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Stellar radiative zones are typically assumed to be motionless in standard models
of stellar structure but there is sound theoretical and observational evidence
that this cannot be the case. We investigate by direct numerical simulations a
three-dimensional and time-dependent model of stellar radiation zones consisting
of an electrically conductive and stably stratified anelastic fluid confined to a
rotating spherical shell and driven by a baroclinic torque. As the baroclinic driving is
gradually increased a sequence of transitions from an axisymmetric and equatorially
symmetric time-independent flow to flows with a strong poloidal component and lesser
symmetry are found. It is shown that all flow regimes characterised by significant
non-axisymmetric components are capable of generating a self-sustained magnetic
field. As the value of the Prandtl number is decreased and the value of the Ekman
number is decreased, flows become strongly time dependent with progressively
complex spatial structure and dynamos can be generated at lower values of the
magnetic Prandtl number.
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1. Introduction

It has long been known theoretically that radiative zones in rotating stars cannot be
in static equilibrium (von Zeipel 1924). Instead, the basic axisymmetric solution of
the problem consists of a differential rotation and a rather weak meridional circulation
driven by the centrifugal force in the presence of the Coriolis force (Schwarzschild
1947; Busse 1982; Spruit & Knobloch 1984). In more recent years, fluid motions and
the possibility of magnetic field generation in stably stratified stellar radiative zones
have gained considerable interest owing to increasingly detailed observations of stellar
magnetic fields. To model radiative cores several numerical studies of baroclinically
driven flows in stably stratified rotating spheres have been published, notably by
(Rieutord 2006; Espinosa & Rieutord 2013; Hypolite & Rieutord 2014; Rieutord &
Beth 2014). However, these studies have been restricted to modelling two-dimensional
and steady axisymmetric flows and have been based on the Boussinesq approximation
which does not account for the strong density variations typical of stably stratified
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2 R. D. Simitev and F. H. Busse

regions in stars. Also the possibility of magnetic flux generation by dynamo action
has not been considered in these papers.

These restrictions have been lifted in a recent study by Simitev & Busse (2017)
who considered a non-axisymmetric and time-dependent model of baroclinic flows
in rotating spherical fluid shells based on the anelastic approximation (Gough 1969;
Braginsky & Roberts 1995; Lantz & Fan 1999). Simitev & Busse (2017) found
a sequence of bifurcations from simple regular to complex irregular flows with
increasing baroclinicity. Some of the transitions in this sequence were observed to
exhibit hysteretic behaviour. They noted that with increasing baroclinicity the poloidal
component of the flow grows relative to the dominant toroidal component and thus
facilitates magnetic field generation. Simitev & Busse (2017) proceeded to report a
non-decaying dynamo solution and suggested that self-sustained dynamo action of
baroclinically driven flows may allow for the possibility that magnetic fields in stably
stratified stellar interiors are not necessarily of fossil origin as is often assumed.

In the present study, we essentially confirm and significantly extend the results
presented in Simitev & Busse (2017) by summarising over 90 new hydrodynamic
and hydromagnetic numerical simulations, 62 of which are explicitly included in
the text. The results of Simitev & Busse (2017) were restricted to fixed values for
all model parameters apart from the baroclinicity parameter. In particular, the value
of the Prandtl number was fixed to Pr = 0.1 which restricts the baroclinicity to a
fairly modest value and only steady flows were thus reported. In addition, only a
single steady dynamo was presented in Simitev & Busse (2017) for an unrealistically
large value of the magnetic Prandtl number. Here, we investigate a much larger
region of the parameter space reaching in the directions of smaller values of the
Prandtl number and of the magnetic Prandtl number and of smaller values of the
Ekman number. We report one new hydrodynamic instability and we find essentially
time-dependent flows. Another main goal of the present study is to determine which
of the distinct baroclinically driven flow states found are capable of generating a
self-sustained magnetic field and we are able to establish the existence of dynamo
excitation in all states with non-axisymmetric flow components. The critical value of
the magnetic Prandtl number for the onset of dynamo action is determined and the
dynamo mechanism is elaborated.

2. Mathematical model
Our model of a stably stratified stellar radiative zone is based on the anelastic

approximation (Gough 1969; Braginsky & Roberts 1995; Lantz & Fan 1999) which
is widely adopted for numerical simulations of convection in Solar and stellar interiors
(Jones et al. 2011). Accordingly, we consider a perfect gas confined to a spherical
shell rotating with a fixed angular velocity Ω k̂, where k̂ is the unit vector in the
direction of the axis of rotation. A positive entropy contrast 1S is imposed between
its outer and inner surfaces at radii ro and ri, respectively. We assume a gravity
field proportional to g/r2. To justify this choice consider the Sun, the star with
the best-known physical properties. The Solar density drops from 150 at the centre
to 20 g cm−3 at the core-radiative zone boundary (at 0.25R�) to only 0.2 at the
tachocline (at 0.7R�). A crude piecewise linear interpolation shows that most of the
mass is concentrated within the core. In this setting a hydrostatic polytropic reference
state exists with profiles of density, temperature and pressure given by the expressions

ρ̄ = ρcζ
n, T̄ = Tcζ , P̄= Pcζ

n+1, (2.1a−c)
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Flows and dynamos in radiation zones 3

respectively, where

ζ = c0 +
c1

r
, ζo =

η+ 1
η exp(Nρ/n)+ 1

,

c0 =
2ζo − η− 1

1− η
, c1 =

(1+ η)(1− ζo)

1− η

2

,

 (2.2)

see (Jones et al. 2011). The parameters ρc, Pc and Tc are reference values of density,
pressure and temperature at mid-shell. The gas polytropic index n, the density scale
height Nρ and the shell radius ratio η are defined further below. Since a rigidly
rotating stellar interior cannot exist, the deviation from such a state is described
by the baroclinic parameter Z, introduced below. This parameter is associated with
the centrifugal force which balances the baroclinic torques (Busse 1982). Following
Rieutord (2006) we neglect the distortion of the isopycnals caused by the centrifugal
force. The governing anelastic equations of continuity, momentum, energy (entropy)
and magnetic induction assume the form

∇ · ρ̄u = 0, (2.3a)
∇ ·B = 0, (2.3b)

∂tu+ (∇× u)× u = −∇Π −
2

Ek
(k̂× u)+

R
Pr

S
r2

r̂+Fν

+
1
ρ̄
(∇×B)×B− Z(S+ S) k̂× (r× k̂), (2.3c)

∂tS+ u · ∇(S+ S) =
1

Prρ̄T̄
∇ · ρ̄T̄∇S+

c1Pr
RT̄

(
Qν +

1
Pmρ̄

Qj

)
, (2.3d)

∂tB = ∇× (u×B)+ Pm−1
∇

2B, (2.3e)

where S is the deviation from the background entropy profile

S=
ζ (r)−n

− ζ−n
o

ζ−n
o − ζ

−n
i

, (2.4)

u is the velocity vector, B is the magnetic flux density, ∇Π includes all terms that
can be written as gradients and r= rr̂ is the position vector with respect to the centre
of the sphere (Jones et al. 2011; Simitev, Kosovichev & Busse 2015). The viscous
force, the viscous heating and the ohmic heating, given by

Fν = (ρc/ρ̄)∇ · S, Qν = S : e, Qj = (∇×B)2, (2.5a−c)

respectively, are defined in terms of the deviatoric stress tensor

Sij = 2ρ̄(eij − ekkδij/3), eij = (∂iuj + ∂jui)/2, (2.6a,b)

where double-dots (:) denote a Frobenius inner product, and ν is a constant viscosity.
The governing equations (2.3) have been non-dimensionalised with the shell thickness
d = ro − ri as unit of length, d2/ν as unit of time, ν

√
µ0ρc/d as a unit of magnetic

induction and 1S, ρc and Tc as units of entropy, density and temperature, respectively.
The system is then characterised by eight dimensionless parameters: the radius ratio,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000612
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek Bayreuth, on 29 Apr 2019 at 09:01:57, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000612
https://www.cambridge.org/core


4 R. D. Simitev and F. H. Busse

the polytropic index of the gas, the density scale number, the Prandtl number,
the magnetic Prandtl number, the Rayleigh number, the Ekman number and the
baroclinicity parameter,

η= ri/ro, n, Nρ = ln(ρ̄(ri)/ρ̄(ro)), Pr= ν/κ, Pm= ν/λ,

R=−gd31S/(νκcp), Ek= ν/(Ωd2), Z =Ω2d41S/(ν2cp),

}
(2.7)

respectively, where κ is a constant entropy diffusivity, λ and µ0 are the magnetic
diffusivity and permeability, and cp is the specific heat at constant pressure. Note, that
the Rayleigh number assumes negative values in the present problem since the basic
entropy gradient is reversed with respect to the case of buoyancy-driven convection.

The poloidal–toroidal decomposition

ρ̄u=∇× (∇× r̂rv)+∇× r̂r2w,
B=∇× (∇× r̂h)+∇× r̂g,

}
(2.8)

is used to enforce the solenoidality of the mass flux ρ̄u and of the magnetic flux
density. This has the further advantages that the pressure gradient can be eliminated
and scalar equations for the poloidal and the toroidal scalar fields, v and w, are
obtained by taking r̂ · ∇×∇× and r̂ · ∇× of equation (2.3c). Similarly equations for
the poloidal and the toroidal scalar fields, h and g, are obtained by taking r̂ · ∇×
and r̂· of equation (2.3e). Except for the term with the baroclinicity parameter Z the
resulting equations are identical to those described by Simitev et al. (2015). Assuming
that entropy fluctuations are damped by convection in the region above r = ro we
choose the boundary condition

S= 0 at r=
{

ri ≡ η/(1− η),
ro ≡ 1/(1− η), (2.9a)

while the inner and the outer boundaries of the shell are assumed stress free and
impenetrable for the flow

v = 0, ∂2
r v =

ρ̄ ′

ρ̄r
∂r(rv), ∂r(rw)=

ρ̄ ′

ρ̄
w at r=

{
ri,

ro.
(2.9b−d)

The boundary conditions for the magnetic field are derived from the assumption of
an electrically insulating external region. The poloidal function h is then matched to
a function h(e), which describes an external potential field,

g= 0, h− h(e) = 0, ∂r(h− h(e))= 0 at r=
{

ri,

ro.
(2.9e−g)

3. Methods for numerical solution
A pseudo-spectral method described by Tilgner (1999) was employed for the direct

numerical simulation of problem (2.3–2.8). We adapted a code developed and used
by us for a number of years (Busse, Grote & Simitev 2003; Busse & Simitev 2011;
Simitev et al. 2015) that has been extensively benchmarked for accuracy (Marti et al.
2014; Simitev et al. 2015; Matsui et al. 2016). Adequate numerical resolution for
the simulations was chosen as described in Simitev et al. (2015). To analyse the
properties of the solutions we decompose the kinetic energy density into poloidal
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Flows and dynamos in radiation zones 5

and toroidal components (respectively denoted by subscripts as in Xp and Xt in
equations (3.1) below and where X denotes an appropriate quantity) and further into
mean (axisymmetric) and fluctuating (non-axisymmetric) components (respectively
denoted by bars and tildes as in X and X̃ below) and into equatorially symmetric and
equatorially antisymmetric components (respectively denoted by superscripts as in Xs

and Xa below),

Ep = Es
p + Ea

p = 〈(∇× (∇(v
s
+ va)× r))2/(2ρ̄)〉,

Et = Es
t + Ea

t = 〈(∇r(ws
+wa)× r)2/(2ρ̄)〉,

Ẽp = Ẽs
p + Ẽa

p = 〈(∇× (∇(ṽ
s
+ ṽa)× r))2/(2ρ̄)〉,

Ẽt = Ẽs
t + Ẽa

t = 〈(∇r(w̃s
+ w̃a)× r)2/(2ρ̄)〉,

 (3.1)

where angular brackets 〈 〉 denote averages over the volume of the spherical shell.
Since in our code the spectral representation of all fields X is given by the set
of coefficients {Xm

l } of their expansions in spherical harmonics Ym
l , it is easy to

extract the relevant components, i.e. coefficients with m= 0 and with m 6= 0 represent
axisymmetric and non-axisymmetric components, respectively, while coefficients with
even (l+ m) and with odd (l+ m) represent equatorially symmetric and equatorially
antisymmetric components, respectively. The magnetic energy density is similarly
decomposed into components.

4. Parameter values and initial conditions

In the simulations presented here fixed values are used for some governing
parameters, namely

η= 0.3, n= 2, Nρ = 2, R=−5× 104. (4.1a−d)

The value for the shell thickness represents a stellar radiative core geometrically
similar to that of the Sun. The values for n and Nρ are not significantly different
from current estimates for the Solar radiative zone, n = 1.5 and Nρ = 4.6. The
Rayleigh number is set to a negative value in order to model a convectively stable
configuration.

A large variation is known to exist in the rates of stellar rotation, e.g. van Saders &
Pinsonneault (2013). Here, we use three different values of the Ekman number, namely
Ek= 2/300, 1/300 and 1/500, selected so that the effect of rotation is strong enough
to govern the dynamics of the system, but not too strong to cause a significant increase
in computational expense; similar values are used e.g. by Simitev et al. (2015) and
in the cases F1–4 of Käpylä et al. (2017). This variation in the values of the Ekman
number allows us to observe the effect of rotation.

Unresolved subgrid scales in convective envelopes are typically modelled by the
assumption of approximately equal turbulent eddy diffusivities. As a consequence the
choice of Pr = 1 is often made in the modelling and simulation literature (Miesch
et al. 2015). However, estimates of the Prandtl number values based on molecular
diffusivities are minute and it is thus unlikely that eddy diffusivities could increase
the effective Prandtl number to a value of the order of unity. Furthermore, in a stably
stratified system turbulence is expected to be anisotropic (Zahn 1992). With this in
mind we have decreased the value of the Prandtl number from 0.1 used in Simitev
& Busse (2017) to smaller values, namely Pr= 0.08, 0.05 and 0.03. This variation in
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6 R. D. Simitev and F. H. Busse

the value of Pr suffices to produce pronounced differences in the simulation results.
Further reductions of Pr prove to be difficult numerically.

The molecular values of the magnetic Prandtl number are estimated to increase from
approximately 10−5 at the surface of the Solar convection zone to approximately 10−1

at its bottom (Brandenburg & Subramanian 2005; Rieutord & Rincon 2010). Invoking
the eddy diffusivity argument mentioned above, it may be expected that the effective
values of the magnetic Prandtl number are somewhat further increased by turbulent
mixing. Considering this, the value of Pm= 1.5 for which a dynamo is demonstrated
in the present paper is certainly large but, perhaps not excessively large. We remark,
that it is possible to decrease Pm further as discussed in relation to figure 10 later
in the paper. With the aim of establishing the possibility of self-sustained dynamo
action in all of the baroclinically driven flow states found (see below) we also report
simulations with values of Pm larger than 1.5. Finally, values similar to the ones used
by us are also used by other numerical simulations reported in the literature e.g. many
of the cases in Käpylä et al. (2017) have values significantly greater than unity even
though theirs is a model of the Solar convection zone where Pm is estimated to be
smaller than in the radiative zone.

With these choices of parameter values, we find it convenient to organise and
present our results in terms of several sequences of cases in which the parameter Z
is increased in small steps to study radiative zones of various degrees of baroclinicity
while all other parameter values in a sequence are kept fixed, see for instance figure 1.
We remark that the strength of the baroclinic forcing, measured by Z, is limited from
above so that

Z < (1− η)3 |R|/Pr. (4.2)

This restriction guarantees that the apparent gravity does not point outward such
that the model explicitly excludes the well-studied case of buoyancy-driven thermal
convection.

Initial conditions of no fluid motion are used at vanishingly small values of Z,
while at finite values of Z the closest equilibrated neighbouring case is used as initial
condition to help convergence and reduce transients. To ensure that transient effects
are eliminated from the sequences presented below, all solutions have been continued
for at least 15 time units. Similarly, several dynamo cases have been started with small
random seeds for the magnetic field, while most other cases were subsequently started
from neighbouring simulations with equilibrated dynamos.

5. Instabilities of baroclinically driven flows
The baroclinically driven problem is invariant under a group of symmetry operations

including rotations about the polar axis i.e. invariance with respect to the coordinate
transformation ϕ → ϕ + α, reflections in the equatorial plane θ → π − θ and
translations in time t → t + a, see Gubbins & Zhang (1993). As baroclinicity Z
is increased the available symmetries of the solution are broken resulting in a
sequence of states ranging from simpler and more symmetric flow patterns to more
complex flow patterns of lesser symmetry. In this respect the system resembles
Rayleigh–Bénard convection (Busse 2003).

Three sequences of non-magnetic simulations with gradually increasing values of
the baroclinicity Z and fixed values of the other parameters were obtained and are
shown in figure 1. The first sequence is the most detailed one and allows us to capture
the transitions that occur as the flow is more strongly driven while the other two
sequences allow us to describe the effects of the variation in Ek and Pr.
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Flows and dynamos in radiation zones 7

FIGURE 1. Time-averaged kinetic energy densities as functions of baroclinicity Z for
parameter values (4.1) and Pr= 0.05, Ek= 2/300 (a,b), Pr= 0.05, Ek= 1/300 (c,d) and
Pr= 0.03, Ek= 1/500 (e, f ). Full and empty symbols indicate equatorially symmetric and
asymmetric energy components, respectively. Black circles, red squares, green triangles-up
and blue triangles-down indicate the energy components Es,a

p , Es,a
t , Ẽs,a

p , Ẽs,a
t , respectively.

Axially symmetric and axially asymmetric components are plotted in the left and the right
panels, respectively. Vertical dash-dotted lines indicate transition points. The ranges over
which distinct states are observed are indicated by arrows near the bottom abscissa, with
some states co-existing as indicated. Energy components not shown are at least 10 orders
of magnitude smaller than the ones shown.
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8 R. D. Simitev and F. H. Busse

The sequence with Pr= 0.05 and Ek= 2/300 is illustrated in the top two panels of
figure 1 and in figure 2. The sequence starts with the basic axisymmetric, equatorially
symmetric and time-independent state with a dominant wavenumber k= 1 in the radial
direction labelled A in figures 1 and 2. An instability occurs at about Z = 9 × 104

leading to a state B characterised by a dominant azimuthal wavenumber m= 2 in the
expansion of the solution in spherical harmonics Ym

l , i.e. while the axisymmetry
is broken, a symmetry holds with respect to the transformation ϕ → ϕ + π.
Simultaneously, the symmetry about the equatorial plane is also broken in state
B. At Z = 13 × 104 a further transition to a pattern labelled C occurs. This state
looks much like state A, i.e. it is axisymmetric, equatorially symmetric and time
independent but differs from state A in that it keeps a dominant radial wavenumber
k= 2. State C ceases to exists above 19× 104. At Z= 22× 104 a further transition to
a pattern labelled E occurs. State E seems to be related to state B in a way similar as
state C is related to state B. Similarly to B, state E has a m= 2 azimuthal symmetry
and is asymmetric with respect to the equatorial plane. E differs from B, however, in
that a dominant radial wavenumber k= 2 develops. Remarkably, state C coexists with
a pattern D that can be found for a range of values of Z from 15× 104 to 22× 104.
Like C, state D is equatorially symmetric, has a dominant radial wavenumber k = 2
and is time independent. Unlike C it is not axisymmetric, but exhibits a m = 2
structure. Which one of the coexisting patterns C and D will be found in a given
numerical simulation depends on the initial conditions.

The Ekman number is decreased to Ek = 1/300 in our second sequence while we
keep Pr=0.05. The sequence is illustrated in the middle two panels of figure 1 and in
figure 3. States C and E are not observed. State B becomes rather more pronounced
with patches detaching from each other and with arms shooting towards the poles.
State D loses its twofold azimuthal symmetry m = 2. In addition, state D becomes
time periodic at the largest values of Z, e.g. at Z = 34× 104 shown in the last row
of figure 3.

The Prandtl number is decreased to Pr = 0.03 and the Ekman number is further
decreased to Ek = 1/500 in our third sequence. The kinetic energy components are
plotted in the bottom two panels of figure 1. In comparison with the preceding
sequence, state D is not observed. For values of the baroclinicity larger than
Z = 110× 104 the spatial structure of state B becomes irregular as shown in figure 4
and exhibits a chaotic time dependence as illustrated by the time series of its kinetic
energy components in figure 5.

A summary of the symmetry properties of all distinct flow states identified is listed
in table 1 as is their capability of self-sustained dynamo action, see next section.

We wish to close this section by a brief comparison of baroclinically driven flows
with the extensively studied problem of convective flows in rotating systems. Typical
convection-driven finite-amplitude instabilities are described for instance by Sun,
Schubert & Glatzmaier (1993), Simitev & Busse (2003), Busse & Simitev (2005b)
and it is apparent that the baroclinically driven flows described in the article are
essentially different. One feature that appears similar at first sight is the finding
that baroclinically driven flows similarly to buoyancy-dominated convective turbulent
flows (or equivalently slowly rotating convection) are characterised by retrograde
(anti-Solar) differential rotation. However, in rotating turbulent convection anti-Solar
rotation occurs after a sharp transition from prograde (Solar) rotation as the buoyancy
is gradually increased (Simitev et al. 2015), see also Gastine et al. (2013), Käpylä,
Käpylä & Brandenburg (2014). Moreover, convection in the Solar rotation regime
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Flows and dynamos in radiation zones 9

FIGURE 2. Flow structures with increasing baroclinicity Z × 10−4
= 1, 12, 18, 18 and

30 from top to bottom for Pr = 0.05, Ek = 2/300 and fixed values (4.1). Bistability
occurs at Z × 10−4

= 18. The first plot in each row shows isocontours of uϕ (left half)
and streamlines r sin θ(∂θv) = const. (right half) in the meridional plane. The second
plot shows isocontours of ur at r = ri + 0.7 mapped to the spherical surface using
isotropic Aitoff projection. The third plot shows isocontours of ur in the equatorial plane.
The isocontours are equidistant with positive isocontours shown by solid lines, negative
isocontours shown by broken lines and the zeroth isocontour shown by a dotted line in
each plot. All contour plots are snapshots at a fixed representative moment in time. Letters
at each row denote corresponding flow states as indicated in figure 1.
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10 R. D. Simitev and F. H. Busse

FIGURE 3. Flow structures with increasing baroclinicity Z × 10−4
= 30, 32, 34 for Pr =

0.05, Ek= 1/300 and fixed values (4.1). The same quantities are plotted in each row as
in figure 2 and letters on the left-hand side denote the corresponding flow state as in
figure 1.

FIGURE 4. Flow in the case Z × 10−4
= 120, for Pr= 0.03, Ek= 1/500 and fixed values

(4.1). The same quantities are plotted in each row as in figure 2 and letters denote the
corresponding flow state as in figure 1.

is characterised by elongated convective columns, known as ‘Busse columns’, while
convection in the anti-Solar regime is strongly disorganised, see Simitev et al. (2015).
Furthermore, anti-Solar rotation is reversed to Solar rotation in the presence of
magnetic field (Simitev et al. 2015) and other effects of the magnetic field on this
transition are reported in Fan & Fang (2014), Karak et al. (2015). In contrast, in
baroclinically driven flows anti-Solar rotation occurs at all values of the baroclinicity
starting from the basic flow state A, the baroclinic flow is regular and well organised,
and the magnetic fields generated by baroclinic dynamos do not reverse anti-Solar
rotation as seen in the figures of § 6 below.
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FIGURE 5. Time series of kinetic energy densities in the case shown in figure 4.
Equatorially symmetric components are shown in (a) and equatorially antisymmetric
components are shown in (b). The second panel in each group shows an enlarged segment
of the time axis. The components Ep, Et, Ẽp, Ẽt, are labelled in the plot and are also
indicated by black lines, red lines, green lines and blue lines, respectively.

Equatorial Azimuthal Radial Dynamo
symmetry symmetry structure capability

State A Yes Yes 1-roll No
State B No 2-fold 1-roll Yes
State C Yes Yes 2-roll No
State D Yes 2-fold 2-roll Yes
State E No 2-fold 2-roll Yes

TABLE 1. Summary of symmetry properties and dynamo capability of states in the case
Pr= 0.05, Ek= 2/300 and fixed values (4.1).

6. Dynamos generated by baroclinically driven flows
The possibility of dynamos generated in stably stratified stellar radiative regions

has received only limited support in the literature, e.g. Braithwaite (2006), because
it is well known that dynamo action does not exist in a spherical system in the
absence of a radial component of motion (Bullard & Gellman 1954; Kaiser & Busse
2017). The latter is, indeed, rather weak in the basic state A of low poloidal kinetic
energy as discussed above. However, with increasing baroclinicity Z, the growing
radial component of the velocity field strengthens the likelihood of dynamo action.
Indeed, the existence of dipolar dynamos sustained by the equatorially symmetric
flow state D was demonstrated in Simitev & Busse (2017) for Pr= 0.1, Ek= 2/300
and Pm = 16. Below we investigate further the existence of dynamo action in all
other baroclinically driven flow states described in the preceding section.

A quadrupolar dynamo solution sustained by a baroclinically driven flow in state B
at Pr= 0.03, Ek= 1/500 and Z= 100× 104 and for a magnetic Prandtl number value
Pm = 4 is presented in figure 6. This is a steady dynamo. The ratio of poloidal to
toroidal magnetic energy is Emagn

p /Emagn
t = 0.033, the ratio of Emagn

dipole/E
magn
quadrupole = 0.596

and the ratio of magnetic to kinetic total energy is Emagn/Ekin
= 0.009. The magnetic

field has a weaker dipolar component and a large-scale quadrupolar topology that does

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000612
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek Bayreuth, on 29 Apr 2019 at 09:01:57, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000612
https://www.cambridge.org/core


12 R. D. Simitev and F. H. Busse

FIGURE 6. A dynamo solution for a flow in state B in the case Z × 10−4
= 100, with

Pr = 0.03, Ek= 1/500, Pm= 4 and values (4.1). (a) The first plot shows isocontours of
radial magnetic field Br at r = ro + 0.1 in isotropic Aitoff projection. The second plot
shows contours of Br in the equatorial plane. The third plot shows isocontours of Bϕ (left
half) and meridional field lines r sin θ ∂θh = const. (right half). (b) The first plot shows
isocontours of radial velocity ur at r= ri + 0.7 in isotropic Aitoff projection. The second
plot shows contours of ur in the equatorial plane. The third plot shows isocontours of uϕ
(left half) and streamlines r sin θ(∂θv) = const. (right half) in the meridional plane. All
contour plots are snapshots at a fixed representative moment in time. The letter B denotes
the corresponding flow state as indicated in figure 1.

not change in time. The surface structure of the magnetic field is characterised by
relatively strong inward magnetic flux at both poles. Four localised patches of inward
magnetic flux appear in the equatorial region. The azimuthally averaged toroidal field
shows two large-scale strong flux tubes near the pole. The azimuthally averaged
poloidal field is rather remarkable in that it remains almost completely confined to
the spherical shell giving rise to an ‘invisible dynamo’.

This invisibility, however, does not persist as illustrated by a more strongly driven
quadrupolar dynamo at Z = 110 × 104 and Pm = 2 shown in figure 7. The dynamo
exhibits regular oscillations in which the quadrupole component reverses polarity.

A multipolar dynamo solution sustained by a baroclinically driven flow in state
D at Pr = 0.05, Ek = 1/300 and Z = 32 × 104 and Pm = 5 is presented in figure 8.
This dynamo exhibits a steady time dependence. The ratio of poloidal to toroidal
magnetic energy is Emagn

p /Emagn
t = 0.384, the ratio of Emagn

dipole/E
magn
quadrupole= 0.0004 and the

ratio of magnetic to kinetic total energy is Emagn/Ekin
= 0.003. The spatial structure

of the magnetic field of this dynamo is highly unusual in that it is not dominated
by a large-scale dipolar component (Y0

1 ) or quadrupolar component (Y0
2 ) as is the

case with most other large-scale dynamos reported to date but rather resembles
approximately the structure of the Y4

6 spherical harmonic function as seen in the
leftmost plot in the upper row of figure 8. Because of the weak m = 0 contribution
to the magnetic field the azimuthally averaged components plotted in the rightmost
plot in the upper row of figure 8 are insignificant. It is remarkable that in this
case the magnetic field significantly alters the fluid flow pattern as evident by
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FIGURE 7. A dynamo solution for a flow in state B in the case Z× 10−4
= 110, Pr= 0.03,

Ek= 1/500, Pm= 2 and values (4.1). The same quantities are plotted as in figure 6 and
the letter B denotes the corresponding flow state as indicated in figure 1.

FIGURE 8. A dynamo solution for a flow in state D in the case Z× 10−4
= 32, Pr= 0.05,

Ek= 1/300, and Pm= 5 and values (4.1). The same quantities are plotted as in figure 6
and the letter D denotes the corresponding flow state as indicated in figure 1.

comparison with the non-magnetic simulation at identical parameter values shown
in the second row of figure 3, that was used as an initial condition for the dynamo
run. The new magnetic flow pattern retains profiles of the differential rotation and
the meridional circulation similar to those of the non-magnetic case. However, the
dominant azimuthal wavenumber increases from 2 to 4 with a stronger contribution
of m= 0. None of the other dynamos we report alter their generating flow states so
significantly.

A dipolar dynamo generated by a baroclinically driven flow in state E for Pr =
0.05, Ek = 2/300, Z = 34 × 104 and Pm = 1.5 is shown in figure 9. The case has
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FIGURE 9. A dynamo solution for a flow in state E in the case Z× 10−4
= 34, Pr= 0.05,

Ek= 2/300, and Pm= 1.5 and values (4.1). The same quantities are plotted as in figure 6
and the letter E denotes the corresponding flow state as indicated in figure 1.

been started from an equilibrated neighbouring case to help convergence and reduce
transients. The dynamo solution is steady. The ratio of poloidal to toroidal magnetic
energy is Emagn

p /Emagn
t = 0.078, the ratio of Emagn

dipole/E
magn
quadrupole = 5.97 and the ratio of

magnetic to kinetic total energy is Emagn/Ekin
= 0.344. Furthermore, the energy density

of the magnetic field Emagn is comparable to the kinetic energy density of the poloidal
component of the velocity field, Ekin

p , with a ratio Emagn/Ekin
p = 1.42. The magnetic

field has a weaker quadrupolar component and a large-scale dipolar topology with
prominent polar magnetic fluxes that does not change in time, as shown in figure 9,
resembling in this respect the surface fields of Ap–Bp stars (Donati & Landstreet
2009). The azimuthally averaged toroidal field shows a pair of hook-shaped toroidal
flux tubes largely filling each hemisphere of the shell. A large-scale dipolar component
emerges outside of the spherical shell. The structure of the fluid flow remains largely
unaffected by the presence of the magnetic field.

An important issue for application of these results to astrophysical objects is
to determine whether dynamo action persists at sufficiently small values of the
magnetic Prandtl number. Figure 10(a) shows the dependence of the time-averaged
total magnetic energy density on the magnetic Prandtl number for three sequences
of self-sustained dynamo cases with Ek= 2/300. In each sequence no active dynamo
is found for smaller values of Pm; thus the smallest value of Pm is an estimate of
the critical value of Pm for dynamo onset at fixed values of the other parameters.
In particular, the figure shows that Pmcrit decreases as the value of the ordinary
Prandtl number Pr is decreased and the value of the baroclinicity parameter Z
is increased reducing Pmcrit to 1.5 at P = 0.05 and Z = 32 × 104. While it is
numerically challenging to proceed in the direction of stronger baroclinic driving and
smaller ordinary Prandtl number this trend, which we believe is likely to continue,
indicates that baroclinically driven dynamos at more realistic values of Pm eventually
exist. In this respect baroclinically driven dynamos seem to behave similarly to both
Taylor–Couette dynamos (Willis & Barenghi 2002) and to randomly forced small-scale
dynamos (Schekochihin et al. 2004, 2005) where evidence is found that for fixed
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FIGURE 10. (a) Time-averaged total magnetic energy density as a function of the
magnetic Prandtl number for Ek = 2/300 in the cases Pr = 0.1, Z = 17 × 104 (blue
triangles), Pr = 0.08, Z = 20× 104 (black circles), P= 0.05, Z = 32× 104 (red squares).
Small black rectangles indicate the boundary of a region of no dynamo excitation for
the respective sequence. (b) Components of the magnetic and kinetic energy densities (as
labelled) as a function of time in the case Pr= 0.08, Z= 20× 104, Ek= 2/300, Pm= 12.

other parameter values a critical value of Pm exists below which dynamo action is
not possible. Surprisingly, figure 10(a) also shows that there is an optimal value of
Pm for magnetic field generation, e.g. Pmopt = 5 at Pr= 0.08, Z = 20× 104 and that
dynamo action is lost when sufficiently large values of Pm are used. This appears
to be due to a decline of the non-axisymmetric poloidal and toroidal kinetic energy
components, Ẽp and Ẽt, which are most strongly depleted by the magnetic field. This
is related to the specific mechanism of dynamo excitation as discussed below.

A common feature of all dynamo-capable baroclinic flow states is that they exhibit
significant non-axisymmetric flow components, Ẽp and Ẽt as seen in the left panels
of figure 1. These non-axisymmetric flow components appear to be essential for
dynamo action as strikingly illustrated in figure 10(b). Here a solution for Pr= 0.08,
Z = 20 × 104, Ek = 2/300 and for Pm = 12 is shown. In the initial part of the
simulation an oscillatory dipolar dynamo field is sustained by a flow in state D
which is characterised by significant non-axisymmetric flow components. Flow state D,
however, co-exists with flow state C which has negligibly small non-axisymmetric flow
components and does not seem to support dynamo action. As Ẽp and Ẽt are weakened
by the magnetic field a flow transition from state D to state C occurs after which
the dynamo rapidly decays. On their own, the mean components of the flow which
in the basic state A consist of radially decreasing differential rotation (‘subrotation’)
coupled with counterclockwise meridional circulation in the northern hemisphere
do not lead to dynamo excitation as also shown in kinematic dynamo models with
prescribed laminar flows by Dudley & James (1989), see also Latter & Ivers (2010).
However, since the differential rotation remains the dominant flow component in all
states the baroclinically driven dynamos reported here are of αΩ type.

7. Conclusion
Evidence of dynamical processes such as differential rotation, meridional circulation,

turbulence and internal waves in radiative zones is emerging from helio- and
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asteroseismology (Thompson et al. 2003; Turck-Chièze & Talon 2008; Aerts,
Christensen-Dalsgaard & Kurtz 2010; Gizon, Birch & Spruit 2010; Chaplin & Miglio
2013). These transport processes are important in the mixing of angular momentum
as well as in the variation of chemical abundances (Miesch & Toomre 2009; Mathis
2013) and are thus critical for the formulation of a robust stellar evolution theory.
Further, approximately 10 % of observed main-sequence and pre-main-sequence
radiative stars exhibit detectable surface magnetic fields, Donati & Landstreet (2009)
posing the question of their origin. Thus, fluid motions in radiative zones and their
dynamo capability are of significant interest.

Following our earlier work (Simitev & Busse 2017) we report additional direct
numerical simulations of non-axisymmetric and time-dependent flows of anelastic
fluids driven by baroclinic torques in stably stratified rotating spherical shells – a
system serving as a simple model of a stellar radiative zone. We confirm that the
general picture described in the latter study persists when values of the ordinary and
the magnetic Prandtl number and of the Ekman number are changed up to a factor
of 10. We find an additional baroclinic flow state E and we observe time-dependent
behaviour in states B and D. The baroclinically driven flows appear very different
from finite-amplitude convective flows in rotating systems as is apparent from
comparisons with published results, e.g. Sun et al. (1993), Grote, Busse & Simitev
(2002), Simitev & Busse (2003). In particular, the retrograde differential rotation
observed in the present baroclinic simulations does not seem to be related to the
anti-Solar rotation known to characterise turbulent convection in spherical shells
rotating at slow rates (Simitev et al. 2015).

The increasing spatial and temporal complexity of baroclinic flow gives rise to the
possibility of dynamo excitation. We have established that all baroclinically driven
flow states characterised by significant non-axisymmetric flow components, i.e. states
labelled B, D and E, are capable of generating self-sustained magnetic fields for an
appropriate range of values of the magnetic Prandtl number. Dynamo solutions with
dipolar, quadrupolar and multipolar symmetries are found. These dynamos provide
examples very different from the more familiar convection-driven dynamos (Busse
& Simitev 2005a,b; Simitev & Busse 2012) and are certainly of general theoretical
interest, e.g. some of them are sustained by essentially equatorially asymmetric flow
fields. We have determined that a critical value of the magnetic Prandtl number for the
onset of dynamo excitation Pmcrit exists similarly to Taylor–Couette dynamos (Willis
& Barenghi 2002), randomly forced small-scale turbulent dynamos (Schekochihin
et al. 2004, 2005) and convectively driven dynamos (Busse & Simitev 2005b) and
within the range of our numerical simulations we find that Pmcrit decreases with
the decrease of the ordinary Prandtl number and the increase of the baroclinicity
parameter. A surprising new finding is that there exists an ‘upper’ critical magnetic
Prandtl number such that a shutdown of dynamo excitation and decay of the magnetic
field occur at values in excess of it. This is due to a transition from a flow regime
with significant non-axisymmetric components to a flow regime which is essentially
axisymmetric caused by the presence of the magnetic field itself.

It must be admitted that our results are not likely to describe even semi-
quantitatively the situation in any star. The choice of numerically accessible systems
is too restricted for detailed comparisons with astrophysical observations. But we hope
that various features described in this paper can eventually be related to observed
magnetic properties of stars.

A baroclinic basic state is known to enhance the tidal instability in stellar
equatorial planes (Kerswell 1993; Le Bars & Le Dizès 2006; Vidal et al. 2018).
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Thus baroclinically driven flows could be even more capable of dynamo action and
deserve further study. In terms of future work, it will be of interest to extend the
present results to elliptic containers where tidal effects can be included. A further
line of study is to investigate to what extent magnetic fields generated by baroclinic
driving may be amplified by a tachocline shear layer at the top of the shell.
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