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A spin-polarized electrical current leads to a variety of periodical magnetic structures in nano-

stripes. In the presence of the Ørsted field, which always assists an electrical current, the basic types

of magnetic structures, i.e., a vortex-antivortex crystal and cross-tie domain walls, survive. The

Ørsted field prevents saturation of the nanostripe and a longitudinal domain wall appears instead.

Possible magnetization structures in stripes with different geometrical and material properties are

studied numerically and analytically. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921977]

I. INTRODUCTION

In recent years a magnetic waveguide, which consists of

periodic magnetic structures, became an object of interest

due to Bragg reflections which affect the spin wave disper-

sion. Magnetic waveguides can be fabricated by alternating

material1,2 or geometrical3–6 parameters. All these magnetic

waveguides are permanent, i.e., the spectra of spin waves

cannot be changed dynamically after fabrication. However,

it was demonstrated recently that using a strong spin-

polarized current one can induce periodical magnetization

structures on demand in nanomagnets.7–10 These structures

take the appropriate form according to the shape of the

magnet and the current density: a square vortex–antivortex

lattice is formed in a thin film,7,8 a one-dimensional domain

structure is formed in a nanowire,9 and intermediate vortex-

antivortex structures are formed in a thin stripe.10 Such spin-

current induced periodical magnetization structures can be

used for dynamic control of the spin wave spectra in low-

power filters and in other magnonic devices.11

There are two main techniques which allow to inject a

pure spin-polarized current into a magnetic sample without

creation of the current induced Ørsted field and significant

heating. One of them utilizes geometrically separated areas

with charge and spin currents injection and this technique is

called non-local spin-current injection.12–17 Another method

utilizes spin-orbit torques which appear on the interconnec-

tion area of a ferromagnetic stripe and a nonmagnetic con-

ductive layer with strong spin-orbit interactions. Using these

spin-orbit torques, one can create different realizations of the

classical field-like torque (e.g., indirect Rashba effect) and

the Slonczewski-Berger torque (e.g., spin Hall effects and

the direct Rashba effect).17–19

However, the simplest method of the spin-polarized cur-

rent production is based on passing conducting electrons

through a pillar magnetic heterostructure, see Fig. 1(a). In

this method, the spin-polarized current is always assisted by

an Ørsted field, the exact form of which depends on the

cross-section of the heterostructure. The pillar structure con-

sists of two ferromagnetic layers (Polarizer and Sample) and

a nonmagnetic Spacer between them, see Fig. 1(a). When the

electrical current passes through the Polarizer the conduction

electrons become partially spin-polarized in a direction,

which is determined by the Polarizer magnetization. The

Polarizer is usually made of a hard ferromagnetic material

whose magnetization is kept fixed. The Spacer is produced

from a nonmagnetic material which prevents the exchange

and the dipole-dipole interactions between Polarizer and

Sample. In a recent paper,20 it was shown that the Spacer

plays an important role in the process of spin diffusion due

to interface scattering effects which result in a polarization

change. However, for the sake of simplicity in our phenome-

nological study, we consider only thin and smooth interfaces

between all layers. Thus, the spin-polarized electrons trans-

fer the spin-torque from Polarizer to the Sample which can

result in dynamics of the Sample magnetization. The spin-

torque influence can be described phenomenologically by

adding the Slonczewski-Berger torque to the Landau-

Lifshitz equation.21–23

FIG. 1. The three-layer stripe-shaped spin valve. The spin polarized current

flows perpendicularly to the studied stripe opposite to the ẑ–direction,

thereby the conduction electrons flow to the opposite side, as shown by the

green (large) arrow. The direction of polarizer magnetization and the Ørsted

field distribution for a quasi-infinite stripe sample are indicated by small

white and red arrows, respectively.a)Electronic mail: alexey@volkov.ca

0021-8979/2015/117(21)/213910/9/$30.00 VC 2015 AIP Publishing LLC117, 213910-1

JOURNAL OF APPLIED PHYSICS 117, 213910 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

132.180.92.25 On: Tue, 25 Aug 2015 09:31:28

http://dx.doi.org/10.1063/1.4921977
http://dx.doi.org/10.1063/1.4921977
http://dx.doi.org/10.1063/1.4921977
http://dx.doi.org/10.1063/1.4921977
mailto:alexey@volkov.ca
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4921977&domain=pdf&date_stamp=2015-06-02


The aim of this work is to show that periodical struc-

tures can be formed in the case of action of a transverse

spin-polarized current assisted by the Ørsted field on long

ferromagnetic nanostripes. In our study, we consider two dif-

ferent spatial distributions of the Ørsted field: for stripes

with infinite and finite length, see Figs. 1 and 8(a), respec-

tively. By varying the stripe width, we study the current

induced magnetization behavior in a wide range, starting

from narrow stripes (w� h) and up to quasi two-

dimensional wide stripes (w� h), where w and h denote the

stripe width and thickness, respectively. We assume that the

stripe is sufficiently long, so that L� w and L� h with L
being the stripe length, and thin enough to ensure uniformity

of the magnetization along the thickness. Details of the prob-

lem geometry are shown in Fig. 1.

II. MODEL DESCRIPTION

Our study is based on the Landau–Lifshitz–Slonczewski

phenomenological equation21–23

m_ ¼ m� dE
dm
� ja

m� m� ẑ½ �
1þ b m � ẑð Þ ; (1)

where m ¼ M=Ms ¼ ðmx;my;mzÞ is the normalized magnet-

ization vector, Ms is the saturation magnetization. The over-

dot indicates a derivative with respect to the rescaled time

which is measured in units ð4pcMsÞ�1
, c is a gyromagnetic

ratio, and E ¼ E=ð4pM2
s Þ is the normalized magnetic energy.

The normalized spin–current density j ¼ J=J0, where

J0 ¼ 4pM2
s jejh=�h, with e being the electron charge, �h is the

Planck constant. The spin–transfer torque efficiency coeffi-

cients a and b have the forms a ¼ PK2=½K2 þ 1� and

b ¼ ½K2 � 1�=½K2 þ 1�, where P is the degree of spin polar-

ization, and the parameter K describes the resistance mis-

match between the spacer and the ferromagnet stripe.23,24

The damping is omitted in Eq. (1), because, as it was shown

earlier,8,9 the transverse spin–polarized current plays the role

of an effective damping, which is usually greater than the

natural one. It should also be noted that Eq. (1) is written for

the case when the Polarizer is magnetized along the ẑ-axis,

see Fig. 1.

We consider here a magnetic system, the total energy

E ¼ Eex þ Ed þ Ez of which consists of three parts:

exchange, dipole-dipole, and Zeeman contributions. The

exchange energy has the form

Eex ¼ A

ð
V

dr ½ðrmxÞ2 þ ðrmyÞ2 þ ðrmzÞ2�; (2)

where A is the exchange constant.

The energy of the dipole-dipole interaction is

Ed ¼
M2

s

2

ð
V

dr

ð
V

dr0 m rð Þ � rð Þ m r0ð Þ � r0ð Þ 1

jr � r0j : (3)

The Zeeman energy describes the interaction of the

magnetic film with the Ørsted field BðJ; rÞ

Ez ¼ �Ms

ð
V

dr BðJ; rÞ �m; (4)

where the spatial distribution of BðJ; rÞ is determined by the

form of the sample cross-section.

III. SIMULATION RESULTS

Here, we report on the results of a numerical study

which is based on micromagnetic simulations.25,26,33 The

lengths of all studied stripes are the same L ¼ 1 lm. To

ensure the magnetization uniformity along the ẑ-axis, we

consider only thin stripes with a thickness of about one mag-

netic length, namely, h¼ 5 nm. Since the thickness is small,

the current density is assumed to be spatially uniform. The

width is varied in a wide range 1 � w � 100 nm. A uniform

in-plane magnetization state along the stripe (along the

x̂–axis) is chosen as an initial state for each simulation

because it is very close to the ground state of a long stripe.

In order to consider all possible current values, we adiabati-

cally increase the current density from zero to values where

the magnetization state does not depend on the current

density.27

One has to stress that periodical magnetization struc-

tures appear just below the saturation current Js / hM2
s .8,9

Therefore, there are two ways to decrease the saturation cur-

rent density: (i) to use samples with smaller thickness, that is

why in the current paper we consider thin stripes with

h¼ 5 nm, (ii) to use materials with smaller saturation mag-

netization. Therefore, we additionally carried out simulations

for Nickel (Ni) stripes, namely, MNi
s ¼ 4:85� 105 A/m ver-

sus MPy
s ¼ 8:6� 105 A/m. These results are presented in

Appendix A.

Two different types of numerical experiments are per-

formed by means of micromagnetic simulations. In the first

type of simulations, we consider finite length stripe samples

under the action of a pure spin-polarized current (without

Ørsted field). As a result, we obtain all magnetization states

which were found in our previous studies for thicker sam-

ples.10 However, due to the thickness reducing from

h¼ 10 nm in the previous simulations to h¼ 5 nm in the cur-

rent ones, the typical current value, which corresponds to a

certain magnetization state, becomes smaller. Namely, this

current is nearly three times smaller for the same stripe

width, see Figs. 2(a) and 2 in Ref. 10. Moreover, we perform

the same simulations for stripes with periodic boundary con-

ditions along the stripe, which models the quasi-infinite

stripe sample. In these simulations, we do not find any prin-

cipal differences with our previous results. This means that

our stripe length L¼ 1 lm is large enough to generalize the

phase diagram Fig. 2(a) for longer stripes.

In the second type of simulations, we consider quasi-

infinite ferromagnetic stripe samples under the combined

action of the spin-polarized current and the Ørsted field. In

these simulations, we also use periodic boundary conditions

along the stripe. In this case, the exact form of the field

reads

B J; rð Þ ¼ 4p
c

Jyx̂; (5)

213910-2 Volkov et al. J. Appl. Phys. 117, 213910 (2015)
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where c is the speed of light. All possible types of the mag-

netization behavior in these micromagnetic simulations are

summarized in the form of the phase diagram which is pre-

sented in Fig. 2(b).

Comparing the two diagrams in Fig. 2, one can conclude

that the field influence is not significant for cases of narrow

stripes and/or low current densities. This is due to the fact

that the maximum value of the Ørsted field is directly pro-

portional to the current density and the stripe width,

Bmax / Jw=2. In these cases, the same magnetization states

appear: the uniform in-plane state for small current densities

and for all stripe widths, see the region 2 of the phase dia-

grams in Fig. 2; the uniform out-of-plane state for narrow

widths and higher current densities, see the region 3; the per-

iodic domain structure (region 10). However, for the case of

strong currents there is an important difference between

these two cases: the action of the Ørsted field disables the

saturation state and the single domain wall state appears

instead of it, see the region 4 in Fig. 2(b) and the inset Fig.

2(f). This is the result of competition between influences of

spin-torque and the Ørsted field on the magnetization and

will be discussed in more details in Sec. IV.

For the intermediate values of the current density, there

are observed the chaotic dynamical regime and stable peri-

odic magnetization structures in both simulation cases: with

and without Ørsted field. However, there are number of dif-

ferences between these two regimes: (I) the vortex-

antivortex quasicrystals, the cross-tie domain walls, and the

vortex diamond states remain stable in both cases, although

in stripes under the action of the Ørsted field the quasicrys-

tals undergo a deformation; (II) the antivortex diamond state

and the transverse domain wall states do not remain under

the Ørsted field action; (III) in the case of the field absence a

state with a single longitudinal domain wall appears only in

a small region on the phase diagram between the saturated

and the cross-tie domain wall states, see region 4 in Fig.

2(a). Contrary to this, in the case of joint action of the spin-

current assisted by the Ørsted field, a similar single domain

wall state appears for any stripe width if the current is strong

enough, see region 4 in Fig. 2(b); and (IV) the area of

regions with multiple longitudinal domain walls increases

significantly under the Ørsted field action.

We use the two-dimensional (2D) Fourier transform of

the out-of-plane magnetization component

F2D
z kjð Þ ¼

1

Nxy

XNxy

i¼1

mz rið Þ � hmzi
� �

e�ikjri ; (6)

in order to distinguish and analyze various periodical struc-

tures, such as the longitudinal domain walls, the vortex-

antivortex quasicrystals, and the cross-tie domain walls. In

Eq. (6), Nxy is the total number of mesh cells in a square

area where the Fourier transform is applied, ri ¼ ðxi; yiÞ is a

two-dimensional vector pointing to the appropriate cell,

hmzi ¼ 1
Nxy

PNxy

i¼1 mzðriÞ is the averaged out-of-plane magnet-

ization component, and kj ¼ ðkx
j ; k

y
j Þ is a 2D wave vector. As

one can conclude from Fig. 3(a), the action of the Ørsted

field leads to the deformation of the quasicrystal state at

stripe edges, this results in the formation of additional peaks

in the 2D Fourier spectrum, see Fig. 3(a). For the case of the

longitudinal domain wall, the kx components are absent in

the Fourier spectrum, see Fig. 3(b). This feature is used for

the structure separation in the phase diagrams in Fig. 2. On

the other hand, this feature allows us only to distinguish the

two-dimensional and the one-dimensional magnetization

structures, and it could not help in the separation of the mag-

netization structures with different numbers of domain walls,

which take place on both diagrams, see Figs. 2(a) and 2(b).

For this separation, we consider the distribution of the out-

of-plane magnetization component mz along the stripe width,

FIG. 2. The phase diagrams of the magnetization behavior of Py stripes of different widths w under the action of a transverse spin current J: (a) no Ørsted field,

(b) Ørsted field is taken into account, see Fig. 1, and periodic boundary conditions are applied. Length L¼ 1 lm and thickness h¼ 5 nm of the stripes are fixed.

Black bold dots indicate the transition from one state to another, and each state is numerated, in concordance with the legend. In the same way as in Fig. 2 of

Ref. 10, states 10–14 show all possible periodical magnetization structures, and the inset pictures (c)–(e) show the possible uniform states: the saturation state,

the in-plane and the out-of-plane uniform states, respectively. The inset picture (f) shows the single domain wall state.

213910-3 Volkov et al. J. Appl. Phys. 117, 213910 (2015)
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and we count all maxima which appear on it. This number of

maxima shows us the corresponding number of the domain

walls, as one can see from the insets (a)–(c) in Fig. 4.

On the next stage of our study, we consider the depend-

ence of the averaged out-of-plane magnetization component

hmzi on the current density for the stripe sample with

w¼ 93 nm, as one can see from the upper panel in Fig. 4.

Regions of various magnetization states are shown in a way

how they appear during the current density increase: region

2 is the static homogeneous magnetization state within the

plane of the stripe with hmzi ¼ 0, it was described in detail

in Ref. 9; region 15 is the chaotic dynamical state of a

vortex-antivortex gas and leads to a noisiness of the hmzi
component, however, its magnitude grows with the current

density; region 14 is the vortex-antivortex quasicrystal state,

which was described in detail in Ref. 8. For this current den-

sities, the hmziðJÞ dependence becomes smooth but not mo-

notonous. The existence of maxima is associated with the

quasicrystal structure reorganization, which occurs with the

growing of the current; regions 8, 6, and 4 are magnetization

states with five, three, and one longitudinal domain walls,

respectively. As one can see from Fig. 4, the hmziðJÞ depend-

ence reaches its maximum in the region with five domain

walls and after that it decreases smoothly with the increase

of current density. During this process, the number of do-

main walls decreases to one. This happens due to the influ-

ence of the Ørsted field which becomes stronger with higher

values of current density and has the maximum magnitude

on the stripe edges, see Fig. 1. As a final magnetization state,

the single domain wall appears, it has its own characteristics:

(i) in-plane magnetization components of the domain wall

turn perpendicularly to the field, which is unusual, see the

inset picture (a) in Fig. 5; (ii) the profile of the domain wall

is described by a cosine with respect to the center of the

stripe, see Fig. 5(b). It is different from the usual form of

head-to-head or tail-to-tail domain walls in ferromagnetic

samples which is described by a hyperbolic secant; (iii) in

addition, the width of the domain wall Dw is determined by

the stripe width and does not depend on the material parame-

ters as for usual domain walls. (iv) For large current den-

sities, the form of the domain wall becomes “frozen,” in

other words, it does not change during the current growing.

To show the last characteristic, we consider the dependence

of the domain wall Dw on the current density for the stripe

sample with w¼ 93 nm width, see Fig. 5. The width Dw is

found as a full width at half maximum for each current den-

sity, as is shown on the inset of Fig. 5(b). As one can see,

this dependence reaches the maximum and, after that, it

decreases reaching some horizontal asymptote. This means

that for infinitely high currents an unchangeable structure

appears which is analyzed in Sec. IV.

The maximum on the dependence in Fig. 5 can be

explained as an influence of edge effects, which appear from

the competition of the dipole-dipole interaction with the

FIG. 3. Magnetization distributions

and its two-dimension Fourier spectra

of the square central part of the stripe

with w¼ 93 nm width with quasi-

crystal magnetization state (a) and

quintuple domain wall state (b), which

were obtained for currents J ¼
6� 1012 A/m2 and J ¼ 7� 1012 A/m2,

respectively. The wave vector compo-

nents kx and ky are measured in units

2p=‘, where ‘ is the exchange length.

213910-4 Volkov et al. J. Appl. Phys. 117, 213910 (2015)
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current induced field and the spin-transfer torque on the

stripe edge. The influence of the edge effects becomes even

stronger when we study the action of the spin-current

assisted Ørsted field on finite length stripe samples, see

Appendix B for details.

IV. LONGITUDINAL DOMAIN WALL INDUCED
BY STRONG CURRENT

In this section, we show that for strong current densities

the competition of the Ørsted field and the spin-torques

results in a formation of the single longitudinal domain wall

instead of the uniformly saturated state. For qualitative

description of the phenomenon, it is enough to model the

magnetostatic energy of the stripe by the biaxial

anisotropy28–30

Eef
an ¼

1

2

ð
V

dr Kpm2
z � Kam2

x

� �
; (7)

where Kp > 0 and Ka > 0 are easy-plane and easy-axis ani-

sotropy coefficients, respectively, which can be assessed as

demagnetization factors of a thin ferromagnetic stripe.31

Taking into account Eqs. (2), (4), (5), and (7) and using

the representation of the magnetization vector in the spheri-

cal coordinate system m ¼ ðsin h cos /; sin h sin /; cos hÞ,
one can get the corresponding total normalized energy of the

system

E ¼ 1

2

ð
V

dr ‘2 rhð Þ2 þ sin2h r/ð Þ2
h i

þ kp cos2h
n

� ka sin2h cos2/� 2j
yh

s0

sin h cos /

�
; (8)

FIG. 4. Dependence of the average

out-of-plane magnetization component

hmzi on the current density in the case

of the quasi-infinite stripe with

w¼ 93 nm. The row of panels (a)–(c)

show the out-of-plane magnetization

distributions along the stripe width for

quintuple (J ¼ 7� 1012 A/m2), triple

(J ¼ 12:5� 1012 A/m2), and single

(J ¼ 15� 1012 A/m2) longitudinal do-

main walls states, respectively.

FIG. 5. Dependences of the domain wall width Dw on the current density for

a quasi-infinite Py stripe with w¼ 93 nm for the case of combined action of

the Ørsted field and the spin-polarized current. The inset picture (a) shows

the in-plane magnetization distribution in the central area of the stripe with

dimensions 100� 93 nm2 for the same current density. The inset picture (b)

shows the out-of-plane magnetization distribution along the stripe width for

J ¼ 250� 1012 A/m2 and the definition of Dw.
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where kp ¼ Kp

4pM2
s

and ka ¼ Ka

4pM2
s

are the normalized coeffi-

cients of effective anisotropy, ‘ ¼
ffiffiffiffiffiffiffiffi

2A
4pM2

s

q
is the exchange

length, and s0 ¼ U0

pB0
is an effective area, where U0 ¼ �hpc=jej

is the magnetic flux quantum and B0 ¼ 4pMs is the satura-

tion field. For Permalloy ‘ 	 5:3 nm, B0 	 1:08� 104 G, it

is remarkable that the value of the effective area s0 	
6:09� 102 nm2 is of the same order of magnitude as the area

of the stripe cross-section. Substituting the energy (8) into

Eq. (1) and considering only static solutions, we obtain the

set of equations

‘2r sin2hr/
� �

� ka sin2h sin / cos /

�j sin h
yh

s0

sin /þ a sin h
1þ b cos h

� 	
¼ 0; (9a)

‘2Dhþ sin 2h
2

kp þ ka cos2/� ‘2 r/ð Þ2
h i

þj
yh

s0

cos h cos / ¼ 0: (9b)

One can see that in the case of high current density

kp; ka � jyh=s0, there is a solution in a linear approximation

h 	 2

P

h

s0

y; (10a)

/ 	 �p
2
: (10b)

The linear approximation in Eq. (10a) works well in the

whole range of parameters y 2 ð0;w=2Þ under the following

condition:

c ¼ w2h2 1� b� 2b2
� �

24a2s2
0

� 1: (11)

This means that one can neglect the next term in a series. For

our material and geometrical parameters for a stripe sample

with w¼ 93 nm c 	 0:08� 1, hence the linear dependence

works well for all the range of y 2 ð0;w=2Þ.
The solution (10) originates from the competition of the

spin-torque, which is created by the spin-polarized current

and the influence of the Ørsted field. As one can see, the so-

lution (10a) contains only geometrical and material parame-

ters of the sample and does not include the current density.

This fact means that for the high current densities we obtain

a “frozen” single domain wall, whose form does not change

with the increasing current. As one can see from Figs. 5 and

6, our analytical solutions (10) are in a good agreement with

simulation data for strong enough currents

V. SUMMARY

We study numerically the periodical structures forma-

tion under the combined action of spin-polarized current and

the current-induced Ørsted field in stripes with the two

different Ørsted field distribution and different material pa-

rameters. We show that in all studied cases, cross-tie, longi-

tudinal domain walls, and vortex-antivortex quasicrystals

appear. As a result of the competition of the spin-polarized

current and the Ørsted field, the single domain wall state

appears instead of the saturation, which is obtained in the

case of pure spin current without the Ørsted field. It is shown

both numerically and analytically that the shape of this wall

remains constant with the current increasing, and it depends

only on geometrical and material parameters of the sample.

The micromagnetic simulations confirm our analytical

results with high accuracy. Also we show that periodic mag-

netization structures appear in different ferromagnetic mate-

rials and the required values of spin current can be reduced

by utilizing materials with lower saturation magnetization,

such as Nickel.
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APPENDIX A: ACTION OF THE SPIN-CURRENT
ASSISTED ØRSTED FIELD ON A NICKEL
QUASI-INFINITE STRIPE

The aim of this Appendix is to show that utilizing mate-

rials with a smaller value of the saturation magnetization

leads to a reduction of the current. For an example, we use

FIG. 6. Analytical solutions (10a) and (10b) for the single domain wall state

(solid lines), compared to simulation data. Simulations were performed for a

Permalloy stripe sample with width w¼ 93 nm.
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Ni quasi-infinite stripe samples. In this case, we take into

account that Ni is a ferromagnetic material with cubic anisot-

ropy and its total energy has the corresponding additional

term

Ean ¼ Kc

ð
V

dr ½m2
xm2

y þ m2
xm2

z þ m2
ym2

z �; (A1)

where Kc is the cubic anisotropy coefficient.32

All simulation results are summarized in a phase dia-

gram, which is shown in Fig. 7. By comparing results pre-

sented in Figs. 2(b) and 7, one can see that the critical

current decreases by a factor of three.

APPENDIX B: THE COMBINED ACTION OF THE
SPIN-POLARIZED CURRENT AND THE ØRSTED
FIELD ON STRIPE SAMPLES WITH FINITE LENGTH

Here, we report on the results of the co-action of the

spin-polarized current and the Ørsted field on stripe samples

with finite length. The spatial distribution of the Ørsted field

for the finite length stripe can be calculated by using the

Biot–Savart law

B J; rð Þ ¼ 1

c

ð
V

dr0
J � r � r0ð Þ
jr � r0j3

; (B1)

where J is the current density and jr � r0j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
with r ¼ ðx; y; zÞ and

r0 ¼ ðx0; y0; z0Þ. Doing an integration over the entire volume

with x0 2 ð� L
2
; L

2
Þ; y0 2 ð� w

2
; w

2
Þ, and z0 2 ð�1;1Þ and

taking into account that the current flows through the fer-

romagnetic stripe in �ẑ-direction, while electrons are

moving in the opposite direction, it gives to us the mag-

netic field which can be written in the complex vector B ¼
Bx þ iBy form

B J; rð Þ ¼ 2J

c
2pyþ

X4

k¼1

�1ð Þkn
kln n
k
� �( )

; (B2)

where lnðnkÞ ¼ lnjnkj þ i argðnkÞ is the complex logarithm,

and n1 ¼ ðxþ L
2


 �
þ iðy� w

2
Þ; n2 ¼ ðx� L

2
Þ þ iðy� w

2
Þ; n3

¼ ðx� L
2
Þ þ iðyþ w

2
Þ; and n4 ¼ ðxþ L

2
Þ þ iðyþ w

2
Þg.

The final form of the Ørsted field distribution (B2) is

described in Fig. 8(a). As one can see, the central part of

the spatial field distribution is the same as the Ørsted field

in the infinite length stripe; however, the rest parts are

completely different, as one can see from Figs. 1 and 8(a),

respectively.

As a result of the simulations, we obtain the phase dia-

gram which is shown in Fig. 8(b). As one can see, the parts

of the diagram which correspond to the narrow stripes and

small current densities remain almost the same as they

appear in the previous cases which are discussed in Sec. III

and, similarly to the case of quasi-infinite stripes under the

action of the spin-current and the Ørsted field, we also obtain

the single domain wall state instead of the saturated one. In

contrast to this, the parts of the diagram in Fig. 8(b) which

correspond to wide stripes and large current densities are

completely different from the same parts of the diagrams in

Figs. 2(a) and 2(b). This occurs because the spatial distribu-

tion of the Ørsted field for finite length stripes leads to a

strong influence of the edge effects in areas far from the cen-

ter of the stripe. This edge effects start to play a key role in

the processes of transition from one magnetization state to

another: cross-tie domain walls appear instead of

FIG. 7. The phase diagram of the mag-

netization behavior of Ni quasi-infinite

stripes of different widths w under the

co-action of the spin-polarized current

and the assisted Ørsted field. The

numeration of the magnetization states

is the same as the numeration in Fig. 2.
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longitudinal domain walls with the number of domains larger

than one. At the same time, the magnetization structures,

e.g., cross-tie domain wall state, vortex diamond state, and

vortex-antivortex quasicrystals, remain stable, however,

some of them undergo a deformation.
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32Nickel (Ni) material parameters: saturation magnetization

Ms ¼ 4:85� 105 A/m, exchange constant A ¼ 3:4� 10�12 J/m, con-

stant of cubic anisotropy Kc ¼ �5:7� 103 J/m3 and exchange length

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ð4pM2

s Þ
p

¼ 4:8 nm.

33Permalloy (Py, Ni81Fe19) material parameters: saturation magnetiza-

tion Ms¼ 8.6� 105 A/m, exchange constant A¼ 13� 10�12 J/m,

exchange length ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ð4pM2

s Þ
p

¼ 5:3 nm, and anisotropy is

neglected.
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