[gα + 2a2g2]2
I4,

(4.48)
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where

Ij =
∫ ∞

0

dy

[c + cosh(βy)]j
, j = 2,3,4. (4.49)

We have

I1 =
∫ ∞

0

dx

a + b cosh(x)
= 2√

b2 − a2
tan−1

[√
b2 − a2

b + a

]
,

if b2 > a2. (4.50)

Note that in our case a = c,b = 1,c2 < 1. From here it is
easy to calculate the integrals I2,I3,I4 and hence show that
the energy of the + and the − solution [over and above the
solution (4.3)] is given by

E = 8α1/2

3g
(α + 3a2g) − 8

√
2a√
g

(α + 2a2g)

× tan−1

[√
1 + 2a2g

α
−

√
2a2g

α

]
. (4.51)

1. Periodic solutions for κ = 1

For κ = 1 we can generalize the solitary wave solution for
f+,

f ′′ − k2f + gf 3 = r, (4.52)

namely

f = a + b

c + cosh[dy]
= (ac + b) sech[dy] + a

1 + c sech[dy]
, (4.53)

and obtain a periodic solution in terms of the Jacobi elliptic
functions. The generalization of sech[dy] is the Jacobi
elliptic function dn(dy,m) which also has the property |dn| =
dn(dy,m).

One finds that

f+ = a + h dn(dy,m)

1 + c dn(dy,m)
, (4.54)

with a > 0,h > 0,c > 0 obeys |f+| = f+ and is an exact
solution to Eq. (4.52) provided that

r = (ac + h)(agh − ck′2)

2c2
; d2 = −3agh − ck′2

2c(m − 2)
, (4.55)

h2 = 4d2

g[2 + αga2(1 − k′2α)]
,

(4.56)

(1 − m)h2 = 1 + 2αga2 − k′2α
4d2α3g2a2

.

Here α = c/gah which obeys a cubic equation,

16(1 − m)α3d4ga2

= [2 + αga2(1 − k′2α)][1 + 2αga2 − k′2α]. (4.57)

F. κ = 3/2

For κ = 3/2,N = 4 we have instead for f+ that u obeys
the equation

(u′)2 = αu2 − 4ga2u3 − 2gau4 − 2gu5/5. (4.58)

For this case, the formal solution,

y + c =
∫ u

a

dy
1

y
√

α − 4ga2y − 2gay2 − 2gy3/5
, (4.59)

leads to an elliptic function.

V. VARIATIONAL APPROACH TO THE FORCED NLSE

For the problem of small perturbations to the unforced
problem we are interested in variational trial wave functions
of the form

ψv1(x,t) = A(t)f (βv(t)[x − q(t)])ei{p(t)[x−q(t)]+φ(t)}. (5.1)

Here we assume that the collective coordinates (CCs)
A(t),φ(t),p(t),q(t) are real functions of time and that f is real.
On substituting this trial function in Eq. (2.1) and computing
various integrals one finds that the effective Lagrangian is
given by

L = C0
A2(t)

βv

(
p(t)q̇(t) − φ̇(t) − [p2(t) − δ] − D1

C0
β2

v

)

+Ck

g[A(t)]2(κ+1)

βv(κ + 1)
− 4rA(t) cos[kq(t) + φ(t) + θ ]

× I [p(t) + k,βv], (5.2)

where

Ck =
∫ ∞

−∞
dy[f (y)]2(κ+1), D1 =

∫ ∞

−∞
[f ′(y)]2, (5.3)

while

I [p(t) + k,βv] =
∫ ∞

0
dyf (βvy) cos{[p(t) + k]y}. (5.4)

Note that for our parametrization of the variational ansatz,

ψ∗ψp(t) = 1

2i
(ψ∗∂xψ − ψ∂xψ

∗). (5.5)

Thus from our previous discussion about the conservation of
momentum in the comoving frame with k = v/2 we have that
p(t) and M(t) are in general not independent but satisfy

M(t)[p(t) + k] = const. (5.6)

For the case where p(t) + k �= 0, one then gets the relation

M(t) = const/[p(t) + k]. (5.7)

A. Variational ansatz

Generalizing the κ = 1 choice of Ref. [9] for f to arbitrary
κ , we choose

fv[y] = sech1/κ [y], (5.8)

so that our variational ansatz is

ψv1(x,t) = A(t) sech1/κ{βv(t)[x − q(t)]}ei{p(t)[x−q(t)]+φ(t)},
(5.9)

where A(t) is of the same form as in the unforced solution,
namely

A(t) =
[
βv(t)2(κ + 1)

gκ2

]1/(2κ)

= β1/κ
v

√
α(κ);

(5.10)

α(κ) =
(

κ + 1

gκ2

)1/κ

.
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Note that we have chosen f to be real. In our previous studies
of blowup in the NLSE we used a more complicated variational
ansatz where there is another variational parameter in the phase
multiplying the quadratic term [x − q(t)]2 [18,19].

Defining the “mass” of the solitary wave M(t) via

M(t) =
∫

dxψ∗ψ = C0A(t)2/βv(t) = C0β
2/κ−1
v α(κ),

(5.11)

we then find for the ansatz Eq. (5.10) that for p + k �= 0

β2/κ−1
v [p(t) + k] = const. (5.12)

For the forcing term contribution to the Lagrangian,
Eq. (5.2), we need the integral

I [ν,a,βv]=
∫ ∞

0
dx cos(ax) sechν(βvx)

= [2ν−2/βv
(ν)]
(ν/2 + ia/2βv)
(ν/2 − ia/2βv),

(5.13)

where Re(βv) > 0, Re(ν) > 0, a > 0. Special cases of this are
obtained for ν = 1,2,3. We find

I [1,a,βv] =
π sech

(
πa
2βv

)
2βv

, I [2,a,βv] =
πa csch

(
πa
2βv

)
2β2

v

,

I [3,a,βv] = π
(
a2 + β2

v

)
sech

(
πa
2b

)
4β3

v

. (5.14)

For our variational ansatz Eq. (5.8)

C0 =
√

π

(

1
κ

)



(
1
2 + 1

κ

) ; Cκ =
√

π

(
1 + 1

κ

)



(
3
2 + 1

κ

) ;

(5.15)

D1 =
√

π

(

1
κ

)
2κ2


(
3
2 + 1

κ

) ,

so that

Cκ = 2

2 + κ
C0; D1 = 1

κ(κ + 2)
C0. (5.16)

Thus we can write everything in terms of C0.

B. Arbitrary κ

For arbitrary κ the effective Lagrangian is

L = M(t)

(
p(t)q̇(t) − φ̇(t) − [p2(t) − δ] + β2

v

(2 − κ)

κ2(2 + κ)

)

− 21/κrβ
1/κ−1
v

√
α(κ)
+
− cos[kq(t) + φ(t) + θ ]



(

1
κ

) ,

(5.17)

where


± = 


[
1

2

(±i[k + p(t)]

βv(t)
+ 1

κ

)]
;

(5.18)
M(t) = C0α(κ)β2/κ−1.

Introducing the notation

C = π (k + p)

2β
; B = φ + kq + θ, (5.19)

an important special solution is obtained in the limit C → 0,
i.e., p(t) = −k. In this case the Lagrangian becomes

L[C = 0]=M(t)

(
−kq̇(t) − φ̇(t) − (k2 − δ) + β2

v

(2 − κ)

κ2(2 + κ)

)

− 21/κrβ
1/κ−1
v

√
α(κ)
2

(
1

2κ

)
cos(B)



(

1
κ

) . (5.20)

This leads to the equations

q̇ = −2k, (5.21)

β̇ = −21/κrα
−1/2
κ β

−1/κ+1
v 


(
1
2 + 1

κ

)

2

(
1

2κ

)
sin(B)√

π
(

2
κ

− 1
)

2

(
1
κ

) ,

(5.22)

φ̇ = k2 + δ + β2

κ2

− 21/κrα
−1/2
κ β

−1/κ
v (1 − κ)


(
1
2 + 1

κ

)

2

(
1

2κ

)
cos(B)

(2 − κ)
2
(

1
κ

) .

(5.23)

Assuming the ansatz β =βs and φ(t) =φs− αst in Eqs. (5.22)
and (5.23), where βs , αs , and φs are constant, we obtain

αs = −2k2, φs = nπ − kq0 − θ, (5.24)

where n is an integer and βs is a solution of

k2 − δ − β2
s

κ2

+ (−1)n
21/κrα

−1/2
κ β

−1/κ
s (1 − κ)


(
1
2 + 1

κ

)

2

(
1

2κ

)
(2 − κ)
2

(
1
κ

) = 0.

(5.25)

These equations become much simpler in the comoving frame,
so we will now turn our attention to solving the problem in
that frame.

VI. VARIATIONAL APPROACH FOR THE ACTION
IN THE COMOVING FRAME

In the comoving frame we use the following ansatz for the
variational trial wave function:

vv1(y,t) = A(t)f (βv(t)[y − q̃(t)])ei{p̃(t)[y−q̃(t)]+φ̃(t)}. (6.1)

Comparing with our general ansatz we have the relations

y = x + 2kt ; p̃ = p + k, q̃ = q + 2kt,

and φ̃ = φ + kq + θ. (6.2)

On substituting these relations in the effective Lagrangian
(5.2), the Lagrangian in the comoving frame takes the form

L2 = C0
A2(t)

βv

(
p̃(t) ˙̃q(t) − ˙̃φ(t) − [p̃2(t) + k2 − δ]

+β2
v

(2 − κ)

κ2(2 + κ)

)
+ Ck

g[A(t)]2(κ+1)

βv(κ + 1)

− 4rA(t) cos[φ̃(t)]I [p̃(t),β]. (6.3)
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We notice that the canonical momenta to φ̃ and q̃ are simply
given by

δL2

δ ˙̃q
= M(t)p̃(t);

δL2

δ ˙̃φ
= −M(t). (6.4)

A. Variational ansatz function choice

Again choosing fv[y] from Eq. (5.8) our variational ansatz
for v is

vv1(y,t) = A(t)sech1/κ (βv(t)[y − q̃(t)])ei{p̃(t)[y−q̃(t)]+φ̃(t)},
(6.5)

where A(t) is again given by Eq. (5.10). Again the “mass”
of the solitary wave M(t) is given by M(t) = ∫

dxv∗v =
C0A(t)2/βv(t) = C0β

2/κ−1α(κ) and from the conservation of
Pv = Mp̃ [Eq. (2.15)] we find for p̃ �= 0

β2/κ−1p̃(t) = const. (6.6)

We can rewrite Eq. (6.3) as

L = M(t)

(
p̃(t) ˙̃q(t) − ˙̃φ(t) − [p̃2(t) + k2 − δ] + β2

v

(2 − κ)

κ2(2 + κ)

)

− 21/κrβ
1/κ−1
v

√
α(κ)
+
− cos[φ̃(t)]



(

1
κ

) , (6.7)

where 
± = 
[ 1
2 (±ip̃(t)

βv (t) + 1
κ

)]. From Lagrange’s equation for
q̃ we obtain

d

dt
[M(t)p̃(t)] = 0, → β2/κ −1p̃ = β2/κ −1[p(t) + k] = const.

(6.8)

Letting

G(x = p̃/β) = 21/κr
√

α(κ)
+
−



(
1
κ

) , (6.9)

so that

∂G

∂p̃
= G′

β
,

∂G

∂β
= − p̃G′

β2
, (6.10)

we get the following differential equations:

˙̃q = 2p̃ + 1

βM(t)
G′β1/κ−1 cos φ̃(t), (6.11)

Mβ̇ = Gβ1/κ κ

2 − κ
sin φ̃(t), (6.12)

and for ˙̃φ we have

0 = (2 − κ)

κ

(
p̃(t) ˙̃q(t) − ˙̃φ(t) − [p̃2(t) + k2 − δ]

)
+β2

v

(2 − κ)

κ3
+ β1/κ

M(t)

(
p̃

β2
G′ − 1 − κ

κβ
G

)
cos φ.

(6.13)

B. p̃/β → 0

Introducing the notation C̃ = πp̃/2β, a special stationary
solution is obtained in the limit C̃ → 0, i.e., p̃(t) = 0. In this

case the Lagrangian (6.7) becomes

L[C̃ = 0] =
√

π

(

1
κ

)
ακβv(t)2/κ−1



(

1
2 + 1

κ

)
×

[
δ − ˙̃φ(t) − k2 + β2

v

(2 − κ)

κ2(2 + κ)

]

− 21/κr
√

ακβ
1/κ−1
v 
2

(
1

2κ

)
cos(φ̃)



(

1
κ

) . (6.14)

This leads to the equations:

˙̃q = 0, (6.15)

β̇ = −rA
β(κ−1)/κ

2 − κ
sin(φ̃), (6.16)

˙̃φ = δ − k2 + β2

κ2
− rBβ−1/κ

(
1 − κ

2 − κ

)
cos(φ̃), (6.17)

where

A = 2
1
κ κα

−1/2
κ 


(
1
2 + 1

κ

)

2

(
1

2κ

)
√

π
2
(

1
κ

) , A > 0,

(6.18)

B = 2
1
κ α

−1/2
κ 


(
1
2 + 1

κ

)

2

(
1

2κ

)
√

π
2
(

1
κ

) ; B > 0.

Assuming the ansatz β = βs and φ̃(t) = φ̃s in Eqs. (6.16)
and (6.17), where βs , and φ̃s are constant, we obtain

φ̃s = nπ, (6.19)

where n is an integer and βs is the solution of

k2 − δ − β2
s

κ2
+ (−1)nrBβ−1/κ (1 − κ)

(2 − κ)
= 0. (6.20)

1. Linear stability

Let us look at the problem of keeping q̃ = p̃ = 0, and
looking at small perturbations about the stationary solutions
β = βs and φ̃ = φ̃s = 0,π . The analysis depends on whether
r cos φ̃s > 0 or r cos φ̃s < 0. We discuss the two cases sepa-
rately. We let ρ = |r cos φ̃s | > 0.

Case IA: r cos φ̃s = ρ > 0. The linearized equations for
δβ,δφ then become

δβ̇ = −Aρβ
(κ−1)/κ
s

2 − κ
δφ̃ = −c1δφ̃, (6.21)

δ ˙̃φ =
[

2βs

κ2
+ ρB(1 − κ)

κ(2 − κ)β(κ+1)/κ
s

]
δβ = c2δβ. (6.22)

Combining these two equations by taking one more derivative
we find

δβ̈ + �2δβ = δ ¨̃φ + �2δφ̃ = 0, (6.23)

where �2 = c1c2. Whether this will correspond to a stable
solution will depend on signs of c1,c2, and hence c1c2. It turns
out that the answer depends on the value of κ . In particular, the
answer depends on whether κ � 1 or 1 < κ < 2 or κ > 2. So
let us discuss all three cases one by one. Note that the above
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analysis is only valid if κ �= 2. If κ = 2, the entire analysis
needs to be redone.

κ � 1. In this case c1,c2 > 0 and hence �2 > 0 so that the
solution is a stable one.

1 < κ < 2. In this case, while c1 > 0, the sign of c2 will
depend on the values of the parameters. In particular, if κ

is sufficiently close to (but greater than) 1, then c2 > 0 and
hence �2 > 0 so that one has a stable solution. On the other
hand if β is sufficiently close to (but less than) 2, then c2 < 0
and hence �2 < 0 so that one has an unstable solution. In
particular, no matter what the values of the parameters are, as
κ increases from 1 to 2, the solution will change from a stable
to an unstable solution.

2 < κ . In this case, while c1 < 0, c2 > 0 and hence �2 < 0
so that one has an unstable solution.

Case IB: r cos φs = −ρ < 0. The linearized equations for
δβ,δφ̃ then become

δβ̇ = +ρAβ
(κ−1)/κ
s

2 − κ
δφ̃ = c1δφ̃, (6.24)

δ ˙̃φ =
[

2βs

κ2
− ρB(1 − κ)

κ(2 − κ)β(κ+1)/κ
s

]
δβ = c3δβ. (6.25)

Combining these two equations by taking one more derivative
we find

δβ̈ − �2δβ = δ ¨̃φ − �2δφ̃ = 0, (6.26)

where �2 = c1c3. Whether this will correspond to a stable
solution will depend on signs of c1,c3, and hence c1c3. Again
it turns out that the answer depends on whether κ � 1 or
1 < κ < 2 or κ > 2. So let us discuss all three cases one by
one.

κ � 1. In this case c1 > 0 while the sign of c3 and hence
�2 depends on the values of the parameters. For example if κ

is sufficiently close to 1, then c3 > 0 so that the solution is an
unstable one.

1 < κ < 2. In this case, both c1,c3 > 0, and hence �2 > 0
so that the solution is an unstable one.

2 < κ . In this case, while c1 < 0, the value of c3 will depend
on the value of the parameters. In particular if κ is sufficiently
close to 2 then c3 < 0 and hence �2 > 0 so that one has a stable
solution. On the other hand for κ > κc > 2, c3 > 0 and hence
�2 < 0 so that one has an unstable solution. In particular, no
matter what the values of the parameters are, as κ increases
from 2, the solution will change from a stable to an unstable
solution.

We now discuss the κ = 1/2 case in some detail.

C. κ = 1/2

For κ = 1/2 the effective Lagrangian is

12

g2

[
−πgrp̃(t)csch

(
πp̃(t)

2β(t)

)
cos[φ̃(t)] + 4β(t)3

(
p̃(t) ˙̃q(t)

− p̃(t)2 − ˙̃φ(t) + δ − k2
) + 48

5
β(t)5

]
. (6.27)

From the Euler-Lagrange equations we find that

β3(t)p̃(t) = const , (6.28)

and further,

˙̃q = 2p̃ + gπr cos φ̃

4β3 sinh C
[1 − C coth C] ; C = πp̃(t)

2β(t)
,

(6.29)

β̇ = −grC sin φ̃

6β sinh C
, (6.30)

˙̃p = grC2 sin φ̃

πβ sinh C
, (6.31)

˙̃φ = p̃2 + 4β2 + δ − k2 + gπrp̃ cos φ̃

4β3 sinh C
[1 − C coth C]

− grC2 coth C cos φ̃

6β2 sinh C
. (6.32)

We are interested in the stationary solutions of these equations.
We assume

q̃ = vst, β = βs, p̃ = p̃s, φ̃ = φ̃s . (6.33)

We now have Cs = π
2βs

(p̃s) and we need sin φ̃s = 0 so that

φ̃s = 0,π and cos φ̃s = ±1.
The equations for the two choices of cos φ̃s become

vs = 2ps ± gπr

4β3
s sinh Cs

[1 − Cs coth Cs] , (6.34)

0 = p̃2
s + 4β2

s − k′2 ± gπrp̃s

4β3
s sinh Cs

[1 − Cs coth Cs]

∓ grC2
s coth Cs

6β2
s sinh Cs

. (6.35)

This leads to two families of stationary solutions on two curves
in the three-dimensional parameter space of vs,βs, and p̃s .
Equation (6.35) can also be written

p̃2
s = vsps + 4β2

s − k′2 ∓ grC2
s coth Cs

6β2
s sinh Cs

. (6.36)

1. Phase portrait

The variational wave function for κ = 1/2 in the comoving
frame is given by

vv(y,t) = 6β2

g
sech2β [y − q̃(t)] ei{p̃(t)[y−q̃(t)]+φ̃(t)}. (6.37)

The position of the solitary wave q̃(t) consists of a linear
term v̄t plus an oscillating term. The average velocity v̄

can be obtained from the numerical solution of the ODEs
(6.29)–(6.32) for the collective variables. The relevant wave
function for the phase portrait [9] is to evaluate vv at the
point y = v̄t . The phase portrait is obtained by plotting the
imaginary versus real part of the resulting wave function as a
function of time by solving the ODEs for various initial values
of β. That is, we consider

� = 6β2

g
sech2β(t) [v̄t − q̃(t)] ei{p̃(t)[v̄t−q̃(t)]+φ̃(t)}, (6.38)

and plot Im � vs Re � for fixed parameters varying the value
of β0. Orbits which are ellipses in the positive (negative)
sense of rotation predict stable (unstable) solitary waves in
the simulations. When the orbit has both senses of rotation,
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FORCED NONLINEAR SCHRÖDINGER EQUATION WITH . . . PHYSICAL REVIEW E 85, 046607 (2012)

FIG. 4. (Color online) Phase portrait: imaginary vs real part of
the wave function Eq. (6.38). Orbits with positive sense of rotation
predict stable solitons in the simulations. If the orbit, or part of it, has
a negative sense, the soliton is unstable. The filled and open circles are
stable and unstable fixed points, respectively; Eq. (6.39). The orbits
are obtained for β0 = 0.2 (medium size ellipse), β0 = 0.53 (small
ellipse), β0 = 0.63 (horseshoe), and β0 = 0.7 (large ellipse), keeping
fixed φ0 = 0, p0 = −k + 10−5, q0 = 0, except for φ0 = π and β0 =
0.498 345 (separatrix, red curve); see Fig. 18. The parameters are
r = 0.05, k = −0.1, δ = −1, θ0 = 0, and α = 0.

as in a horseshoe shape, the solitary wave is unstable. These
behaviors are shown in the phase portrait of Fig. 4. The three
stationary solutions that we found earlier correspond to the
fixed points of the phase portrait. The stability of these fixed
points can be determined either numerically by solving the CC
equations, or analytically by a linear stability analysis that we
will now discuss. All the fixed points are on the real axis since
φ̃s = 0,π for the stationary solutions. We have at the fixed
points

�s = 6β2
s

g
eiφ̃s . (6.39)

We remark that a stable fixed point only means that the CC
solutions in its neighborhood are stable, but an orbit around
this fixed point does not necessarily have a positive sense of
rotation. An example is the medium size ellipse in Fig. 4.

2. Linear stability analysis of stationary solutions

To study the stability of these stationary solutions we let

β(t) = βs + δβ(t); φ̃(t) = φ̃s + δφ̃(t); φ̃s = 0,π.

(6.40)

From Eq. (6.30) we obtain

δβ̇ = ∓ grC2
s

6βs sinh Cs

δφ̃ = ∓cβδφ̃. (6.41)

We can schematically write Eq. (6.32) as follows:

˙̃φ = p̃2 + 4β2 − k′2 + F [p,β,C] cos φ̃, (6.42)

where

F [p,β,C] = gπrp̃

4β3 sinh C
[1 − C coth C] − grC2 coth C

6β2 sinh C
.

(6.43)

This leads to the equation for linear stability

δ ˙̃φ = 2psδp̃ + 8βsδβ ±
(

∂F

∂p̃
δp̃ + ∂F

∂β
δβ + ∂F

∂C
δC

)
,

(6.44)

where the derivatives are evaluated at the stationary values
βs,Cs,p̃s Now the conservation of momentum in the comoving
frame leads to

β3p̃ = C1 = const. (6.45)

So we have

p̃ = C1

β3
→ δp̃ = −3

C1

β4
s

δβ, (6.46)

C = πC1

2β4
→ δC = −4

Cs

βs

δβ. (6.47)

Putting this together we get

δ ˙̃φ = cφδβ, (6.48)

where

cφ = −3C1

β4
s

(
2p̃s ± ∂F

∂p̃

)
+ 8βs ±

(
∂F

∂β
− 4Cs

βs

∂F

∂C

)
.

(6.49)

We can write

δβ̇ = ∓cβδφ̃, (6.50)

so taking derivatives of Eqs. (6.48) and (6.50) and combining
we get

δ ¨̃φ ± cβcφδφ̃ = 0, δβ̈ ± cβcφδβ = 0. (6.51)

Thus depending on the sign of cβcφ we will have oscillating
or growing (decreasing) solutions.

Once we have solved for δβ, we can go back and solve for
δq. We can write the Eq. (6.29) for ˙̃q as

˙̃q = 2p̃ + cos φ̃F1(β,C), (6.52)

where

F1 = gπr

4β3 sinh C
. [1 − C coth C] . (6.53)

Letting ˙̃q = vs + δ ˙̃q we have

δ ˙̃q = 2δp̃ ±
(

∂F

∂β
δβ + ∂F

∂C
δC

)

=
[
−6

Cs

β4
s

±
(

∂F1

∂β
− 4Cs

βs

∂F1

∂C

)]
δβ

= cq±δβ. (6.54)

Thus if we are in a region of stability so that

δβ = εβ cos(�t + α), (6.55)

we obtain

δq̃ = δq̃(0) + cq±εβ

�
[sin(�t + α) − sin α] . (6.56)
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D. Dynamical stability using the stability curve p(v)

In Refs. [8,9] it was shown for the case κ = 1 that the
stability of the solitary wave could be inferred from the solution
of the CC equations by studying the stability curve p(v),
obtained from the parametric representation p(t),v(t) = q̇,
where p is the normalized canonical momentum in the
laboratory frame and v = q̇ is the velocity in the laboratory
frame. We can determine these quantities using the relations

p(t) = p̃ − k; q̇ = ˙̃q − 2k. (6.57)

A positive slope of the p(v) curve is a necessary condition
for the stability of the solitary wave. If a branch of the p(v)
curve has a negative slope, this is a sufficient condition for
instability. In our simulations we will show that this criterion
agrees with the phase portrait analysis.

E. κ = 1
2 ,C = 0

For the special case that C = 0, using the identity
x cschx → 1, the effective Lagrangian Eq. (6.27) becomes

L[C = 0] = −2grβ(t) cos[φ̃(t)]

+ 4β(t)3[δ − k2 − ˙̃φ(t)] + 48β(t)5

5
. (6.58)

This leads to the equations

p̃ = 0; ˙̃q = 0, β̇ = − gr

6β
sin(φ̃);

(6.59)
˙̃φ = δ − k2 + 4β2 − gr

6β2
cos(φ̃).

The stationary solution in the comoving frame is repre-
sented by β = βs , q̃ = q0, and φ̃(t) = φ̃s , where φ̃s is given
by

φ̃s = nπ, (6.60)

with n being an integer. It is sufficient if we take n = 0,1. For
n = 0 and r > 0 or equivalently, n = 1,r < 0 we have

β2
s = k′2

8
+

√
k′4 + 8g|r|/3

8
, (6.61)

whereas for r < 0,n = 0 or equivalently r > 0,n = 1 there
are two solutions given by

β2
s = k′2

8
±

√
k′4 − 8g|r|/3

8
, k′4/(g|r|) > 8/3 ≈ 2.666 67.

(6.62)

Note that when C = 0 then ps = 0. We expect that these
stationary solutions are close to exact solitary wave solutions
to the original partial differential equations that may be stable
or unstable.

We are interested in seeing how these solutions compare
to the exact solution we found earlier as well as to the
unperturbed r = 0 exact solution. The unperturbed solution
with r = 0,p = 0 is given by

f0(y) = 6
β2

g
sech2[βy], (6.63)

where β2 = −δ/4. Thus for δ = −1,g = 2 the exact unper-
turbed solution is

f0(y) = 3

4
sech2

(
y

2

)
. (6.64)

The exact perturbed solution for r = −0.01 and k = −0.1,

δ = −1, is given by Eq. (4.30), i.e., f (y) = 0.727 191 sech2

(0.492 338y) + 0.010 103.

Let us now look at the three stationary variational solutions.
Since r < 0 we have for n = 0 the two possibilities based on
the choice of the ± in the square root. For the positive choice
we obtain

f+(y) = 0.745 535 sech2(0.498 345y), (6.65)

which is very close to f0. We will find from our linear stability
analysis that this is unstable.

On the other hand, for the negative root we obtain

f−(y) = 0.011 965 sech2(0.063 153 2y), (6.66)

which is far from f0. This solution is stable to small
perturbations. For n = 1 we obtain instead

β2
s = k′2

8
+

√
k′4 + 8g|r|/3

8
= 0.255 148, (6.67)

so that

f1(y) = 0.765 443 sech2(0.505 121y). (6.68)

We find that this is stable to small perturbations.
We are also interested for comparison purposes in using the

same parameters we used in the study of the κ = 1 problem [9],
i.e., k = −0.1,δ = −1,g = 2,r = 0.05,q0 = 0,φs = 0. Then
for this positive value of r , the amplitude of the n = 0 solution
is (note y = x + 2kt)

f1(y) = 0.804 134 sech2(0.517 73y). (6.69)

The phase of the solution is zero. This is not very far from
the values in f0 given in Eq. (6.64). The comparison is shown
in Fig. 5. This solution turns out to be stable under small
perturbations. If we instead chose k = +0.1, the result for
f1(y) would be the same but the solitary wave would move in
the opposite direction.

FIG. 5. (Color online) f0(y) (black solid line) vs forced varia-
tional solution for f1(y) (red dashed line) for k = −0.1, δ = −1,
g = 2, r = 0.05.
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The two solutions for n = 1,φ̃s = π are

f2+(y) = 0.704 252 sech2(0.484 511y);
(6.70)

f2−(y) = 0.053 248 sech2(0.133 227y).

f2+(y) is again similar to f0 but f2−(y) is clearly not. Our
linear stability analysis leads to the conclusion that f2+(y) is
unstable but f2−(y) is stable. In fact, f2+(y) is unstable to
linear perturbations but is actually metastable and the original
solution switches to a separatrix solution at late times. f2− is
stable to small perturbations. The separatrix for these values
of the parameters is shown below in Fig. 18.

Next we want to consider initial conditions when r = 0.005
and k = −0.01,δ = −1,g = 2. For these initial conditions it
is easier to deal with the periodic boundary conditions on the
numerical solutions of the PDEs. The n = 0 solution is

f1(y) = 0.755 042 sech2(0.501 678y), (6.71)

and we find that this is stable to linear perturbations. The
positive and negative roots for the n = 1 solution are

f2+(y) = 0.745 042 sech2(0.498 345y);
(6.72)

f2−(y) = 0.005 033 28 sech2(0.040 960 4y).

We will find using linear stability analysis that f2+(y) is
unstable but f2−(y) is stable.

F. Linear stability at κ = 1
2 ,C = 0

Let us look at the problem of keeping ˙̃q = p̃ = 0, and
consider a small perturbation of Eqs. (6.59) about the sta-
tionary solution β = βs and φ̃ = φ̃s = 0,π . When φ̃s = 0, the
linearized equations for δβ,δφ become

δβ̇ = − gr

6βs

δφ̃ = −c1δφ̃. (6.73)

Here the sign of c1 is given by the sign of r

δ ˙̃φ =
(

8βs + gr

3β3
s

)
δβ = c2δβc2 > 0. (6.74)

Combining these two equations by taking one more derivative,
we find

δβ̈ + �2δβ = δ ¨̃φ + �2δφ̃ = 0, (6.75)

where �2 = c1c2. Thus for the case when we have an exact
solution and we choose r = −0.01,g = 2,k = −0.1,δ = −1
we find that for the stationary solution f+(y) we obtain
c1 = −0.006 686 6, c2 = 3.934 26, and �2 = −0.026 306 8,
suggesting an unstable solution. For f−(y) we instead obtain
c1 = −0.052 781 7, c2 = −2.561 98, and �2 = 0.135 226,
suggesting a stable solution. When r > 0, the solution f1(y),
which corresponds to r > 0,φ = 0, is always stable.

If instead we look at the small perturbations around the
solution where φ̃s = π , we obtain

δβ̇ = gr

6βs

δφ̃ = c1δφ̃. (6.76)

Here again the sign of c1 is determined by the sign of r .

δ ˙̃φ =
(

8βs − gr

3β3
s

)
δβ = c3δβ. (6.77)

When r < 0 and we choose the previous values r = −0.01,

g = 2,k = −0.1,δ = −1,k′2 = 1.01, we obtain for f1(y)

β1 = 0.505 726; c1 = −0.006 591 19;

c2 = 4.097 35; �2 = −0.027 006 4, (6.78)

which suggests that this stationary solution is unstable.
When r > 0, the sign of c3 depends on whether one is

taking the positive or negative sign in Eq. (6.62). For our
initial conditions c3 is positive for f2+ and negative for f2−
corresponding to the ± choice in Eq. (6.62). Combining these
two equations we now find

δβ̈ ∓ �2δβ = δ ¨̃φ ∓ �2δφ̃ = 0, (6.79)

where �2 = |c1c3| > 0. This suggests that the fixed point
associated with f2+ is unstable and f2− stable under small
perturbations. For the solution with r = 0.05, for f1 we find
that

c1 = 0.034; c2 = 4.169 15; � = 0.378 701. (6.80)

For f2+

c1 = 0.034; c3 = 3.58; � = 0.351 073. (6.81)

For f2−

c1 = 0.1251; c3 = −13.0305; � = 1.276 76. (6.82)

For the solution with r = 0.005, we find for f1 that

c1 = 0.003 322 19; c2 = 4.039 82; � = 0.115 849.

(6.83)

For f2+

c1 = 0.003 344 41; c3 = 3.959 82; � = 0.115 079,

(6.84)

which suggests instability. For f2−

c1 = 0.040 689 7; c3 = −48.1771; � = 1.400 11.

(6.85)

The small oscillation frequencies for the stable solutions
f1 and f2− are borne out by numerical simulations. However,
for the predicted unstable case, at early times, 0 < t < 650,
the solutions exhibit a small oscillation with frequency
� = 0.0448. After that time the solution switches to the
separatrix solution with large oscillations in β and φ but small
oscillations in p and q.

G. κ = 1

For comparison let us review what happened in the case
κ = 1 which is quite different. At κ = 1 the Lagrangian is
given by

L = −2r

√
2

g
π sech

(
πp̃(t)

2β(t)

)
cos[φ̃(t)]

+ 4
β(t)

g

(
p̃(t) ˙̃q(t) − p̃(t)2 − φ̇(t) + δ − k2 + β2

3

)
.

(6.86)
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FIG. 6. r = 0. Soliton moving to the right at t∗ = 166.6, 333.3, 500, 666.6, 833.3, 1000. Left and right panels: κ = 0.5 and κ = 1.5,
respectively. Parameters: δ = 0, g = 2 with initial conditions β = 1, p = 0.01, and φ0 = 0.

From this we get the following four equations:
d

dt
(βp̃) = 0, (6.87)

β̇ = −πr

2

√
2g sechC sin[φ̃(t)], (6.88)

˙̃q = 2p̃(t) − π2√2gr tanh C sechC cos[φ̃(t)]

4β(t)2
, (6.89)

p̃(t) ˙̃q(t) − p̃(t)2 − ˙̃φ(t) + δ − k2 + β(t)2

= rp̃(t)π2√2g tanh C sechC cos[φ̃(t)]

4β(t)2
, (6.90)

where

C = πp̃(t)

2β(t)
. (6.91)

From Eq. (6.87) we obtain

β(t)p̃(t) = const = a1. (6.92)

Combining Eqs. (6.89) and (6.90) we find

˙̃φ(t)= p̃2 − rp̃(t)π2√2g tanh C sechC cos[φ̃(t)]

2β(t)2
+β2 −k′2.

(6.93)

The stationary solutions have

˙̃φ(t) = αs ; p̃ = p̃s ; ˙̃q = vs ; β = βs ; Cs = πp̃s

βs

.

(6.94)

We have φ̃ = nπ and we can restrict ourselves to 0,π . Thus

vs = 2p̃s ∓
√

2gπ2r tanh Cs sechCs

4β2
s

, (6.95)

αs = p̃2
s ∓ rp̃sπ

2√2g tanh Cs sechCs

2β2
s

+ β2
s − k′2. (6.96)

We are interested in small oscillations around the stationary
solutions. We will choose β and φ̃ as the independent variables
with p̃ = a1/β, and C = πa1

2β2(t) . Letting β = βs + δβ, and φ̃ =
αst + δφ̃ we obtain for small oscillations

δβ̇ = ∓πr

2

√
2g sechCsδφ̃ = ∓c2δφ̃, (6.97)

δ ˙̃φ =
(

2βs − 2a2
1

β3
s

± rπ2
√

2g
a1

2β4
s

[
3 tanh Cs sechCs

+ πa1

β2
s

sechCs(2 sech2Cs − 1)

])
δβ

= c3δβ. (6.98)

Thus we get the equations

δβ̈ ± c2c3δβ = 0, δ ¨̃φ ± c2c3δφ̃ = 0. (6.99)

When C = 0 instead we have

p̃ = 0; ˙̃q = 0,

β̇ = −rπ
√

g/2 sin(φ̃), ˙̃φ = δ − k2 + β2. (6.100)

FIG. 7. r = 0. Solitary wave moving to the right (blowup when κ � 2). Left panel: κ = 2.0 (at t∗ = 166.6; 333.3, 500, 666.6, 833.3, 1000),
respectively. Right panel: κ = 2.25 (at t∗ = 5.8; 11.6, 17.5, 23.3, 29.2, 35.0). Parameters: δ = 0, g = 2 with initial conditions β = 1, p = 0.01,
and φ0 = 0.
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FIG. 8. (Color online) r = 0. Real (solid line) and imaginary (dashed line) parts of the fields for κ = 1.5 for t∗ = 1000 (left upper panel);
κ = 2.0 for t∗ = 120 (right upper panel); κ = 3.0 for t∗ = 25 (left lower panel). Evolution of β from the direct simulations of NLSE. κ = 1.5
(solid line); κ = 2 (red dashed line); κ = 3 (blue dotted line) (right lower panel). Parameters: δ = 0, g = 2 with initial conditions β = 1,
p = 0.01, and φ0 = 0.

Thus the stationary solution is

β2
s = k′2, (6.101)

and the small oscillation equations are

δβ̇ = ∓rπ
√

g/2δφ̃; δ ˙̃φ = 2βsδβ. (6.102)

VII. DAMPED AND FORCED NLSE (THEORY)

In performing numerical simulations, one is interested in
adding damping to the problem that we have studied earlier.

The damped and forced NLSE is represented by

i
∂

∂t
ψ + ∂2

∂x2
ψ + g(ψ�ψ)κψ + δψ = re−i(kx+θ) − iαψ,

(7.1)

where α is the dissipation coefficient. This equation can be
derived by means of a generalization of the Euler-Lagrange
equation

d

dt

∂L
∂ψ∗

t

+ d

dx

∂L
∂ψ∗

x

− ∂L
∂ψ∗ = ∂F

∂ψ∗
t

, (7.2)

FIG. 9. Test of the exact solution Eq. (4.16) [with the parameters a, β, and b determined by Eq. (4.19)] of the perturbed NLSE for κ = 1/2,
δ = −1, g = 2, k = 0.1. Here we display the inverse width parameter β(t) of the soliton. Left panel: simulation of the unperturbed NLSE
with r = 0 (a = 0) corresponding to the constant phase solution of Eq. (3.6), β2 = −δ/4, Right panel: simulation of the perturbed NLSE with
r = −0.075.
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FIG. 10. Soliton energy computed by subtracting the background energy density from the total energy density. Left panel: r = 0 (a = 0).
Right panel: r = −0.075. Parameters are the same as in Fig. 9.

where the Lagrangian density reads

L = i

2
(ψtψ

∗ − ψ∗
t ψ) − |ψx |2 + g

κ + 1
(ψ�ψ)κ+1

+ δ|ψ |2 − re−i(kx+θ)ψ∗ − rei(kx+θ)ψ, (7.3)

and the dissipation function is given by

F = −iα(ψtψ
∗ − ψ∗

t ψ). (7.4)

Inserting the ansatz Eq. (5.1) into (7.4) we obtain

F = −2αA2f 2
v (βv(t)[x − q(t)])[ṗ(q − x) + pq̇ − φ̇]. (7.5)

Integrating this expression over space we obtain

F = −2αC0
A2

β
(pq̇ − φ̇). (7.6)

On the other hand L = ∫
dxL is given by Eq. (5.17). Since

F contains q̇ and φ̇, only the equations for β and p could
be changed by the damping term. For κ = 1, we know that the
damping only affects the equation for β [8]. For κ = 1/2 we
have the same scenario, i.e., now the equation for β reads

β̇ = −2

3
αβ − grC

6β

sin(B)

sinh(C)
. (7.7)

The factor 2/3 comes from 2/(2/κ − 1).

VIII. NUMERICAL SIMULATIONS ON THE UNFORCED
AND THE FORCED NLSE

In this section we would like to accomplish three things.
First, we would like to show that our numerical scheme as
applied to exact soliton solutions with either r = 0 or r �= 0
leads to known results (r = 0) and to results that the exact
solutions to the forced problem are metastable and at late
times become a solitary wave whose parameters oscillate in
time. Second, we want to compare the results of solving the
four CC equations for the collective variables β, q, p, φ with a
numerical determination of these quantities found by solving
the FNLSE. We will find that if r is small compared with
the amplitude of the solitary wave, that solution of the CC
equations gives a good description of the wave function of
the FNLSE. Finally, we would like to demonstrate that the
regions of stability for the solitary waves of the FNLSE are well
determined by studying the phase portrait as well as the p(v)
curve for the approximate solution found by solving the CC
equations. Most of the simulations will be restricted to κ = 1/2
except for a discussion of blowup of solutions for κ � 2.

A. Numerical methodology

Before displaying the results of our simulations, we would
like to say a little bit about the numerical method we used and
the boundary conditions, since we are constrained to perform
the calculation in a box of length 2L. We have allowed the
length to vary from 100 to 400. The number of points used

FIG. 11. Time evolution of the exact solution of the FNLSE as in Figs. 9 and 10 but using smaller value of the driving terms: k = 0.01 and
r = −0.005.
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FIG. 12. Comparison of the two boundary conditions: periodic (dashed line) vs mixed (solid line) r = −0.075. Left panel: β(t); right panel:
soliton profile at t∗ = 200. The parameters are the same as used in Figs. 9 and 10.

on the spacial grid was 2L/�x. The numerical simulations
were performed using a 4th order Runge-Kutta method. N + 1
points are used on the spatial grid n = 0,1, . . . N . When
studying the exact solutions we have used three different
boundary conditions. For r = 0 we use “hard wall” boundary
conditions, where the wave function vanishes at the boundary:

ψ(±L,t) = 0. (8.1)

For the case of r �= 0 and only when studying the exact so-
lutions we have used mixed boundary conditions [see (4.27)].
Otherwise, we have used periodic boundary conditions

ψ(−L,t) = ψ(L,t), ψx(−L,t) = ψx(L,t). (8.2)

In one of our simulations we have compared the use of periodic
vs mixed boundary conditions and found that the differences in
the evolution of both β(t) and ψ(x,t) are hardly visible by the
“eyeball method” (see Fig. 12) The other parameters related
with the discretization of the system are increasing values of
L, namely L = 50, L = 62.8, L = 100, or L = 200. We have
chosen as our grids in x and t , �x = 0.05 and �t = 0.0001
[such that �t < (1/2)(�x)2].

We next need to determine the collective variables q and
β used in the CC equations. We determine q(t) from our
numerical simulation by equating it to the value of x for which
the density of the norm |ψ |2 is maximum.

To determine β(t) for finite energy solitary waves, we
assume that the variational parametrization of ψ(x,t), namely

Eq. (5.9) with A given by Eq. (5.10) is an adequate description
of the wave function. If we do this and determine ψ[x = q(t)]
then we have that

|ψ |2[x = q(t)] = A2 =
[
β2(κ + 1)

gκ2

]1/κ

. (8.3)

Then we determine β as follows:

β =
√

{gκ2|ψ |2κ [x = q(t)]}/(κ + 1). (8.4)

In the particular case when we are studying the time evolution
of the exact solution for κ = 1/2, i.e., Eq. (4.16), with
conditions of Eq. (4.20), we need to subtract off the constant
term to determine β(t). From Eq. (4.16) we can obtain β(t)
from

√
|ψ |2|x=q(t) = a + 6β(t)2

g
. (8.5)

One can also compute the momentum P (t) given by Eq. (2.12).
As an initial condition in most of our simulations (when

we are not discussing the exact solution), we will use an
approximate solution given by the variational ansatz Eq. (5.9)
with initial conditions for β0, p0, q0 = 0, and φ0. In comparing
with the CC equations, we will solve the four ordinary
differential equations for β, p, q, φ which for arbitrary κ

are given in Eqs. (6.8)–(6.13).

FIG. 13. Here we compare the time evolution of a solitary wave traveling to the left initially with constant velocity −2k starting from
an approximate stable stationary solution for three different values of positive r . The times are t∗ = 33.3, 66.6, 100, 133.3, 166.6, 200. We
use mixed boundary conditions. Left panel: r = 0.01; middle panel: r = 0.05; right panel: r = 0.075. Parameters: κ = 1/2, δ = −1, g = 2,
k = 0.1. Initial condition (4.16) with (4.19).
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FIG. 14. Time evolution of the inverse width parameter β(t). Here we plot β(t) for the same initial conditions as in Fig. 13. Again we have
left panel r = 0.01, middle panel r = 0.05, and right panel r = 0.075.

B. Numerical simulations of PDE for r = 0, arbitrary κ

The initial conditions are those of the exact one-soliton
solution of the unforced NLSE given by Eq. (3.1). For r = 0
and δ = 0, the stability of the NLSE has been well studied
as a function of κ . For κ < 2 the solutions are known to be
stable, and for κ > 2 the solutions are unstable. For κ = 2
there is a critical mass above which the solutions are unstable.
The nature of the solution when it is unstable has been studied
in variational approximations [19] as well as using various
numerical algorithms [23–26]. Here we want to show that our
code reproduces these well known facts. We are also interested
in the effect of δ in our simulations and we find that the critical
value of κ is independent of δ. This agrees with our arguments
earlier on the effect of scale transformations on the stability of
the exact solutions for r = 0. That is, stability does not depend
on δ.

C. Simulations at r = 0, different values of κ

In this section we study the numerical stability of the exact
solutions for r = 0 for different values of κ (κ ∈ [0.25,3]).

FIG. 15. (Color online) Test of stable stationary solution of the
CC equations (horizontal line) by a simulation of the NLSE with
periodic boundary conditions (black and red-upper solid lines for
system sizes 125.6 and 251.2, respectively, the latter line is shifted
upward by 0.05). The influence of linear excitations, which are
radiated at early times, on the soliton oscillations is discussed in the
text. The parameters used are κ = 1/2, r = 0.05, k = −0.1, θ = 0,
g = 2, δ = −1, α = 0, with initial conditions p0 = −k, q0 = 0,
φ0 = 0, and β0 = βs = 0.517 73. For the CC equations we choose
p0 = −k + 10−5 to avoid numerical singularities. The approximate
solitary wave is described by Eq. (6.69), and is shown in Fig. 5.

First we set r = 0, δ = 0, g = 2 in NLSE and we start from
the exact soliton solution (3.1) with β = 1, p = 0.01 and φ0 =
0. In this simulation the boundary conditions chosen were
�(±L,t) = 0. We notice for κ < 2 as shown in Fig. 6 the
solitary wave moves to the right and maintains its shape.

Indeed, in the simulations the solitons are not stable for
κ � 2 (see Fig. 7), the amplitude of the unstable soliton grows
and the soliton becomes narrow. Also the soliton moves only
slowly to the right while blowing up at a finite time. In Fig. 8,
upper panel, we show the real and imaginary parts of the field
for κ = 1.5,2,3 for the final time of the simulations. The result
of adding a term proportional to δ does not alter the behavior of
the solitary waves. Choosing δ = −1 we obtain similar results
as for δ = 0, i.e., the soliton is unstable for κ � 2. In Fig. 8,
right lower panel, we show the evolution of β for short times
and κ = 1.5; 2; 3. This shows that once we reach the metastable
solution for κ = 2, we see β(t) → ∞ in a finite amount of
time. This agrees with our analysis based on Derrick’s theorem
[see Eq. (3.12)], and with the discussion of the critical mass
needed for blowup for κ = 2 in Ref. [19]. For δ = −1 we have
also investigated the constant phase solutions that fulfill the
condition (3.5). We have studied numerically the case r = 0,
δ = −1, g = 2 with initial conditions p = 0.01, φ0 = 0, and
β =

√
−κ2(δ + p2) and varied κ ∈ [0.25,3]. We found that

again the soliton becomes unstable for κ � 2 in accord with
our result that instability as a function of κ does not depend
on δ. Our numerical experiments for the case r = 0 show that
our codes reproduce well known results for the stability of the
solutions. In a future paper we will compare the numerical
solutions in the unstable regime with the predictions of the CC
method. Here we will use the exact form of the solution rather
than the post-Gaussian trial functions we used earlier [19]
as well as include an additional variational parameter in the
phase that is canonically conjugate to the width parameter β.
To estimate the finite size effect on the definition of β we
notice in the left panel of Fig. 9 that the values of β(t) in the
simulation of the NLSE deviate from the exact constant value
of 0.5 by approximately 0.25%. By increasing L one could
reduce this error.

D. On the exact solutions for r �= 0 and κ = 1/2

Earlier we showed that for r �= 0 and κ = 1/2 there are
exact solutions of the form [see Eq. (4.24)]

f (y) = −sgn(r)(a + b sech2βy), (8.6)
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FIG. 16. Comparison of simulations of the collective coordinate (CC) approximation and the numerical solution of the PDE where we
have considered the case κ = 1/2 and included damping when appropriate. Left upper panel: Soliton moving to the left for t∗ = 250,500.
Right upper panel: Real (solid line) and imaginary (dashed line) parts of ψ(x,t) for t∗ = 500 (both lines are shifted down by 0.5). Real
(solid line) and imaginary (dashed line) parts of the exact solution for the undamped NLSE for t = 500 (both lines are shifted upward by
0.5). Left and right middle panels: comparison of the time evolution of β and q computed from the simulations of the PDE (solid line) and
numerical solutions of the CC equations (dashed line). Lower panels (different scales are shown): for t∗ = 500 soliton profile from simulations
(solid line) and from the exact solution (4.16) and (4.19) (dashed line). Notice that the exact solution is obtained for α = 0. Parameters:
g = 2, k = 0.1, r = 0.05, δ = −1, θ = 0, α = 0.05, with initial conditions β0 = 1, p0 = 0, q0 = 0, and φ0 = −1.69 + π/2 ≈ −0.119. Notice
that for this set of parameters the condition |r| < k′4/(4g) [see below Eq. (4.19)] is satisfied. After a transient time, since the numerical
solution approaches the stationary solution, the p(v) curve is just a point (−0.1, − 0.2). The phase portrait is also represented by a point
(0.044 911 697 24, − 0.028 190 023 64).

with a, β, and b given by Eq. (4.20). In the numerical
simulation shown in Figs. 9 and 10 the parameters used in the
simulation are κ = 1/2,δ = −1,g = 2,k = 0.1,r = −0.075.
For that case,

f (y) = 0.486 113 sech2(0.402 539y) + 0.090 462 2. (8.7)

The unstable stationary variational solution corresponding to
this exact solution is

f2+(y) = 0.745 535 sech2(0.498 509y). (8.8)

These solutions are shown in Fig. 2. As we can see from the
numerical solution of the FNLSE shown in Fig. 9, the exact
solitary wave oscillates in amplitude and width which shows
that the original exact solution was unstable. In spite of this
the solitary wave neither dissipates nor blows up. The width
parameter oscillates from its initial value of around 0.4 to an
upper value of around 0.8 with a period T of around T = 20. If
one reduces the driving terms to k = 0.01 and r = −0.005, the
solitary wave again oscillates in amplitude and width but the
amplitude of the oscillation is only 10% of the total amplitude
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FIG. 17. Results from simulating the time evolution of the solitary wave using both the PDE as well as the CC equations for κ = 1/2 with
no damping. We use the same parameters as in Fig. 16, but α = 0. Upper panels: soliton profiles (different scales) for t = 250 (solid line)
and t = 500 (dotted line). Middle panels: time evolution of β computed from the simulations of PDE (left) and computed from the numerical
solutions of CC equations (right). Lower left panel: elliptic orbit in the phase portrait with positive sense of rotation which predicts stability;
lower right panel: positive slope of the p(v) curve predicts stability.

and the oscillation frequency is reduced from the previous case
as is shown in Fig. 11.

In Fig. 12 we compare the behavior of β(t), and the late
form of the wave functions using two types of boundary condi-
tions (BCs): periodic BCs [ψ(−L,t) = ψ(L,t), ψx(−L,t) =
ψx(L,t)] shown as dashed lines, and “mixed” BCs which are
shown as solid lines. In this simulation the two boundary
conditions lead to almost identical results. Most of the
simulations (except the ones starting from the exact solution)
were performed using periodic boundary conditions. Next we
look at the case where r > 0 where for amplitudes A(t) > 0
there are no exact solutions. However, the stationary solutions
of the CC equations that are stable to linear perturbations
do lead to solitary waves that have widths whose oscillations
have only very small amplitude. To show that we start with
the stationary solutions with different positive r but other
parameters (κ,δ,g,k) the same as in Fig. 9. We show this

in Fig. 13 where we consider solitary waves moving to the
left initially with constant velocity v = −2k. We see that as
we increase r the amplitude of the solitary wave increases and
in Fig. 14 we see that the average value of β also increases
with r . We notice in Fig. 14 that the oscillations in β get more
irregular as we increase the value of r .

E. Comparison of numerical simulations of the FNLSE with the
solution of the equations for the collective coordinates

In this section we would like to show that the solution
to the CC equations gives quantitatively good results for
the collective variables p(t),β(t),q(t), and φ(t) when these
quantities are calculated directly from the solution of the
FNLSE. We also want to show that the criterion for stability
of the CC equations, namely a study of the phase portrait
or the p(v) curve, gives an accurate measure of what initial
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FIG. 18. Unstable stationary solution for r = 0.05, κ = 1/2, g = 2, k = −0.1, θ = 0, δ = −1, and α = 0. The stationary solution has
p0 = −k (simulations) and p0 = −k + 10−5 (numerical solutions of the CCs), φ0 = π , and β0 = βs = [(k′2 + √

k′4 − 8rg/3)/8]1/2 [see
Eq. (6.70)]. Here we find for β(t) that both the simulation (solid line) and the solution to the CC equations (dotted line) show switching to a new
solution. From the p(v) curve the negative slope of the curve predicts this instability. In addition, the orbit of the phase portrait is a separatrix,
which also predicts the instability seen in β.

values of collective variables lead to stable vs unstable solitary
wave solutions. First we discuss the linearly stable stationary
solution Eq. (6.69) that is shown in Fig. 5. In the CC equation
β remains at the fixed value β(0) = βs = 0.517 73. Using this
as an initial condition in the FNLSE, solved using periodic
boundary conditions, one finds that the solitary wave has a
mean value of β only 2% different from the solution, Fig. 15.
For 0 < t � 30, phonons (short for linear excitations) are
radiated by the soliton which travel faster than the soliton.
Coming from a boundary these phonons reappear and collide
with the soliton producing the increased oscillations seen
in Fig. 15. For the system of length 2L = 125.6, these
increased oscillations begin at tc ≈ 125. When the system size
is doubled, both the soliton and the phonons have to cover
doubled distances before the collisions begin at tc ≈ 250.

If we add a little bit of damping and start from a value of
β0 which dissipates to a stationary point then all the collective
variables are well approximated by the solution of the CC
equation as shown in the middle panel of Fig. 16. Here we have
chosen g = 2, k = 0.1, r = 0.05, δ = −1, θ = 0, α = 0.05.
For these values, the stationary solution is approximately given
by Eq. (6.68) which has a value of βs = 0.505 12. In the middle
panel of Fig. 16 we use the initial condition β0 = 1. We find
that both the CC equations and the solution of the FNLSE
relax to the approximate stationary solution of Eq. (6.68).

In Fig. 17 we turn off the damping and see how both the
simulation and CC equations evolve. Solving the CC equations
with the initial condition β0 = 1, one finds from both the orbit

of this initial condition in the phase portrait (see left bottom
panel) and the p(v) curve that the solitary wave should be
stable. In the middle panel we see that both the exact solution
and the solution to the CC equation for β oscillate with 1%
oscillations around either the initial value β0 = 1 (for the
numerical solution) and a slightly shifted value (0.994) for
the CC equation. The actual solution has another oscillation
frequency for the height at maximum.

In Fig. 18 we study the time evolution of a stationary
solution that is known to be unstable. We use the solution
f2+(y) given in Eq. (6.70). Both the CC equations and the
simulation of the FNLSE show that this solitary wave develops
into a solution that is represented by a separatrix in the phase
portrait. The negative slope of the p(v) curve also predicts
instability.

The soliton stability depends strongly on β0. For the
parameters and initial conditions of Fig. 19 both stability
criteria predict the following pattern: instability for β0 �
0.484 511, stability for 0.484 511 < β0 � 0.5458, instabil-
ity for 0.5458 < β0 � 0.65, and stability for β0 � 0.66. In
Fig. 19 we present two examples: a stable soliton (β0 = 0.53)
and an unstable one (β0 = 0.65), both confirmed by our
simulations. We note, however, that the above boundaries
between stable and unstable regions do not always fully
agree with the simulations: the errors vary between 1.7%
and 12%.

In Fig. 20 we show a particular case where the time
evolution of an initial condition which was close to an unstable
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FIG. 19. (Color online) Simulations for the NLSE with r = 0.05, k = −0.1, periodic BC, with initial conditions β0 = 0.53 (black curves)
and 0.65 (red, or lower solid grey curve). The other parameters and initial conditions are κ = 1/2, g = 2, δ = −1, θ = 0, α = 0, φ0 = 0,
p0 = −k + 0.001, and q0 = 0. Upper left panel: β(t) compared with numerical solutions of the CC equations (dotted lines). Upper right panel:
orbits of the phase portrait (red horseshoe for β0 = 0.65 and black ellipse for β0 = 0.53). Lower left panel: p(v) curve for β0 = 0.53. Lower
right panel: p(v) curve for β0 = 0.65.

stationary solution of the CC equation exhibits intermittency
in both the inverse width (and thus the amplitude A also) as
well as the energy. We have also observed intermittency in the
solutions of the CC equations for κ = 1.

IX. CONCLUSIONS

In this paper we have studied analytically, numerically,
and in a variational approximation the FNLSE with arbitrary
nonlinearity parameter κ . We studied in detail a variational
approximation based on the solutions to the unforced problem
and have studied the CC equations coming from the Euler-
Lagrange equations. We determined the stationary solutions
of the CC equations and studied their linear stability. We
found that for small forcing parameter, the CC equations give
quantitative agreement with directly solving the FNLSE. Also
the domains of stability of the initial conditions for the FNLSE
were quite remarkably close to those found by studying the
orbits in the phase portrait for the CC equations as well as
the stability curves p(v). We also found that the linearly stable
stationary solutions of the CC equations were quite close to the
stationary solutions of the FNLSE, and when these stationary
solutions were used as initial conditions for the FNLSE the
oscillations of the width parameter were of small amplitude.
These simulations at κ = 1/2 reinforce our belief that our two
dynamical criteria for understanding the stability of the solitary

wave, namely the stability curve p(v) as well as studying orbits
in the phase portrait are accurate indications of the stability of
the solitary waves as obtained by numerical simulations of the
FNLSE. Our results are likely to shed light on the behavior of
a number of physical systems varying from optical fibers [1],
Bragg gratings [2], BECs [3,4], nonlinear optics, and photonic
crystals [7].

We intend to extend our study of the FNLSE equation
to the regime κ � 2 to see how forcing affects the blowup
of solitary wave solutions in that regime. This will be done
in the variational approximation by adding a variational
parameter canonically conjugate to the width parameter β

similar to the approach of Refs. [18,19]. In this paper we
have considered only the simplest forcing term which is purely
harmonic. More elaborate forcing terms such as nonparametric
spatial-temporal driving forces are possible, which have been
discussed for the special case κ = 1 in Ref. [8]. We have con-
jectured the dynamic criteria for the standard NLSE and used
it for the generalized NLSE with arbitrary nonlinearity (κ) for
determining the stability of solitary waves: the p(v) curve and
the properties of the orbits in the phase portrait of soliton. We
are currently exploring whether this approach can be applied to
other forced nonlinear problems. We have considered FNLSE
for the one-dimensional case. It is conceivable that our analysis
may hold for quasi-one-dimensional solitary wave solutions
of the corresponding three-dimensional equation. Also, we
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FIG. 20. Numerical simulation of the NLSE for r = 0.05 using periodic boundary conditions and κ = 1/2. β(t) and E(t) show intermittency.
Upper panels: Soliton moving to the right for t∗ = 1000 and t∗ = 2000 and the evolution of the energy of the system. Lower panels: time
evolution of β and q computed from the simulations of PDE. Other parameters of the simulations: g = 2, k = −0.01, δ = −1, θ = 0, α = 0,
with initial conditions p0 = ps = −k, q0 = 0, φ0 = π , and β0 = βs = 0.4983. This corresponds to the unstable stationary solution of Eq. (6.72),
namely f2+(y) = 0.745 042 sech2(0.498 345y).

did not consider the uniqueness of the soliton solutions here
since it is highly nontrivial to assess uniqueness for nonlinear
equations. All these points merit further study.
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