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Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity
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We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g2

κ+1 (�̄�)κ+1

and with mass m. Using the exact analytic form for rest frame solitary waves of the form �(x,t) = ψ(x)e−iωt

for arbitrary κ , we discuss the validity of various approaches to understanding stability that were successful for
the nonlinear Schrödinger equation. In particular we study the validity of a version of Derrick’s theorem and the
criterion of Bogolubsky as well as the Vakhitov-Kolokolov criterion, and find that these criteria yield inconsistent
results. Therefore, we study the stability by numerical simulations using a recently developed fourth-order
operator splitting integration method. For different ranges of κ we map out the stability regimes in ω. We find
that all stable nonlinear Dirac solitary waves have a one-hump profile, but not all one-hump waves are stable,
while all waves with two humps are unstable. We also find that the time tc, it takes for the instability to set in, is
an exponentially increasing function of ω and tc decreases monotonically with increasing κ .

DOI: 10.1103/PhysRevE.90.032915 PACS number(s): 05.45.Yv, 11.15.Kc, 03.70.+k, 11.10.−z

I. INTRODUCTION

The nonlinear Dirac equation arises both in field theory
and condensed matter contexts. The Bose-Einstein condensate
in a honeycomb lattice in the long wavelength limit provides
a specific application [1,2]. The exact spinor structure of
the multicomponent condensate order parameter provides
a bosonic analog to the relativisitic electrons in monolayer
graphene. It has also found applications in binary optical
waveguide arrays [3,4] and in understanding the nonlinear
dynamics in honeycomb lattices [5] including nonlinear
diffraction in photonic graphene [6]. The nonlinear Dirac
equation has been studied [7,8] in detail in the past for the
particular case that the nonlinearity parameter κ = 1 (massive
Gross-Neveu [9] and massive Thirring models [10]). In
those studies it was found that these equations have
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solitary wave solutions. These solutions are of the form
�(x,t) = e−iωtψ(x) in the rest frame, where ψ(x) is a
two-component spinor.

In a recent paper [11] we generalized these solutions to
arbitrary nonlinearity κ and compared the exact solutions
with the nonrelativistic reduction of these solutions. At that
time there were conflicting statements about the stability of
these solutions as to whether Bogolubsky’s approach [12] for
determining stability was valid. He suggested two approaches,
one a variation of Derrick’s theorem [13] which looks at
stability with respect to scale transformations and suggested
that for κ > 1 the solitary wave should be unstable. This
approach seemed to violate the continuity argument that the
nonlinear Dirac (NLD) equation becomes a modified nonlinear
Schrödinger (NLS) equation when ω approaches the mass
parameter m of the Dirac equation from below. This argument
has been made more rigorous by Comech [14]. Comech
(private communication) has been able to prove that for
κ < 2 the Vakhitov-Kolokolov [15] criterion guarantees linear
stability in the nonrelativistic regime of the NLD equation for
solutions of the form (in the rest frame) �(x,t) = ψ(x)e−iωt

where ω is less than but approximately equal to m. He was
also able to show linear instability in the same nonrelativistic
regime for κ > 2. This is the first rigorous result for the Dirac
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equation that applies in the nonrelativistic regime. Below when
we refer to NLS or NLD, it would be implicit that we refer to
these equations with arbitrary nonlinearity (κ).

Bogolubsky also proposed another test for determining
stability based on varying the frequency ω, while keeping
the charge fixed. In his paper [12], Bogolubsky only used
this approach for κ = 1, since he believed that only at κ = 1
did the stability argument based on scale transformations not
apply. That argument (which we will discuss in Sec. IV),
predicts that for κ < 1 the solitary waves were stable under
scale transformations and for κ > 1 they should be unstable
to scale transformations. This approach for studying stability
based on varying the frequency when extended to all values of
κ � 2 predicts that when ω � 0.7 the solitary waves should be
unstable to changes in ω for fixed charge. (Note that ω has been
scaled by m.) We also show that the ω variational approach
of Bogolubsky is equivalent to assuming that instability will
occur in variational trial functions which preserve charge as we
change ω. Finally we will discuss the Vakhitov-Kolokolov [15]
criterion as applied to the nonlinear Dirac equation. We will
show that it predicts for all κ < 2 that the solitary waves
are stable for all values of ω and that there is a regime in
ω even for κ > 2 where the solitary waves are predicted
to be linearly stable. However, these predictions are not
confirmed by our simulations (Sec. V) which means that the
Vakhitov-Kolokolov criterion is not valid for the NLD case.
Before applying these methods to the NLD equation, we show
that these three variational approaches to stability all give the
same result when applied to the NLS equation, namely, for all
values of ω when κ < 2 the solutions are stable, and for κ > 2
they are unstable.

Previous numerical studies of instability have been confined
to the case κ = 1. Bogolubsky [12] studied this problem nu-
merically after suggesting that solitary waves of the nonlinear
Dirac equation should be unstable if ω < ωB ≈ 1/

√
2 for

g = 1 and m = 1. He presented in his paper results for ω = 0.5
(unstable) and ω = 0.8 (stable) but the integration times were
not given. In contrast to this, Alvarez and Soler [16] claimed
based on their simulations that the solitary wave solutions for
κ = 1 were stable for all ω values. In our simulations, shown
in the subsequent tables and figures, we find that for ω < ωc

the solitary waves are metastable with a lifetime tc growing
exponentially below ωc.

The integration times in Ref. [16] are much too small to
observe the instabilities we have found for ω < ωc. This also
holds for the scattering experiments of Ref. [17] which studied
the collision of two solitary waves with ω = 0.6 and 0.8 at
κ = 1. Here the former solitary wave looks stable, but the
integration time is only about 100. The simulations we have
performed here have confirmed Bogolubsky’s intuition that
there is a critical value of ω below which the solitary waves
are unstable, but they do not agree with his determination
of the critical value. Our simulations are in agreement with
Comech’s proof [14] that in the nonrelativistic regime solitary
waves should be stable for κ < 2, and unstable for κ > 2.

Our paper is organized as follows: in Sec. II we review
the exact solution for arbitrary κ . In Sec. III we consider
the nonrelativistic limit which is the nonlinear Schrödinger
equation with a linear mass term. We discuss all three
variational methods as applied to the NLS equation, namely,

Derrick’s Theorem, stability with respect to changes in ω for
fixed charge, and the Vakhitov-Kolokolov criterion.

In Sec. IV we discuss how these three approaches when
applied naively lead to different conclusions for the NLD equa-
tion. A version of Derrick’s theorem predicts that all solitary
waves with κ > 1 are unstable, which disagrees with Comech’s
results [14] in the nonrelativistic limit. Bogolubsky’s criterion
predicts that for ω less than a critical value, and κ < 2,
the solutions should be unstable, but in the nonrelativistic
regime predicts stability. Vakhitov-Kolokolov criterion instead
predicts all solutions should be stable for κ < 2 and there is
a domain of stability for ω smaller than a critical value where
again the solution should be stable for κ > 2. In Sec. V we
present the results of detailed simulations of the nonlinear
Dirac equation for κ = 1, 0 < κ < 1, 1 < κ < 2, and κ � 2
and map out the stability regimes in ω. For 0 < κ � 1 there is
a stability regime for ωc � ω < 1, where the critical value ωc

increases monotonically with κ . For 1 < κ < 2 there are two
types of stability regions. For κ � 2 small stable regions exist,
but only for κ = 2 and values slightly larger than 2.

We also find for ω < ωc that the time tc it takes for the
instability to set in is an exponentially increasing function
of the frequency ω and tc as a function of κ decreases
monotonically with increasing κ . Moreover, we find that below
κ = 2 there is a nonrelativistic regime of ω close to m where
the solitary waves are always stable. Finally, we remark that
all stable NLD solitary waves have a one-hump profile, but not
all one-hump waves are stable. All waves with two humps are
unstable. Our conclusions are presented in Sec. VII.

II. REVIEW OF EXACT SOLUTIONS

The NLD equations that we are interested in are given by

(iγ μ∂μ − m)� + g2(�̄�)κ� = 0, (1)

which can be derived in a standard fashion from the Lagrangian
density:

L =
(

i

2

)
[�̄γ μ∂μ� − ∂μ�̄γ μ�] − m�̄� + LI ;

(2)

LI = g2

κ + 1
(�̄�)κ+1.

For solitary wave solutions, the field � goes to zero at x →
±∞. It is sufficient to go into the rest frame to discuss the
solutions, since the theory is Lorentz invariant and the moving
solution can be obtained by a Lorentz boost. In the rest frame
we assume the wave function is of the form

�(x,t) = e−iωtψ(x). (3)

We are interested in bound state solutions that correspond to
positive energy ω � 0 and which have energies in the rest
frame less than the mass parameter m, i.e., ω < m. In our
previous papers [11,18] we chose the representation γ0 = σ3

and iγ1 = σ1. Here instead, to make contact with the numerical
simulation paper of Alvarez and Carreras [17] we choose the
representation γ 0 = σ3 and γ 1 = iσ2.

Defining the functions u(x), v(x), R(x), θ (x) via

ψ(x) =
(

u(x)
iv(x)

)
= R(x)

(
cos θ

i sin θ

)
, (4)
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we obtain the following equations for the spinor components
u and v:

du

dx
+ (m + ω)v − g2(u2 − v2)κv = 0,

(5)
dv

dx
+ (m − ω)u − g2(u2 − v2)κu = 0.

From energy-momentum conservation [11]

∂μTμν = 0; Tμν = i

2
[�̄γμ∂ν� − ∂ν�̄γμ�] − gμνL,

(6)

we obtain in the rest frame for stationary solutions

T10 = const; T11 = ωψ†ψ − mψ̄ψ + LI = const. (7)

For solitary wave solutions vanishing at x → ±∞ the constant
in the second Eq. (7) is zero, and we obtain

T11 = ωψ†ψ − mψ̄ψ + LI = 0. (8)

Multiplying the equation of motion on the left by �̄ we have
that

(κ + 1)LI = −ωψ†ψ + mψ̄ψ − ψ̄iγ 1∂1ψ, (9)

implying that ωκψ†ψ − mκψ̄ψ − ψ̄iγ 1∂1ψ = 0. For the
Hamiltonian density we have

H = T00 = �̄iγ1∂1� + m�̄� − LI ≡ h1 + h2 − h3. (10)

Each of hi are positive definite. From Eqs. (8) and (9) one has
the relationship:

κLI = −ψ̄iγ 1∂1ψ. (11)

From this we have h3 = (1/κ)h1, and in particular for κ = 1,
H = mψ̄ψ . In terms of R, θ one has

− ψ̄iγ 1∂1ψ = ψ†ψ
dθ

dx
. (12)

This leads to the simple differential equation for θ for solitary
waves:

dθ

dx
= −ωκ + mκ cos 2θ ; ωκ ≡ κω; mκ = κm. (13)

The solution, choosing the origin of the solitary wave to be at
x = 0 (which we will do in what follows), is

θ (x) = tan−1(α tanh βκx), (14)

where

α =
(
mκ − ωκ

mκ + ωκ

)1/2

=
(
m − ω

m + ω

)1/2

, βκ = (
m2

κ − ω2
κ

)1/2
.

(15)

Thus we have tan θ (x) = α tanh βκx and

sin2 θ (x) = α2 tanh2 βκx

1 + α2 tanh2 βκx
= (m − ω) sinh2 βκx

m cosh 2βκx + ω
,

(16)

cos2 θ (x) = 1

1 + α2 tanh2 βκx
= (m + ω) cosh2 βκx

m cosh 2βκx + ω
.

From (2) and (8) we find

R2 =
[

(κ + 1)(m cos 2θ − ω)

g2(cos 2θ )κ+1

]1/κ

. (17)

Now we have

dθ

dx
= β2

κ

ωκ + mκ cosh 2βκx
= −ωκ + mκ cos 2θ. (18)

One important expression is m cos 2θ − ω =
β2

κ /κ
2(ω + m cosh 2βκx), using which we get

R2 =
(

ω + m cosh 2βκx

m + ω cosh 2βκx

) [
(κ + 1)β2

κ

g2κ2(m + ω cosh 2βκx)

]1/κ

=
(

1 + α2 tanh2 βκx

1 − α2 tanh2 βκx

)

×
[

sech2βκx(κ + 1)β2
κ

g2(m + ω)κ2(1 − α2 tanh2 βκx)

]1/κ

. (19)

In particular, the expressions for R2, u2, and v2 we get for κ =
1 agree with the expressions in Alvarez and Carreras [17] with
a redefinition of the coupling to our convention. For arbitrary
κ we have (with βκ = κβ)

u2 = (m + ω) cosh2(κβx)

m + ω cosh(2κβx)

{
(κ + 1)β2

g2[m + ω cosh(2κβx)]

} 1
κ

,

(20)

v2 = (m − ω) sinh2(κβx)

m + ω cosh(2κβx)

{
(κ + 1)β2

g2[m + ω cosh(2κβx)]

} 1
κ

.

The equation for ω in terms of g2 is determined from the fact
that the single solitary wave has charge Q. We have

Q =
∫ +∞

−∞
ψ†ψ dx =

∫ +∞

−∞
dxR2(x)

= 1

βκ

[
(κ + 1)β2

κ

g2κ2(m + ω)

]1/κ

Iκ [α2], (21)

where

Iκ [α2] =
∫ +1

−1
dy

1 + α2y2

(1 − y2)(κ−1)/κ [1 − α2y2](κ+1)/κ
.

= B(1/2,1/κ)2F1(1 + 1/κ,1/2,1/2 + 1/κ; α2)

+α2B(3/2,1/κ)2F1(1 + 1/κ,3/2,3/2 + 1/κ; α2),

(22)

and 2F1 is a hypergeometric function and B(p,q) is the
β function, also called the Eulerian integral of the first kind.

To find ω as a function of g2 and Q one solves the equation

Iκ [α2] = Qβκ

[
g2κ2(m + ω)

(κ + 1)β2
κ

]1/κ

. (23)

In what follows we will scale all parameters in terms of m (i.e.,
ω → ω/m, etc.). For κ = 1, Q has a very simple form:

Q =
∫ +∞

−∞
dxR2 = 4α

(1 − α2)g2
= 2β

g2ω
= 2

√
1 − ω2

g2ω
. (24)
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Now for H1 = ∫ +∞
−∞ dxR2dθ/dx we have

H1 = 1

κ

[
β2

κ

m + ω

]1+1/κ [
κ + 1

κ2g2

]1/κ ∫ ∞

−∞
dx

×
[

sech2βκx

1 − α2 tanh2 βκx

]1+1/κ

. (25)

Again changing variables, letting y = tanh βκx, we obtain

H1 = 1

κβκ

[
β2

κ

m + ω

]1+1/κ [
κ + 1

κ2g2

]1/κ

Jκ [α],

Jκ [α] =
∫ 1

−1
dy

(1 − y2)1/κ

(1 − α2y2)1+1/κ

= B

(
1

2
,1 + 1

κ

)
2F1

(
1

2
,1 + 1

κ
;

3

2
+ 1

κ
;

1 − ω

1 + ω

)
.

(26)

For κ = 1,

H1[κ = 1] = −
2
[√

1 − ω2 − 2 tanh−1
(√

1−ω
1+ω

)]
g2

. (27)

Now for H2 = m
∫ ∞
−∞ dxR2 cos 2θ we have

H2 =
[

(κ + 1)

κ2g2(1 + ω)

]1/κ ∫ ∞

−∞
dx

[
sech2βκx

1 − α2 tanh2 βκx

]1/κ

.

(28)

Again changing variables, letting y = tanh βκx, we obtain

H2 =
[

(κ + 1)

κ2g2(1 + ω)

]1/κ [
β2

κ

]1/κ−1/2
Kκ [α],

Kκ [α] =
∫ 1

−1
dy

(1 − y2)1/κ−1

(1 − α2y2)1/κ

= B

(
1

2
,
1

κ

)
2F1

(
1

2
,
1

κ
;

1

2
+ 1

κ
;

1 − ω

1 + ω

)
. (29)

At κ = 1,

H2 =
4 tanh−1

(√
1−ω
1+ω

)
g2

. (30)

III. THE NONRELATIVISTIC LIMIT–NONLINEAR
SCHRÖDINGER EQUATION

In a previous paper [11] we showed that if we write the rest
frame solutions as in Eqs. (5) and take the nonrelativistic limit
where (m − ω)/(2m) � 1, then u(x) obeys the equation:

ωu(x) = − 1

2m

∂2

∂x2
u(x) + mu(x) − g2(u)2κ+1. (31)

Defining ψ(x,t) = u(x)e−iωt we find that ψ(x,t) obeys a
nonlinear Schrödinger equation with a linear term proportional
to m:

i
∂

∂t
ψ + 1

2m

∂2

∂x2
ψ + g2(ψψ)κψ − mψ = 0 (32)

(here � = c = 1, but we keep the explicit dependence of m for
clarity in this section). This equation has solutions of the form
ψ(x,t) = e−iωtψω(x) where

ψω(x) = Asech1/κ [βkx] (33)

and

A2κ = β2
k (κ + 1)

2mg2κ2
, (34)

and ω is given by ω = m − β2
k /2mκ2. Thus βk =

κ
√

2m
√

m − ω. Note that the expression for A2 can be
obtained from Eq. (19) for R2 by letting α2 → 0 and m + ω →
2m and again in the expression for

βDirac = κ
√

m − ω
√

m + ω (35)

by replacing m + ω → 2m.
The analog of the “charge” (as well as the nonrelativistic

limit of Q in the Dirac equation) is the “mass” given by

M[ω] =
∫

dxψ
ωψω = A2

βk

√
π�

(
1
κ

)
�

(
1
2 + 1

κ

)
=

[
β2

k (κ + 1)

2mg2κ2

]1/κ
1

βk

√
π�

(
1
κ

)
�

(
1
2 + 1

κ

)
=

√
π
2 �

(
1
κ

)[ (κ+1)(m−ω)
g2

] 1
κ

κ
√

m
√

m − ω�
(

1
2 + 1

κ

) . (36)

A. Derrick’s theorem

For the NLS equation we can use the scaling argument of
Derrick [13] to determine if the solutions are unstable to scale
transformation. The Hamiltonian is given by

H =
∫

dx

{
1

2m
ψ

xψx + mψψ − g2

κ + 1
(ψψ)κ+1

}
. (37)

From the equations of motion one can show that when we
evaluate H for solitary wave solutions then H3 = (2/κ)H1.

Thus the value of the energy of a solitary wave solution is
given by

H = mM[ψω] + κ − 2

2
H3[ψω]. (38)

Here

H3 = g2

κ + 1

A2κ+2

βk

√
π�

(
1 + 1

κ

)
�

(
3
2 + 1

κ

)
=

√
π(m−ω)

2m
�

(
1 + 1

κ

)[ (κ+1)(m−ω)
g2

] 1
κ

κ�
(

3
2 + 1

κ

) . (39)

It is well known that using stability with respect to scale
transformation to understand domains of stability applies to
this type of Hamiltonian. This Hamiltonian can be written

H = H1 + mH2 − H3, (40)

where Hi > 0 (i = 1,2,3). If we make a scale transformation
on the solution which preserves the mass M = ∫

ψψ dx,

ψλ → λ1/2ψ(λx), (41)
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we obtain Hλ = λ2H1 + mH2 − λκH3. The first derivative is
∂H

∂λ
= 2λH1 − κλκ−1H3. (42)

Setting the derivative to zero at λ = 1 gives the equation
consistent with the equations of motion: κH3 = 2H1. The
second derivative at λ = 1 can now be written as

∂2H

∂λ2
= κ(2 − κ)H3[ψω]. (43)

The solution is therefore unstable to scale transformations
when κ > 2.

B. Linear stability and the Vakhitov-Kolokokov criterion

In the case of the nonlinear Schrödinger equation, it is easy
to perform a linear stability analysis for the exact solutions.
Namely, one lets

ψ(x,t) = [ψω(x) + r(x,t)]e−iωt , (44)

linearizes the equation for r(x,t)

∂t r(x,t) = Aωr(x,t), (45)

and studies the eigenvalues of the differential operator Aω.
If the spectrum of Aω is imaginary, then the solutions are
spectrally stable. Vakhitov and Kolokolov [15] showed that
when the spectrum is purely imaginary, dM[ω]/dω < 0. Also
they showed that when dM[ω]/dω > 0, there is a real positive
eigenvalue so that there is a linear instability. For the NLS
equation we have that

M[ω] = kβ
(2−κ)/κ
k = k(m − ω)(2−κ)/(2κ), k > 0, (46)

where k is positive real. Therefore
dM

dω
= k′(κ − 2); k′ > 0. (47)

Thus for κ > 2 the solitary waves are unstable.

C. Stability to changes in the frequency at fixed charge

In this section we will study the suggestion of Bogolubsky
that we can determine stability by looking at whether the
energy of the solitary wave is increased or decreased as we
vary the frequency ω for fixed values of the charge. That is if
we parametrize a rest frame solitary wave solution of the NLS
equation, which has a charge M[ω], given by

ψs(x,t) = χs(x,ω)e−iωt , (48)

then we choose our slightly changed wave function to be

ψ̃[x,t,ω′,ω] =
√

M[ω]√
M[ω′]

χs(x,ω′)e−iω′t

≡ f (ω′,ω)χs(x,ω′)e−iω′t . (49)

Then the wave function ψ̃[x,t,ω′,ω] has the same charge as
ψ[x,t,ω]. Inserting this wave function into the Hamiltonian
we get a new Hamiltonian Hp depending on both ω′,ω. As a
function of ω′ the probe Hamiltonian Hp is stationary at the
value ω′ = ω. The probe Hamiltonian has the form

Hp[ω′,ω] = H3[ω′]
[
κ

2
f (ω′,ω)2 − f (ω′,ω)2(κ+1)

]
+mM[ω′]f (ω′,ω)2. (50)

For this probe, the first derivative is identically zero for
the exact solution when ω′ = ω. The second derivative with
respect to ω′ evaluated at ω′ = ω is exactly zero at κ = 2, it is
then positive for all ω for κ < 2 and strictly negative for all ω

for κ > 2. Thus this test agrees with all the other variational
methods in giving instability for all ω when κ > 2. It has
nothing to say at the critical value κ = 2.

The second derivative evaluated at ω′ = ω is explicitly
given by

∂2Hp[ω′,ω]

∂ω′2

∣∣∣∣
ω′=ω

=
√

π(2 − κ)(κ + 1)
1
κ (m −ω)

1
κ
−1�

(
1 + 1

κ

)
4
√

2 − 2ω�
(

3
2 + 1

κ

) .

(51)

IV. VARIATIONAL APPROACHES TO THE STABILITY OF
EXACT SOLUTIONS OF THE NONLINEAR

DIRAC EQUATION

In this section we will investigate whether the variational
methods that were successful in determining the domain of
stability in the nonrelativistic regime could be extended to
the full relativistic regime (ω < m) of the NLD equation. We
will show that these three approaches suggest totally different
answers as to the domain of stability as a function of ω.

A. Stability to scale transformations at fixed charge

The first approach to stability (Derrick [13]) is to consider
how the energy of the solitary wave responds to the scale
transformation x → λx [12]. The exact solution is a stationary
value of Hλ when λ = 1 with the constraint that the charge is
kept fixed. The assumption of this approach is that if the second
derivative is negative at λ = 1 then the solutions are unstable
to scale transformations and thus unstable.

Bogolubsky applied this argument to the Dirac equation and
obtained a result, which we will present, that suggests that for
the NLD equation for κ > 1 the solitary waves are unstable.
This disagrees with our intuition, presented in Ref. [11] that
in the nonrelativistic regime the NLD solitary waves should
obey the same pattern of instability as the NLS equation. This
intuition has been given more credence in the recent linear
stability analysis of the NLD equation by Comech [14], which
relies on studying the NLD equation in the nonrelativistic
regime. In that study, it was found that in the nonrelativistic
regime, the stability of the NLD equation solitary waves
should go over to the NLS equation result that for κ < 2 the
solitary waves are stable. Our numerical evidence supports this
analysis.

The solution is of the form

ψ(x) =
(

u

iv

)
= R(x)

(
cos θ

i sin θ

)
. (52)

If we want to keep the charge fixed we consider the following
stretched solution:

ψλ(x) =
(

u

iv

)
= λ

1
2 R(λx)

(
cos θ (λx)
i sin θ (λx)

)
. (53)
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The value of the Hamiltonian

H =
∫

dx

[
ψ̄iγ 1∂1ψ + mψ̄ψ − g2

κ + 1
(ψ̄ψ)κ+1

]
≡ H1 + H2 − H3, (54)

for the stretched solution is Hλ = λH1 + H2 − λκH3, where
again Hi are all positive definite. The first derivative is

∂Hλ

∂λ
= H1 − κλκ−1H3. (55)

At the stationary point, setting λ = 1, we obtain H3 =
(1/κ)H1, which is consistent with the equation of motion result
we obtained earlier (h3 = h1/κ). We see that for κ = 1 the
energy is given by just H2. The second derivative yields

∂2Hλ

∂λ2
= −κ(κ − 1)λκ−2H3. (56)

From this we see that if κ > 1, this analysis would suggest that
solitary waves are unstable to small changes in the width. For
κ < 1 the solitary waves are stable to this type of perturbation.
The case κ = 1 would require a separate treatment since this
analysis yields no information.

The weakness in this argument is that one needs to prove
that the stable solutions of the NLD equation are not merely
stationary solutions of the variational principle but are actually
minima of Hλ. The fact that this idea disagrees both with
the continuity argument of Comech [14] and our simulations
makes us seriously doubt this assumption. We find that even
at κ = 2 there is a range of ω near m where the solitary waves
are stable.

B. Stability to changes in the frequency at fixed charge

Bogolubsky [12] also suggested that the stability could be
ascertained by looking at variations of the wave function,
keeping the charge fixed and seeing if the solution was a
minimum or maximum of the Hamiltonian as a function of the
parameter ω. If the deformed solution decreases the energy,
then he assumed that this is a sufficient condition for the
solitary wave to be unstable. Bogolubsky applied this criterion
only for the case κ = 1 since he presumably thought that
Derrick’s theorem was applicable at all other values of κ .

We know the wave function ψ for the solitary wave at the
value of ω corresponding to a fixed charge Q. If we change
the parametric dependence of ψ on ω this also changes the
charge. This can be corrected by assuming that the new wave
function has a new normalization that corrects for this. That
is if we parametrize a rest frame solitary wave, which has a
charge Q[ω] given by Eq. (21), as

ψs(x,t) = χs(x,ω)e−iωt , (57)

then we choose our slightly changed wave function to be

ψ̃[x,t,ω′,ω] =
√

Q[ω]√
Q[ω′]

χs(x,ω′)e−iω′t

≡ f (ω′,ω)χs(x,ω′)e−iω′t . (58)

The wave function ψ̃[x,t,ω′,ω] has the same charge as
ψ[x,t,ω]. Inserting this wave function into the Hamiltonian
we get a new Hamiltonian Hp depending on both ω′,ω. As

a function of ω′ the probe Hamiltonian Hp is stationary
at the value ω′ = ω. The criterion Bogolubsky proposes is
that the solitary wave is unstable to this type of perturbation if
the probe Hamiltonian has a maximum at ω′ = ω. What we
will find using this approach is that the second derivative of
the probe Hamiltonian is negative below a critical value of ω,
where ωB ≈ 0.7, suggesting an instability for all ω less than
this value. For κ � 2 using this criterion we find a regime near
ω = m where ω < m and the second derivative is positive, sug-
gesting stability in the nonrelatistic regime in agreement with
Comech [14]. We will use the notation ωB for the critical value
of ω below which the Bogolubsky criterion leads to instability.

The probe Hamiltonian has the form:

Hp[ω′,ω] = H1[ω′]
[
f (ω′,ω)2 − 1

κ
f (ω′,ω)2(κ+1)

]
+H2[ω′]f (ω′,ω)2. (59)

In what follows we will suppress the dependence of Hp on
g since that dependence is multiplicative, namely, Hp ∝ 1

g2κ .
For all values of κ we find that the first derivative of Hp

with respect to ω′ evaluated at ω′ = ω is indeed zero. The
behavior of the second derivative evaluated at ω′ = ω as a
function of ω, is different as we change κ . For κ < 2 the
second derivative becomes negative for ω < ωB ≈ 0.7 and
becomes positive above that value. This is seen in Fig. 1
for κ = 1.

For κ > 2 there is a second regime near the nonrelativistic
limit where the second derivative again becomes negative.
For example when κ = 5/2 the second derivative becomes
negative both for ω < 0.699276 and in the nonrelativistic
regime ω > 0.902641. This is shown in Fig. 2. This is in accord
with the fact that for κ > 2 the NLS solutions are unstable to
blowup. However, note that there is a range of ω where the
second derivative is positive where stability is not ruled out by
this criterion.

For κ = 1 we have that

f (ω′,ω)2 = β[ω]ω′

β[ω′]ω
, (60)

where β[ω] = √
1 − ω2. The first derivative of Hp with respect

to ω′ evaluated at ω′ = ω is zero. The second derivative
evaluated at ω′ = ω leads to the following expression:

∂2Hp[ω′,ω]

∂ω′2

∣∣∣∣
ω′=ω

= −
2
[√

1 − ω2(ω2 − 3) + 4 tanh−1
(√

1 − ω
ω + 1

)]
ω2(ω2 − 1)2

.

(61)

This function is zero at ωB = 0.697586, and the second
derivative is negative below this value of ω (see Fig. 1). The
values of ωB vary very slightly with κ . We find

ωB = 0.703714 for κ = 1/10;

ωB = 0.699767 for κ = 1/3,

ωB = 0.698531 for κ = 1/2; (62)

ωB = 0.697586 for κ = 1,

ωB = 0.697963 for κ = 3/2;

ωB = 0.698612 for κ = 2.
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FIG. 1. (Color online) Second derivative of probe
Hamiltonian at ω′ = ω as a function of ω for κ = 1.

One can view the probe Hamiltonian in a slightly different fashion. Suppose we were choosing trial wave functions which have a
fixed charge Q = 1 in a time-dependent variational approach to the problem. Then we would choose as our trial wave functions
to be

ψv = ψ[ω]√
Q[ω,g2]

. (63)

Here Q[ω,g2] = ∫
dxψ†ψ . We would now find that the new Hamiltonian is given by

Hv[ω,g2] = H1[ω]

{
1

Q[ω,g2]
− 1

κ

(
1

Q[ω,g2]

)κ+1
}

+ H2[ω]

Q[ω,g2]
. (64)

Thinking now of ω as a variational parameter to be determined by the minimization of this Hamiltonian we would next
determine ω as a function of g2 by finding the stationary value of this Hamiltonian.

As an example let us choose κ = 1, where ω for fixed charge Q is a function of g2. Then

Hv[ω,g2] = −
g2ω

[
(ω2 − 1)(g2ω − 2

√
1 − ω2) + 2(g2ω

√
1 − ω2 + 4ω2 − 4) tanh−1

(√
1−ω
1+ω

)]
2(1 − ω2)3/2

. (65)

The first derivative is zero when g2[ω] is given by Eq. (24),
i.e.,

g2[ω] = 2
√

1 − ω2

ω
. (66)

Also the second derivative of this Hamiltonian, evaluated at
g2[ω] changes sign exactly at ωB = 0.697586. This approach
can be shown to be equivalent to the Bogolubsky approach and
yields the same values of ωB .

C. Vakhitov-Kolokolov criterion

In this section we will study the consequences of assuming
that the Vakhitov-Kolokolov criterion, which was derived for
the NLS equation, holds for the whole range of ω in the NLD
case. That is we will explore the consequences of assuming
one has stability when

dQ[ω]

dω
< 0, (67)

and instability otherwise. For the NLD equation one has that

Q[ω] =
√

π ((κ + 1)(1 − ω))
1
κ �

(
1 + 1

κ

)
κω(ω + 1)

√
1 − ω2

× (κ + 1)(ω + 1) 2F1

(
−1

2
,1 + 1

κ
;

3

2
+ 1

κ
;

1 − ω

1 + ω

)
+ω(−κ + ω − 1) 2F1

(
1

2
,1 + 1

κ
;

3

2
+ 1

κ
;

1 − ω

1 + ω

)
,

(68)

where 2F1 is a hypergeometric function. Taking the derivative,
we find that for κ < 2 it is always negative, suggesting that
the solitary waves are stable in the entire range of ω values,
i.e., 0 < ω < 1. For κ > 2 one finds that there is a region of ω

below the curve ω(κ) where the solitary waves are suggested
to be stable (Fig. 3). However, both suggestions will not be
confirmed by our simulations (Sec. V). Thus the Vakhitov-
Kolokolov criterion is not valid for the NLD case.
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FIG. 2. (Color online) Second derivative of probe Hamiltonian at
ω′ = ω as a function of ω for κ = 5/2.

V. NUMERICAL METHODS

We have shown that different theoretical methods lead to
different results on the stability of NLD solitary waves. In
order to understand and resolve these inconsistent results, we
try to study numerically the stability of NLD solitary waves.
We first tried a fourth-order Runge-Kutta method which had
worked very well for forced NLS equations with arbitrary
nonlinearity exponent κ [19]. However, for the NLD equation
we obtained inconsistent results, in particular for small values
of κ . Various other numerical methods have been proposed in
solving the NLD equation, and readers are referred to a recent
review [20]. It is also reported there that the operator splitting
(OS) method performs better than other numerical methods
in terms of accuracy and efficiency. The main advantage of
the OS method is that different numerical techniques can
be exploited into integrating the subproblems in view of the
features of the subproblems. In this work, we will employ the
OS method to investigate the stability of NLD solitary waves.
The NLD system is decomposed into two subproblems: one
is linear and the other one is nonlinear, and both of them
can be integrated analytically with the nonreflection boundary
condition (NRBC). For the sake of completeness, we will
briefly describe below the OS scheme used in this paper; the

Κ

4 6 8 10

0.80

0.85

0.90

0.95

Ω

FIG. 3. (Color online) ω as a function of κ . For ω � ω,
dQ/dω < 0 and there is no instability predicted for this deformation
in this regime of ω.

related detailed theoretical analysis and numerical comparison
with other schemes can be found in Ref. [20].

For convenience, we rewrite the NLD system into

� t = (L + N ) �, (69)

where the linear operator L and the nonlinear operator N are
defined by

L� := −γ 0γ 1�x, N� := i(f − m)γ 0�

with f := g2wκ and w := �̄�. In consequence, the prob-
lem (69) may be decomposed into two subproblems as follows:

� t = L�, (70)

� t = N�. (71)

Due to the local conservation law [see Eq. (78) below] the
solution of the nonlinear subproblem (71) may be expressed as
an exponential of the operator N acting on “initial data.” Thus
we may introduce the exponential operator splitting scheme
for the NLD equation (69), imitating that for the linear partial
differential equations. Based on the exact or approximate
solvers of those two subproblems, a more general K-stage
N th-order exponential operator splitting method [21] for the
system (69) evolving from the nth step to the n + 1-th step can
be cast into a product of finitely many exponentials as follows:

�n+1
j =

K∏
i=1

[
exp

(
τiA(1)

i

)
exp

(
τiA(2)

i

)]
�n

j , (72)

where τi = aiτ , with τ > 0 being the time step size, denotes
the time step size used within the ith stage and satisfies∑K

i=1 ai = 1, and {A(1)
i ,A(2)

i } is any permutation of {L,N }.
The classical second-order Strang method [22] can be rep-

resented by 1̂
2

1̂
2

T

(i.e., ai = 1
2 for i = 1,2) if denoting âi :=

eτiA(1)
i eτiA(2)

i and âT
i := eτiA(2)

i eτiA(1)
i [21]. The remaining task is

to determine the operators eτiL and eτiN , i.e., the solvers of the
subproblems.

The computational domain is set to be [0,tfin] × [XL,XR].
Let tn = nτ (n = 0,1, . . . ,tfin/τ ) and xj = XL + (j − 1)h
(j = 1,2, . . . ,J ) with xJ = XR . The ghost points are denoted
by x0 and xJ+1. Here τ and h are the time spacing and the
spatial spacing, respectively.

A. Linear subproblem

We now solve the linear subproblem (70). We denote its
“initial data” by �

(0)
j = ((ψ1)(0)

j ,(ψ2)(0)
j )T at the ith stage

in (72) and its solution after τi by �
(1)
j = ((ψ1)(1)

j ,(ψ2)(1)
j )T .

Denoting φ1 = ψ1 + ψ2 and φ2 = ψ1 − ψ2, the linear sub-
problem (70) can be rewritten as

∂tφ1 + ∂xφ1 = 0,
(73)

∂tφ2 − ∂xφ2 = 0,

which means that the initial data of φ1 (resp. φ2) simply
propagate unchanged to the right (resp. left) with velocity 1.
Therefore (73) can be exactly integrated by the characteristics
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TABLE I. Accuracy check for the OS method with NRBC and a rational fourth-order splitting. We take a normalized solitary wave with
κ = 1 and ω = 0.50 as an example, and measure the related quantities within the domain [−100,100] at t = 100. Here τ is the time step size,
err2 and err∞ are, respectively, the l2 and l∞ errors, q denotes the centroid position of charge density, VQ, VE , VP measure, respectively, the
variation of charge, energy, and linear momentum at the final time relative to the initial quantities.

τ err2 Order err∞ Order q VQ VE VP

0.1 2.99E-09 2.12E-09 2.75E-14 2.22E-16 2.22E-16 2.28E-16
0.05 1.86E-10 4.01 1.32E-10 4.01 3.20E-15 1.78E-14 8.33E-15 3.57E-17
0.025 1.16E-11 4.00 8.24E-12 4.00 1.33E-14 7.66E-15 3.44E-15 2.30E-16
0.0125 7.26E-13 4.00 5.87E-13 3.81 1.23E-14 1.14E-13 5.55E-14 2.98E-16

method with τi = h as follows:

(φ1)(1)
j = (φ1)(0)

j−1,
(74)

(φ2)(1)
j = (φ2)(0)

j+1,

with j = 1, · · · ,J , and the values at the ghost points are
naturally given by NRBC as

(φ1)0 := φ1(x0,t) = 0,
(75)

(φ2)J+1 := φ2(xJ+1,t) = 0,

where we have merely used the fact that outside a relatively
big domain [XL,XR], the NLD spinor � is negligibly small
for it decays exponentially as |x| → +∞. Consequently, we

obtain the solution �
(1)
j = ((ψ1)(1)

j ,(ψ2)(1)
j )T of the following

form:

(ψ1)(1)
j = (φ1)(1)

j + (φ2)(1)
j

2
,

[ (76)

(ψ2)(1)
j = (φ1)(1)

j − (φ2)(1)
j

2
.

The characteristic method is very appropriate for the linear
subproblem (70) only under the condition of τi

h
to be an integer

for all i = 1, . . . ,K , i.e., all ai must be rational. That is, the
spatial spacing h should be smaller than the time spacing
τ , which results in huge computational cost. For example, a
fourth-order splitting with rational ai demands 18 stages given
in Ref. [21]:

1̂

12

T
1̂

12

1̂

12

T

−̂1

6

1̂

12

T
1̂

12

T
1̂

12

T
1̂

12

T
1̂

12

1̂

12

T
1̂

12

1̂

12

1̂

12

1̂

12
−̂1

6

T
1̂

12

1̂

12

T
1̂

12
(77)

and requires that h = 1
12τ , which implies that the number of

grid points is J = 96 000 if choosing τ = 0.025 and −XL =
XR = 100. To accelerate the simulations, we will adopt the
multithread technology provided by OpenMP. Note in passing
that numerical results for the OS method are reported only for
periodic boundary conditions with an irrational fourth-order
splitting [20].

B. Nonlinear subproblem

The nonlinear subproblem (71) is left to be solved now. Its
“initial data” are still denoted by �

(0)
j = ((ψ1)(0)

j ,(ψ2)(0)
j )T at

the ith stage in (72), and define

t (i)
n = tn +

i−1∑
p=1

τp, i = 1,2, . . . ,K.

For the nonlinear subproblem (71), it is not difficult to verify
that

∂tw = 0, ∂tf = 0. (78)

Using this local conservation law gives analytically the
solution at t = t (i+1)

n of (71) with the “initial data” �
(0)
j as

follows:

�
(1)
j = exp

(
i

∫ t
(i+1)
n

t
(i)
n

(f − m)jγ
0 dt

)
�

(0)
j

= exp
[
i(f − m)(0)

j γ 0τi

]
�

(0)
j

= diag
{
exp

[
i(f − m)(0)

j τi

]
,

× exp
[−i(f − m)(0)

j τi

]}
�

(0)
j . (79)

With NRBC, subproblems (70) and (71) can be both solved
analytically, and the numerical error only comes from the
operator splitting in time. That is, the OS method with the
rational splitting (77) (recall that the spatial spacing h = τ

12 ),
denoted by OS(4) hereafter, is of the order O(τ 4), which is
confirmed numerically by simulating a normalized standing
wave with κ = 1, ω = 0.50 and the centroid located at x = 0
(see Columns 2–5 of Table I), where err2 and err∞ are the l2

and l∞ errors, respectively. The centroid position q(t) does not
change at all until t = 100; see Column 6 of Table I. We have
also shown there that VQ, VE , VP , measuring, respectively,
the variation of charge, energy, and linear momentum at
t = 100 relative to the initial quantities, are all almost zero
(see Columns 7–9), which demonstrates that the OS(4) method
is able to keep the charge, energy, and linear momentum
constant before the instability happens. (In fact, it will be
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shown later that this normalized standing wave is unstable
and the instability appears at t = 11 036; see Fig. 6.) We can
conclude that the OS(4) method is highly accurate and the
numerical error is controlled only by the time step size τ for
no approximation is used in space.

To perform the numerical study of the stability of NLD
solitary waves, the employed numerical method is required

to be not only of high-order accuracy but also immune to
the effect of artificial boundaries XL,R . NRBC (75) used in
the OS(4) method can avoid completely the numerical effect
of XL,R on the stability of NLD solitary waves provided
a relatively big domain [XL,XR] is adopted, since it is
transparent for outgoing waves and does not allow any waves to
be pumped into the computational domain. In such situations,
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FIG. 4. (Color online) Typical profiles of the charge density ρQ for various exponent powers (or the nonlinearity parameter) κ and
frequencies ω. Smaller values of ω correspond to the outer double peaks and larger values to the inner single peak.
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TABLE II. The first column represents the computational domain lenghts [−L,L]. The other columns show the time at which the quantities
q, err∞, err2, VP , VE , and VQ become larger than a given tolerance ε (=1.0 × 10−3). Here q denotes the centroid position of the charge density
and τ = 0.025.

L q err∞ err2 VP VE VQ

Two-hump wave with κ = 1 and ω = 0.1
50 147 121 121 135 131
75 146 122 122 135 132
100 146 122 122 134 132
125 146 122 120 135 139
150 145 122 122 133 132

One-hump wave with κ = 1 and ω = 0.5
50 7373 6585 6614 6580 6601 6921
75 9552 8728 8724 8720 8876 9177
100 11 036 9935 9937 9930 9930 10 412
125 12 905 11 673 11 670 11 672 11 670 12 183
150 14 641 13 561 13 560 13 560 13 560 14 104

we can also prove easily that the OS(4) method conserves the
total charge. In summary, the proposed OS(4) method with
NRBC is very appropriate and will be used for investigating
the stability of NLD solitary waves.

VI. NUMERICAL RESULTS

In accordance with the theoretical results, we consider
merely the normalized NLD solitary waves; i.e., the charge is
fixed to be Q ≡ 1. For such normalized NLD waves, only the
frequency ω can be adjusted to get different profiles if fixing
the mass m = 1 and the exponent power (or the nonlinearity
parameter) κ . For κ = 0.1,0.5,1.0,1.5,2.0,2.4, Fig. 4 plots
the profile transition of charge density ρQ when ω increases
from 0.01 to 0.9. It is clearly observed there that, as the
frequency increases, the charge density is transmitted from
a two-hump profile to a one-hump profile during which the
valley of the two-hump wave rises until the one-hump wave is

formed and then disappears; the maximum height of the peak
of the one-hump wave is larger than that of the two-hump wave
for κ = 0.1,0.5,1.0, comparable for κ = 1.5 and less than
for κ = 2.0,2.5. Actually it has been proved that the charge
density has either one hump or two humps under the pure scalar
self-interaction and also conjectured that there is a connection
between the stability and the multihump structure [11,23]. In
the following we will use the OS(4) method with NRBC to
study such stability of normalized NLD waves and determine
the range of ω in which the NLD solitary waves are stable or
unstable for a given nonlinearity (or exponent power) κ . For
simplicity, we only consider here the standing waves with the
centroid located at x = 0.

A. κ = 1

In this section, we present the numerical results for the
Soler model [16], i.e., κ = 1. The first numerical simulation
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FIG. 5. (Color online) Unstable two-hump solitary wave with κ = 1 and ω = 0.1: Snapshot of the difference of the charge density between
the numerical solution and the reference solution at t = te = 122 and t = tc = 146 (left and right panels, respectively). Here τ = 0.025 and
L = 100. For each mesh point for x, there is only one value of the absolute difference. Due to the instability the wave breaks up into several
waves, which seem to be represented by curves because of the very fine mesh.
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FIG. 6. (Color online) Unstable one-hump solitary wave with κ = 1 and ω = 0.5: Snapshot of the difference of the charge density between
the numerical solution and the reference solution at t = te = 9935 and t = tc = 11 036, (left and right panels, respectively). Here τ = 0.025
and L = 100. The comment about the very fine mesh in Fig. 5 holds here as well.

is performed using the OS(4) method for the two-hump
wave with ω = 0.1; see Fig. 4(c). A large computational
domain [−L,L] (i.e., XL = −L,XR = L) is set with L = 100.
The time spacing, the parameter controlling the numerical
error, is taken to be τ = 0.025. That is, the numerical error
introduced by the OS(4) method at each time step is about τ 4 �
3.91E-07. However, the numerical error often accumulates
slowly over time. If the solitary wave is unstable, such a slowly
accumulated numerical error will be amplified in a relatively
short period, after that the wave will change its position, which
implies that the instability happens. This indeed occurs when
ω = 0.1; see Row 5 of Table II. There we have shown the
instants of time at which the monitored quantities, q, err∞, err2,
VP , VE , become larger than a given tolerance ε (=1.00E-03
here). It can be seen that err∞, err2, VE , VP , and q increase
over ε in sequence. We denote the instant at which the centroid

position q (resp. err∞) becomes larger than ε by tc (resp.
te). In Fig. 5 we plot the difference of the charge density
between the numerical solution and the reference solution at
te = 122 and tf = 146, respectively. Meanwhile, the history
of q and err∞ is displayed in Fig. 7(a). It is observed there that,
although the accumulated numerical error is larger than ε at
te = 122, the NLD wave still preserves its two-hump shape and
its centroid hardly wavers from the initial position; after that,
err∞ increases quickly, soon the wave loses its shape, many
waves are then generated, and the centroid moves from x = 0
over ε at tf = 146. Hereafter, we define tc to be the moment
at which the instability sets in. As shown clearly in Fig. 5,
the entire process from err∞ > ε to q > ε develops very fast
because it takes place only in the central area (around the initial
centroid position x = 0). This is also confirmed by numerical
simulations within the domain [−L,L] of different length, say,
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FIG. 7. (Color online) Plots of the centroid position q(t) (solid line) and the l∞ error err∞ (dashed line) vs time for κ = 1. Here τ = 0.025
and L = 100.
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L = 50,75,100,125,150, which reveal that instants of time
at which the monitored quantities become larger than ε are
nearly independent of the domain length; see Rows 2–7 of
Table II. During the process, no charge is radiated out from
the central area, and thus the total charge is conserved, e.g., at
tf = 146VQ � 2.23E-14 for L = 75, and VQ � 9.66E-15 for
L = 100.

The second numerical simulation is performed for the
one-hump wave with ω = 0.5; see Fig. 4(c). The setup of
the OS(4) method for simulating the two-hump wave with
ω = 0.1 is used. We plot the difference of the charge density
between the numerical solution and the reference solution at
te = 9935 and tf = 11 036 in Fig. 6 as well as the history
of q and err∞ in Fig. 7(b). Therefore this one-hump wave is
considered to be unstable. However, contrary to the fast process
occurring only in the central area when ω = 0.1, the entire
process from err∞ > ε to q > ε develops very slowly when
ω = 0.5. As demonstrated by Figs. 6 and 7(b), the reason for
such a slow process is the following: Although many waves
of small amplitude are generated because of the instability,
the wave is unstable only if enough generated waves move
outside the computational domain. This is further confirmed
by numerical simulations within domains of different lengths,
the results of which can be found in Rows 8–13 of Table II.
Those results show that the variation of charge VQ decreases
by ε before the instability occurs at tc; and tc linearly depends
on L as plotted in Fig. 8.

We have shown above that the OS(4) method with NRBC
is capable of capturing the instability regardless of whether
it occurs quickly or slowly. When the time step size τ , the
only parameter controlling the numerical error, decreases
from 0.025 to 0.0125, we have a very small change of tc, e.g.,
tc = 146 (resp. tc = 11 306) for τ = 0.025 and tc = 148 (resp.
tc = 11 278) for τ = 0.0125 when ω = 0.10 (resp. ω = 0.50).
Consequently, the methodology to determine the stable range
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FIG. 8. (Color online) Plot of tc at which the centroid position
q(t) becomes larger than ε (=1.00E-03 here) with respect to L for
κ = 1 and ω = 0.5. The computational domain is [−L,L] and five
different lengths are tested. The concrete data are given in Table II.
Here τ = 0.025.
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FIG. 9. (Color online) Plots of the instant tc against the fre-
quency ω for 0 < κ � 1. The value of κ increases from left to right.

for ω [denoted by �κ , being a subset of (0,1)] in which the NLD
waves are stable, is to use the OS(4) method with τ = 0.025
and L = 100 to simulate the wave with the frequency ω0. If the
centroid position q(t) is always less than the given tolerance ε

before a prescribed final time tfin, then ω0 ∈ �κ , otherwise the
NLD wave with ω0 is unstable, i.e., ω0 ∈ (0,1)\�κ . For the
sake of confidence in our results, tfin should be long enough,
and we choose tfin = 40 000 in this work.

Our numerical simulations reveal that �1 = [0.56,1). When
the frequency approaches 0.56 (the lower end of �1), the
instant of instability tc increases exponentially; see Fig. 9.

B. 0 < κ < 1

For κ ∈ (0,1), we find the stable region �κ for ω as
follows: �1/10 = [0.35,1), �1/4 = [0.40,1), �1/2 = [0.47,1),
and �3/4 = [0.53,1), all of which are left-closed and right-
open intervals with the same right end of 1. Moreover, it is
observed that the left end of �κ increases monotonically as
κ increases from 0 to 1, and the limit is about 0.60 for larger
values of κ; see Fig. 10.

C. 1 < κ < 2

For κ ∈ (1,2), we find two types of stable region �κ : the
first type is a left-closed and right-open interval with the
left end around 0.60 and the right end at 1, e.g., �5/4 =
[0.58,1) and �7/4 = [0.89,1); the second type consists of
two disjoint intervals, e.g., �11/8 = [0.58,0.67] ∪ [0.77,1) and
�3/2 = [0.59,0.64] ∪ [0.85,1). In Fig. 11 we plot tc against ω

for 1 < κ < 2, where tc is not available for the stable NLD
waves and we use tfin = 40 000 instead. That is, the flat part
of the curve with a value of 40 000 corresponds to the waves
in the stable region. It can be easily observed there that: When
the exponent power κ is slightly larger than 1, we have a
large stable region of the first type; when we keep increasing
κ , this large stable region is divided into two small intervals
located around the left end and the right end, respectively,
which form together the stable region of the second type,
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FIG. 10. (Color online) Plot of the left end of the stable region
�κ for 0 < κ � 3/2.

one closed interval with the left end around 0.60 and the other
left-closed and right-open interval with the right end of 1; when
κ approaches 2, the small interval around 0.60 disappears, and
then we have again the stable region of the first type but of
much shorter length. As the frequency approaches the left end
of �κ , the instant of the instability tc increases exponentially.
In the case of a stable region of the second type, tc for the
unstable NLD waves with the frequency ω between the two
disjoint intervals oscillates in ω and decreases monotonically
in κ for a given frequency.

D. κ � 2

For κ � 2, the stable region exists only for κ slightly
larger than as well as equal to 2, e.g., �2 = [0.92,1), �2.1 =
[0.93,0.97], and �2.2 = [0.93,0.94]. For larger κ , the NLD
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FIG. 11. (Color online) Plot of tc vs ω for 1 < κ < 2. For the
NLD waves in the stable region, tc is not available, and we use
tfin = 40 000 instead. That is, the flat parts of the curve with a value
of 40 000 correspond to the waves in the stable region. The value of
κ increases from top to bottom.
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FIG. 12. (Color online) Plot of tc vs ω for κ � 2. For the NLD
waves in the stable region, tc is not available, and we use tfin = 40 000
instead. That is, the flat parts of the curves with a value of 40 000
correspond to the waves in the stable region. The value of κ increases
from top to bottom.

waves are unstable for all ω ∈ (0,1), e.g., �2.3 = �2.4 = ∅. In
Fig. 12 we plot tc against κ and see that the instant of instability
tc increases exponentially as ω approaches the left end of �κ ,
and decreases monotonically in κ for a given frequency.

E. Discussion

According to the discovered stable region �κ for κ > 0
and Fig. 4, we can conclude that all stable NLD waves are
of one-hump profile, which gives a positive answer to the
conjecture put forth in [11,23], i.e., the NLD waves of two-
hump structure are unstable. This is also in accordance with
numerical observations in Ref. [24], which imply that the two-
hump NLD solitary waves may collapse during scattering (i.e.,
after collision they stop being solitary waves), whereas the
collapse phenomena cannot be generally observed in collisions
of the one-hump NLD solitary waves.

When the exponent power κ (denoting the strength of
nonlinearity) increases, the stable region �κ narrows. For a
given ω in the unstable region, the moment of instability tc
decreases monotonically with increasing κ; see, e.g., Figs. 11
and 12. Particularly, for ω = 0.1, we find that tc is inversely
proportional to κ; see Fig. 13.

VII. SUMMARY

In this paper we reviewed various variational methods that
had been put forward to determine possible criteria for the
exact solitary wave solutions to the NLD equation to be
unstable. We showed that these methods yield inconsistent
results (in contrast to the NLS equation for which the results
of all these methods agree): The arguments of Bogolubsky
suggested that for ω less than a critical value ωB ≈ 0.7, which
is practically independent of κ , the solitary waves should be
unstable to slight changes in ω for fixed charge Q. An argument
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FIG. 13. (Color online) Plot of tc against κ for unstable NLD
waves with ω = 0.1.

based on scale transformations suggested that the solitary wave
solutions are unstable for all κ > 1. The Vakhitov-Kolokolov
criterion suggested that for κ < 2 all solitary waves are stable,
and for κ > 2 there is a region of ω below a curve ω(κ)
where the solitary waves are suggested to be stable. As the
above suggestions yielded inconsistent results, we performed
extensive numerical simulations in order to determine the
stability regions �κ for ω. For 0 < κ < 1 the stability regions
are left-closed and right-open intervals with the same right
end of 1, while the left end increases with κ . For κ = 1 the
stability interval is [0.56,1). For 1 < κ < 2 we find two types
of �κ : The first one is a left-closed and right-open interval
with the left end around 0.60 and the right end at 1. The
second type consists of two disjoint intervals. For κ = 2 there
is a stable region just below 1. For κ > 2 a very narrow stable
region exists only for κ slightly larger than 2. For 0 < κ < 1
the time tc when an instability sets in, increases exponentially

with ω while the stable region is approached. For 1 < κ < 2,
tc is a very complicated function of ω in the instability regions
and tc decreases monotonically with increasing κ . The stability
of the solitary waves depends on their profile, i.e., on the shape
of the charge density as a function of x. All stable waves have
a one-hump profile, but not all one-hump waves are stable. All
waves with two humps are unstable. An open issue is the study
of collisions of NLD solitary waves with different κ values.
Our results are relevant to understanding nonlinear phenomena
in Bose-Einstein condensates in honeycomb lattices [1,2]
and optical binary waveguides [3,4] as well as nonlinear
dynamics [5] and diffraction in photonic graphene [6].
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