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Spin waves in magnetic nanowires can be bound by a local bending of the wire. The eigenfre-

quency of a truly local magnon mode is determined by the curvature: a general analytical expres-

sion is established for any infinitesimally weak localized curvature of the wire. The interaction of

the local mode with spin waves, propagating through the bend, results in scattering features, which

is well confirmed by spin-lattice simulations. Published by AIP Publishing.
https://doi.org/10.1063/1.5041428

1. Introduction

Spin waves as collective excitations of magnetically

ordered medium were introduced by Bloch1 in 1930, where

he predicted that spin waves should behave as weakly inter-

acting quasiparticles obeying the Bose–Einstein statistics.

These quasiparticles, as quanta of spin waves, are called

magnons: the dynamic eigen-excitations of a magnetically

ordered body. A wide variety of linear and nonlinear spin-

wave phenomena boosted the interest into the fundamental

properties of the spin waves,2–4 whereas their transport abili-

ties were of great interest for applications in telecommunica-

tion systems.5 Due to the possibility of building low-power

logical devices, spin waves are considered as potential data

carriers for computing devices.6–9 However, in order to

exploit spin waves for data processing in real devices, it

requires a means to guide spin waves without disturbance in

structures with complicated geometry, which in turn requires

bent and curvilinear parts to save space on the chips.10–12

During the past few years, there has been a growing

interest in the curvature effects in the physics of nanomag-

nets. A crucial aspect of the interest is caused by recent

achievements in nanotechnologies of flexible,13 stretch-

able,14 and printable magnetoelectronics.15 The topic of

magnetism in curved geometries brings about a series of

fascinating geometry-induced effects in the magnetic proper-

ties of materials.16 A fully three-dimensional (3D) approach

was put forth recently to study dynamical and static properties

of arbitrary curved magnetic shells and wires,17,18 and also

stripes:19 the geometrically-broken symmetry in curvilinear

magnetic systems results in the emergence of a curvature-

induced anisotropy and a Dzyaloshinskii–Moriya interac-

tion (DMI) driven by exchange interaction. The latter effect

results in possible magnetochiral effects,20 for a review see

Ref. 16. It is known that the curvilinear-geometry-induced

DMI is a source of pinning of domain walls by a local

bending of the wire,21 it causes a coupling of chiralities in

spin and physical spaces for the M€obius ribbons,19,22 it

results in a number of nonreciprocal effects in helical

wires,23–26 it can even stabilize a skyrmion in a curved

magnet.27,28

The purpose of the current study is to derive conditions

when the bending of the wire results in localization of mag-

non states. Using a recently developed approach for the

description of arbitrary curved wires18 we study the equilib-

rium magnetization state and spin waves on its background

for flat curved nanowires. It is shown that for a smoothly

curved flat nanowire the equilibrium state has an almost

tangential magnetization distribution with small deviations
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which are proportional to the first derivative of curvature

over the arc length. A truly local mode is shown to be always

present for any infinitesimally weak localized curvature of

the wire. This internal mode results in certain scattering fea-

tures of the spin waves.

The paper is organized as follows. In Sec. 2 the relevant

model is formulated. We present a general description of the

ground state and linear excitations in flat, curved ferromag-

netic wires in Sec. 3. We illustrate the proposed approach

using a wire with a box-car curvature, i.e., two straight seg-

ments connected by a circular arc in Sec. 4. The bound states

in the limiting case n0! 0 of a sharp bend are considered in

Sec. 5. Numerical simulations are described in Sec. 6 and

concluding remarks are contained in Sec. 7. Appendices con-

tain the mathematical details of calculations, described in

the main text.

2. Model description

We base our study on the phenomenological Landau–

Lifshitz equation

@tm ¼
c0

MS
m� dE

dm
; (1)

which describes the precession dynamics of the classical

magnetization unit vector m. Here E is the total energy, MS

is the saturation magnetization, and c0 ¼ glB=�h is the gyro-

magnetic ratio with g being Land�e g-factor, lB being Bohr

magneton and �h being Planck constant. The damping is

neglected.

Let us consider a curved ferromagnetic wire of a shape

given by an oriented plane curve c(s) with a fixed cross-

section of area S, parameterized by arc length s, see Fig.

1(a). It defines a basis in terms of tangential, normal and

binormal directions eT¼ @sc, eN ¼ ẑ � eT , and eB ¼ ẑ,

respectively. Here ẑ is a unit vector perpendicular to the

plane containing the wire. In accordance with the

Frenet–Serret formulae, the curvature j(s) of a planar wire is

determined by the relation @s eT ¼ jeN . Introducing the

parameterization eT ¼ cos gðsÞx̂ þ sin gðsÞŷ one obtains

j¼ @sg. Note that the curvature is positive (negative) for

concave (convex) shapes, determined with respect to the

ŷ-axis.

The total magnetic energy of a sufficiently thin ferro-

magnetic wire of circular (or square) cross section is well-

known,29 and can be described by reduced one-dimensional

(1D) energy given by a sum of exchange and local anisot-

ropy terms,

E ¼ S

ð
ds Aj@Smj2 � Keffðm � eTÞ2
h i

; (2)

where A is the exchange constant and Keff ¼ K þ pM2
S is the

constant of the effective easy-tangential anisotropy, which

incorporates the intrinsic crystalline anisotropy K and the

shape-induced magnetostatic contribution,29 see also Ref.

19. The orientation of the easy-axis is determined by the

coordinate-dependent tangential direction eT¼ eT (s). This is

a juncture where a sample geometry appears in the system:

we assume that the anisotropy is strong enough to dictate the

geometry-dependent magnetization configuration. By choos-

ing the curvilinear reference frame adapted to the geometry

we get rid of the coordinate dependence of the magnetic

anisotropy term, hence it assumes its usual translation-

invariant form. In the following we consider a magnet where

such an easy-tangential anisotropy significantly exceeds all

other interactions. It is convenient to express the magnetiza-

tion in terms of the Frenet–Serret local reference frame,

m ¼ sin h cos / eT þ sin h sin / eN þ cos h eB, where the

angular variables h and / depend on spatial and temporal

coordinates. In the curvilinear reference frame the total

energy (2) reads E ¼ E0

Ð
Edn with the energy density18

Fig. 1. Curved flat ferromagnet wire: (a) Schematic of the bent ferromagnet wire. The spin wave is generated by an alternating field inside the “Source” region

and propagates through the bend to the detector. The phase of the transmitted wave is compared with the phase expected for the straight wire. (b) Curve with a

box-function curvature with R being the bending radius and a being the angle of expansion. (c) Box-function curvature profile. (d) Phase shift of the transmit-

ted spin wave according to Eq. (B11a) compared with spin-lattice simulations, see (12) for the case of small curvatures.

Low Temp. Phys. 44 (7), July 2018 Gaididei et al. 635



e ¼ h02 þ sin2h /0 þ K
� �2 � sin2h cos2/: (3)

Here and below prime 0 denotes the derivative with respect

to the dimensionless coordinate n ¼ s=‘ with ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=Keff

p
being the characteristic magnetic length, the dimensionless

curvature KðnÞ ¼ ‘jðnÞ, and E0 ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=Keff

p
being the char-

acteristic energy of a domain wall in the rectilinear segment

of the wire.

3. General results: Magnon eigenmodes for a weakly curved
wire

Let us start our analysis with a static solution, which cor-

responds to the minimum of the energy functional (3). The

ground magnetization distribution for the planar curved wire

is also planar: the magnetization lies in the wire plane (i.e.,

the osculating or TN-plane), hence the equilibrium state has

the form

H ¼ p
2
; U ¼ UðnÞ: (4a)

The corresponding azimuthal magnetization angle U is

described by the equation of a nonlinear driven pendulum

(see Appendix A for details)

U00 � sin U cos U ¼ �K0: (4b)

In the limiting case of a smoothly curved wire with localized

curvature, the asymptotic solution of (4b) is valid

UðnÞ ¼ K0ðnÞ þ O jK000j
jK0j

� �
; (5)

see Eq. (A2) for details.

In order to analyze magnon modes we linearize the

Landau–Lifshitz equations on the background of the static

solution (4) by considering the small deviations w¼ h � H
þ i(/ � U). Then the linearized Landau–Lifshitz equations

can be presented in the form of a generalized Schr€odinger

equation, originally proposed for the description of magnons

on the magnetic vortex background in Ref. 30, and used later

for studying magnon modes (including local ones) over the

precession soliton31 and over the magnetic skyrmion32 in

easy-axis magnets. Recently a similar approach was used for

the description of the magnon spectrum in a curved helix

wire.23 For the case of the planar curved wire one gets the

following generalized Schr€odinger equation, see Appendix

A for details

�i _w ¼ HwþWw�; H ¼ �@2
n þ 1þ V: (6a)

Here the overdot indicates the derivative with respect to the

dimensionless time ~t ¼ tx0 with x0 ¼ 2c0Keff=MS, the star

operator means the complex conjugation, and the

“potentials” have the following form

VðnÞ ¼ � 1

2
3 sin2Uþ ðU0 þ KÞ2
h i

;

WðnÞ ¼ 1

2
sin2U� ðU0 þ KÞ2
h i

:

(6b)

One can see that the presence of these potentials is caused

by the deviation of magnetization from the tangential

direction; the functions V and W are well localized in the

vicinity of the wire bend, i.e., in the place where the curva-

ture is present.

In order to analyze the generalized Schr€odinger Eq. (6a)

we consider stationary states of the form

wðn;~tÞ ¼ uðnÞeiX~t þ v�ðnÞe�iX~t : (7)

Here X ¼ x=x0 > 0 is the normalized frequency. Thus we

then finally obtain the following eigenvalue problem (EVP)

for the functions u and v

�u00 þ V þ eð Þu ¼ �Wv; (8a)

�v00 þ 2þ V � eð Þv ¼ �Wu: (8b)

Here e describes the deviation of the eigenfrequency from

the gap value, X ¼1 � e. Note that the function v(n) has the

asymptotic exponential behavior, vðnÞ / e�
ffiffiffiffiffiffi
2�e
p

jnj far from

the bend region, hence one can always choose vðnÞ as a slave

function in the EVP (8).

Let us discuss the EVP (8) for X >1, i.e., e < 0. In this

case we get the scattering problem for the complex-valued

function u(n) with the asymptotic scattering conditions

uðnÞ ¼ eiqn þRe�iqn; when n! �1;
T eiqn; when n!1:

(
(9)

Here R ¼ Reidr and T ¼ Teidt are the complex amplitudes

of reflected and transmitted magnons, respectively. The cor-

responding scattering phases are dr and dt.

Below in this section we analyze the EVP (8) for the

infinitesimally weak curvature, jKj � 1. In this limiting

case the effective potentials (6b) read

VðnÞ ¼ WðnÞ ¼ �K2ðnÞ
2
þO jK0j

jKj

� �
: (10)

When the frequency X > 1, the solution for the straight wire

reads u(n) / eiqn, with v(n)¼0 and X ¼1 þ q2, where q ¼ k‘
is the dimensionless wave number. Due to the curvature, the

two equations for the magnon amplitudes, (8), become cou-

pled. Nevertheless, far from the bend region, the coupling

potential W is small. Neglecting all second order terms due

to curvature in (8), it gets the form of the usual Schr€odinger

equation, see (A9) for details. Then the scattering problem

of magnons by the bending becomes equivalent to the scat-

tering problem of a quantum particle by the potential V (n)

and the scattering boundary conditions (9). In particular, in

the case of a weak potential, jVj �1, the Born approximation

is valid,

tan dt ¼ �
1

2
ffiffi
e
p

ð1
�1

VðnÞdn; (11)

which results in the following phase shift:

dt qð Þ ¼ arctan
D
q
; D ¼ 1

4

ð1
�1

K2ðnÞdn: (12)

Note that dt � p/2 � q/D for q�1 and dt � D/q for q� 1.

636 Low Temp. Phys. 44 (7), July 2018 Gaididei et al.



Now let us consider the local modes (bound states)

inside the gap with the frequency X2 (0,1), i.e., e2 (0,1) . In

this case both functions u and v become localized. One can

always choose u(n) as a real-valued function. The function u
has the asymptotic behavior of the form uðnÞ / e�

ffiffi
e
p
jnj.

Under the same assumptions, the EVP is equivalent to

the quantum-mechanical problem about the energy eigen-

value of a quantum particle in a shallow well. It is known

that the Hamiltonian Hk 	 �@2
n þ kVðnÞ always has a bound

state for all small positive k if the potential V(n) is negative

on average, i.e.,
Ð1
�1 VðnÞdn < 0. The corresponding eigen-

value e is determined as follows:33,34

ffiffi
e
p
¼ k

2

ð1
�1

VðnÞdnþO k2ð Þ: (13)

The corresponding frequency of the local mode and the

eigenfunction are

Xloc � 1� D2;

uloc nð Þ �
u0; inside the well;

u0 exp �Djnjð Þ; outside the well;

(
(14a)

where u0 is a normalized constant and D is determined by

(12). In physical units

xloc ¼ x0 1� 1

16

ð1
�1

K2 nð Þdn

2
64

3
75

2
8>><
>>:

9>>=
>>;: (14b)

According to the quantum scattering theory, the pres-

ence of bound states influences the scattering data. This

influence is given by the Levinson theorem35 the total phase

shift dt (0) � dt (1) is related to the number of bound states

(i.e., local modes) N loc and half-bound states (i.e., half-

local modes) N h.loc.36 In the 1D case the total phase shift

reads37

dt 0ð Þ � dt 1ð Þ
p

¼
Nloc

e þ
1

2
Nh:loc

e � 1

2
; even parity;

Nloc
o þ

1

2
Nh:loc

o ; odd parity:

8>><
>>: (15)

We will use the Levinson theorem in the form (15) in order

to check the number of local modes.

4. Magnon eigenmodes for a wire with a box curvature

Let us consider a simple model of the curve, which has a

constant curvature K0 in the interval s2 [�n0, n0] and van-

ishes outside (box-function curvature)

K sð Þ ¼ K0h nþ n0ð Þ � K0h n� n0ð Þ; (16)

where h(n) is the Heaviside step function, K0 ¼ ‘=R is the

curvature of the arc bending with R being the curvature

radius, and n0 ¼ ðp� aÞR=ð2‘Þ with a being the expansion

angle, the angle between the non-bending part of the curve,

see Figs. 1(b) and 1(d). If we consider the non-intersecting

curve, then a 2 (0,p).

In the limiting case of weak curvature, jK0j � 1, the

ground state has a form of two hooks in the points of curva-

ture step with exponential tails

U nð Þ ¼ �K0e�n0 sinhn; when jnj 
 n0;

�sgn nð ÞK0e�jnjsinhn0; when jnj > n0;

(
(17)

see Figs. 2(a) and 2(b). Then the effective potentials (10) are

V nð Þ � W nð Þ � � K2
0

2
; when jnj < n0;

0; when jnj > n0;

8><
>: (18)

see Figs. 2(c)–2(f) for comparison with the exact form (6b).

Let us consider the EVP (8) with box potentials (18).

For the shallow well (jK0j � 1), one can find

e � K4
0n

2
0

4
; whenK0 � 1; (19)

which is in agreement with (14a). In the particular case of

the wide well, namely for the limiting case of a half-

circumference arc (a¼ 0), one gets

e � p2K2
0

16
; when K0 � 1 and n0 ¼

p
2K0

� 1: (20)

Eigenfrequencies of local modes for different geometri-

cal parameters are shown in Fig. 3. While the asymptotics

work well only for narrow wells, the exact analytical solu-

tion for a box potential (18) shows a good agreement with

simulations for K0 � 0:4. The numerical solution for the ini-

tial EVP (8) perfectly agrees with the simulations in the

whole range of the calculated data.

The scattering problem corresponds to the EVP (8) for

X > 1. We are mainly interested in the forward scattering of

Fig. 2. Magnetization distribution for a wire with a box curvature: (a) and

(b) equilibrium magnetization states for the wire with the box curvature for

different curvature values v0. Symbols correspond to simulations and solid

lines to analytics (17). (c) and (f) effective potentials V and W for different

curvatures (left and right columns). Red curves correspond to the expres-

sions (6b) according to the magnetization equilibrium state (B2). Green

curves show the box approximation of the potentials for the analytics (B10).
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the transmitted wave. The scattering phase dt ¼ arg T , cal-

culated using (B11), is plotted in Fig. 1(d).

5. Bound states on a sharp bend

Here we consider a limiting case of a sharp bend when n
! 0 with the fixed opening angle a, see Figs. 1(b) and 1(c).

In this case, taking into account the relation K0 ¼ ðp� aÞ=
ð2n0Þ one obtains

K ¼ bd nð Þ; (21)

where b¼p � a and d(n) is the Dirac delta-function. The

conditions of a smoothly curved wire (A2a) are not valid

here. Therefore we start with the initial Eq. (4b), which for

the sharp bend reads

U00 � sin U cos U ¼ �bd0 nð Þ: (22)

For the boundary conditions U(61)¼ 0 Eq. (22) has a

solution

U nð Þ ¼ �2 sgn nð Þ arctan e�jnjþnc ; nc ¼ ln tan
b
4
; (23)

for details see Appendix C. Substituting (23) into (6b) one

obtains the potentials in the form

V ¼ � 2

cosh2 �jnj þ ncð Þ
; W ¼ 0: (24)

Finally, the EVP is presented by two independent homoge-

neous Eq. (C4). Let us first consider the localized states with

X < 1. In this case Eq. (C4) have the bound solution

u ¼ Ce�
ffiffi
e
p
jnj ffiffi

e
p
þ tanhðjnj � ncÞ

� �
; (25a)

v ¼ 0 (25b)

and
ffiffi
e
p
¼ f ðbÞ, see (C6). The corresponding eigenfrequency

X ¼1�e reads

X ¼ 1

2
cos

b
2

cos
b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3 cos2

b
2

r" #
: (26)

For details see Appendix C. The dependence X(b) shown in

Fig. 4.

Note a perfect agreement of the analytical (solid line)

and numerical (dashed) results. The latter were obtained as a

numerical solution of the EVP (8), where the d-function on

the discrete lattice was modeled as

d nið Þ ¼
1

Dn
; when ni ¼ 0;

0; when ni 6¼ 0;

8<
: (27)

where Dn¼ 10�2 is the step of the discretization. The equi-

librium value of the function U (ni) was found by means of a

numerical minimization of the energy (3) with h ¼p/2.

For the case X >1 one obtains a scattering problem.

The solution of Eq. (C4a) can be presented in the form of

incident, transmitted and reflected waves, see (C7a). The

corresponding coefficients of transmission and reflection

read

T2 ¼ X� 1ð ÞX2

cos2
b
2

sin4 b
2
þ X� 1ð ÞX2

(28)

and R2 ¼1 � T2, respectively. For details see Appendix C.

Note that the full transition takes place for the angles b ¼ 0

(rectilinear wire) and b ¼p (completely bent wire), while

the minimum transition corresponds to the angle bc

¼ 2arccos 1=
ffiffiffi
3
p� �

.

Fig. 3. Local mode for a wire with a box curvature: Dependencies of local mode’s frequency X on the curvature n0 for magnetic nanowires with different arc

lengths, namely, (a) for n0 ¼ p=ð6v0Þ, (b) n0 ¼ p=ð3v0Þ and (c) for n0 ¼ p=ð2v0Þ. Symbols correspond to the simulation results, the red curves represent the

numerical solutions of the eigenvalue problem (3) for different curvatures, the green curves show the numerical solution of the dispersion Eq. (B10), and the

blue curves correspond to the asymptotic dependences, according to the limiting cases (19) and (20).
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The total phase shift between the transmitted and inci-

dent waves is dtot(q)¼ dt(q) þ 2 arctan (1/q), where q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X� 1
p

is the dimensionless wave-vector and dt(q) is

determined in (C9a). Since dt(0) �dt(1)¼ p/2, the Levinson

theorem (15) results in a single bound state.

6. Spin-lattice simulations of the magnon dynamics

Our predictions about the localized mode statics and

dynamics are verified by performing 3D spin-lattice simula-

tions using the in-house developed program SLaSi.38 We

model the ferromagnetic nanowire with the local box curva-

ture [see Fig. 1(b)] as a classical chain of magnetic moments

mi, with i ¼ 1;N . Neighboring moments interact according

to the anisotropic Heisenberg model Hamiltonian as follows:

H ¼ �a‘2
XN�1

i¼1

mimiþ1 � a3
XN

i¼1

ðmieTiÞ2 þ himi

h i
: (29)

Here a is a lattice constant and hi 	 h(r, t) is a magnetic field

being a function of coordinate and time, measured in units of

the coercive field Hc¼Keff/MS. The dynamics of this system

is described by a set of N vector Landau–Lifshitz–Gilbert

ordinary differential equations, see Ref. 39 for a general

description of the SLaSi simulator and Ref. 23 for the details

of the simulations of curved wires.

To study the equilibrium magnetization states we con-

sider a chain of N¼ 3000 sites with the exchange length

‘ ¼ 15a. The box curvature part of the wire is placed in the

center of the chain with the arc length being n0 ¼ ðp� aÞR=
ð2‘Þ, where a is the angle between no-bending parts of the

wire, which take the following values (0, p/6, p/3, p/2). The

curvature of the central part of the wire is varied in a wide

range of parameters K0 2 ð0; 1:0Þ, with a step DK0 ¼ 0:1. In

order to verify our theoretical prediction, we perform our sim-

ulation starting from the tangential magnetic distribution. We

simulate numerically the set of N discrete Landau–

Lifshitz–Gilbert equations in the overdamped regime with

the Gilbert damping g¼ 0.5 during the long-time interval Dt
� (gx0)

�1. The final state with the lowest energy is consid-

ered to be the equilibrium magnetization state. Simulation data

are shown in Figs. 2(a) and 2(b) by filled symbols together

with theoretical results (solid lines) for small and high

curvature.

Figures 2(c)–2(f) show a comparison of the exact poten-

tials (6b) with their analytical approximation. The direct

numerical calculation of the eigenmodes of (8) precisely

agrees with results of spin-lattice simulations in a wide range

of curvatures, see Figs. 3(c) and 4. Frequencies of local

modes X are calculated in the following way. After obtain-

ing the equilibrium magnetic state in the system, a pulse of a

homogeneous magnetic field along ŷ axis is applied to the

system. Due to its inhomogeneity in the local curvilinear

frame of reference, this pulse generates a wide spectrum of

spin waves as well as local modes, which is situated inside

the gap of the spin-wave spectrum.

The numerical verification of the Levinson theorem (15)

is a way to check the number of bound states inside the

bend. We perform simulations of the spin wave scattering on

a spin chain of 14 000 magnetic moments with a localized

curvature K0 ¼ 0:5 and n0¼p, see Fig. 1(c). A spatially

homogeneous, time alternating magnetic field is applied

between the 1000th and the 6000th chain sites to generate a

spin wave propagating through the bend. To determine the

phase shift dt due to the bend, we compare the spin wave

propagation in two different wires with the same material

parameters: one is a curved wire and another one is a straight

wire of the same length. Spatial magnetization distribution

of a given time moment is analyzed in a detector window

[see schematics in Fig. 1(a)]. The detector is placed on the

same arc length from the source in both wires. The resulting

phase shift is plotted in Fig. 1(d). It is clearly seen that there

exists one localized mode in the bend.

7. Conclusions

In conclusion, the general analysis of the ground state

magnetization and spin wave spectrum is performed in the

case of a very small curvature of the wire. The equilibrium

magnetization distribution deviates from the tangential wire

direction only in the region of the wire bend, the correspond-

ing deviation angle is determined only by the spatial deriva-

tive of the curvature, resulting in an effective potential well

for spin waves. We predict the existence of a curvature

induced truly local mode, localized on a bend, with an eigen-

frequency below the ferromagnetic resonance. The interac-

tion of the local mode with spin waves, propagating through

the bend, results in a shift of the wave phase according to the

Levinson theorem. In the limiting case of a sharp bend (d-

function curvature) the analytically exact expressions for

eigenfrequencies of the bound states, as well as for transmis-

sion and reflection coefficients of the scattering process are

found.
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APPENDIX A: GROUND STATE AND SPIN WAVE
SPECTRUM

The equilibrium magnetization states satisfy the energy

minimum

H00 � sin H cos H ðU0 þ KÞ2 � cos2U
h i

¼ 0;

U00 þ 2H0ðU0 þ KÞcot H� sin U cos Uþ K0 ¼ 0: (A1)

For a plane curve, H¼ p/2 and the second equation of (A1)

takes the form (4b).

The limiting case of a smoothly curved wire with a

localized curvature corresponds to the following conditions:

jKj; jK0j � 1; jK nþ1ð Þj < jK nð Þj; n 2N;

Kð61Þ ¼ K0ð61Þ ¼ 0: (A2a)

In this case the linearization of (4b) with respect to U gives

the solution

UðnÞ ¼ 1

2

ð1
�1

K0ðnþ gÞe�jgjdg ¼
X1
n¼0

Kð2nþ1Þ nð Þ: (A2b)

In the main approach the asymptotic value (5) is valid under

the condition jK000j � jK0j.
In order to analyze magnon modes we linearize the

Landau–Lifshitz Eq. (1) on the background of the ground

state (4a) by considering the small deviations #¼ h � p/2

and u¼/ � U. The energy of magnons in the harmonic

approximation reads

Emag ¼ #02 þ u02 þ V1#
2 þ V2u

2; (A3)

with the “potentials”

V1 nð Þ ¼ cos 2U nð Þ � U0 nð Þ þ K nð Þ
� �2

;

V2 nð Þ ¼ cos 2U nð Þ: (A4)

The linearized Landau–Lifshitz equations can be presented

in the following form:

�#00 þ V1# ¼ _u; �u00 þ V2u ¼ � _#; (A5)

where an overdot indicates the derivative with respect to

the reduced time ~t ¼ x0t. One can combine the set of Eq.

(A5) in a single equation for the complex-valued function

w¼#þ iu, which has the form of the generalized

Schr€odinger Eq. (6a)

�i _w ¼ HwþWw�; H ¼ �@2
n þ U: (6a0Þ

The corresponding “potentials” in Eq. (6a0) read

U ¼ V1 þ V2

2
; W ¼ V1 � V2

2
: (A6)

Since we are interested in the stationary states solution of

the form (7), we get an EVP (8). The boundary conditions

essentially depend on the type of the problem. For the scat-

tering problem (X > 1) one gets traveling waves together

with localized modes with the following asymptotic

behavior:

w� eiðqnþX~tÞ þRe�iðqn�X~tÞ þc1e
ffiffiffiffiffiffi
2�e
p

ne�iX~t ; whenn!�1;
T eiðqnþX~tÞ þc2e�

ffiffiffiffiffiffi
2�e
p

ne�iX~t ; whenn!þ1:

(

(A7)

In the case of the local mode (X < 1) the asymptotic behav-

ior corresponds to exponentially localized oscillations

w� c1e
ffiffi
e
p

neiX~t þ c2e
ffiffiffiffiffiffi
2�e
p

ne�iX~t ; when n! �1;
c3e�

ffiffi
e
p

neiX~t þ c4e�
ffiffiffiffiffiffi
2�e
p

ne�iX~t ; when n! þ1:

(

(A8)

Here ci; i ¼ 1; 4 are some real amplitudes.

For further analysis it is convenient to shift the poten-

tial U by its asymptotic value, U ¼1þ V. Then both poten-

tials V(n) and W(n) are localized. Suppose that we are

working under smooth conditions (A2), then jVj, jWj � 1.

One can conclude from Eq. (8b) that v � � 1
2

Wu, therefore

the function v becomes the slave variable in Eq. (8). Using

the explicit asymptotic form (5) for U ðnÞ ¼ K0ðnÞ, one gets

Eq. (10). Now, by neglecting the function v / K2u, we get

from (8) the usual Schr€odinger equation of the following

form:

�u00 þ VðnÞu ¼ eu; V nð Þ ¼ �K2 nð Þ
2

: (A9)

APPENDIX B: WIRE WITH A BOX CURVATURE

The equilibrium magnetization state, according to (4b),

is described by the following ODE:

U00 � sin U cos U ¼ �K0 nð Þ;
K0 nð Þ ¼ K0d nþ n0ð Þ � K0d n� n0ð Þ;

K0 ¼ j0‘; n0 ¼
s0

‘
: (B1)

The solution of this model, which satisfies the boundary con-

ditions U(61)¼ 0, has the form

U nð Þ ¼
p
2
� am

n
k
þ K kð Þ; k

� �
; when jnj 
 n0;

�2sgn nð Þarctan e�jnj�n1 ; when jnj > n0:

8><
>: (B2)

Here am(x,k) is the Jacobi’s amplitude and K(k) is the com-

plete elliptic integral of the first kind.44 Parameters n1 and k
are determined by the matching conditions

U½ �n0
¼ 0; U0½ �n0

¼ K0; (B3)

where ½� � ��n0
	 ð� � �Þjn0þ0 � ð� � �Þjn0�0. The modulus k of the

elliptic functions and the parameter n1 can be calculated

from the following conditions:
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dn
n0

k
; k

� �
¼ 2K0kk0

K2
0k2 � k02

;

sech n0 þ n1ð Þ ¼ �k0sd
n0

k
; k

� �
; (B4)

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

is the complementary modulus.

In particular, if the reduced curvature K0 � 1, then one

can use the expansion

k ¼ 1� K2
0

2
e�2n0 þO K2

0

� �
: (B5)

In this case the static solution (B2) takes the simpler form

(17). The maximum value of jUj is

maxjUj �
K0n0; when n0 � 1;

K0=2; when n0 � 1:

(
(B6)

Let us consider the EVP (8) with box potentials (18).

We start the problem of magnon states with the local modes

problem. In this case we look for the eigenfunctions in the

following form:

u nð Þ ¼
u1coshk1nþ u2 cos q1n; when jnj < n0;

u3 exp �k2 jnj � n0½ �ð Þ; when jnj > n0:

(

v nð Þ ¼
v1coshk1nþ v2 cos q1n; when jnj < n0;

v3 exp �k3 jnj � n0½ �ð Þ; when jnj > n0:

(
(B7)

Here parameters k1, k2, k3, and q1 are defined as follows:

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
0 þ 1� eð Þ2

q
þ 1� V0;

r

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
0 þ 1� eð Þ2

q
� 1þ V0;

r
k2 ¼

ffiffi
e
p
; k3 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2� e
p

; (B8)

with V0 ¼ K2
0=2. Eigenfunctions should satisfy the matching

conditions

u0

u

	 

n0

¼ 0;
v0

v

	 

n0

¼ 0: (B9)

An explicit form of these conditions reads

q1l sin q1n0 þ k1sinhk1n0

l cos q1n0 � coshk1n0

¼ k3;

l ¼ q2
1 � V0 þ e

k2
1 þ V0 � e

� k1sinhk1n0 þ k2coshk1n0

q1 sin q1n0 � k2 cos q1n0

: (B10a)

The eigenvalue e¼ e (V0, n0) can be found as a solution of

Eq. (B10a).

One can make an asymptotic analysis for e when V0�1.

Then one can find

e � V2
0n

2
0 ¼

K4
0n

2
0

4
; when K0; n0 � 1: (B10b)

The eigenfunctions for the scattering problem are found

in the following form:

u nð Þ ¼
eiqn þRe�iqn; when n < �n0;

u1cosh k1nþ u2sinh k1nþ u3 cos q1nþ u4 sin q1n; when jnj < n0;

T eik2n; when n > n0;

8>><
>>:

v nð Þ ¼
v0ek3ðnþn0Þ; when n < �n0;

v1cosh k1nþ v2sinh k1nþ v3 cos q1nþ v4 sin q1n; when jnj < n0;

v5e�k3 n�n0ð Þ; when n > n0;

8>><
>>: (B11a)

where q is the wave number of the travelling spin wave,

other parameters ki are the same as in Eq. (B8). The usual

matching conditions

u0

u

	 

6n0

¼ 0;
v0

v

	 

6n0

¼ 0 (B11b)

allow us to solve the scattering problem. The resulting scat-

tering phase is plotted in Fig. 1(d).

APPENDIX C: WIRE WITH A SHARP BEND

The homogeneous form of Eq. (22) has the first integral

U02 ¼ sin2Uþ C1: (C1)

Due to the boundary conditions U(61)¼ 0 one has C1¼ 0.

Then the solution of the model has the following form

tan
U
2
¼ �enþn1 ; when n < 0;

e�nþn2 ; when n > 0:

(
(C2)

Parameters n1 and n2 are determined by the matching

conditions45

U0½ �0 ¼ 0; U½ �0 ¼ �b; (C3)

which results in the solution of the form (23). Note that

the differentiation of (23) results in U0(n)¼ sech (jnj
�nc) �bd(n) and as a result the potentials V and W in

(6b) do not contain the d-function and have the form

(24). Since W ¼0 the EVP (8) is split into two indepen-

dent equations
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�u00 þ e� 2

cosh2ðjnj � ncÞ

	 

u ¼ 0; (C4a)

�v00 þ 2� e� 2

cosh2ðjnj � ncÞ

	 

v ¼ 0: (C4b)

Equation (C4a) has the general solution

u ¼ C1e�
ffiffi
e
p
jnj ffiffi

e
p
þ tanh ðjnj � ncÞ

� �
þC2e

ffiffi
e
p
jnj ffiffi

e
p
� tanh ðjnj � ncÞ

� �
: (C5)

For the case X <1 one has e > 0. In this case (C4a) with

C2¼ 0 results in the bound solution (25a). It follows from

(C4a) that u0(�0)¼ u0(þ0), on the other hand the solution

(25a) is an even function, consequently u0(0)¼ 0. Applying

this condition to (25a) one obtains
ffiffi
e
p
¼ f ðbÞ, where

f bð Þ ¼ 1

2
�cos

b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3 cos2

b
2

r" #
: (C6)

Note that 0 
 f (b) 
 1 if 0 
 b 
 p. In the same way one

obtains the condition
ffiffiffiffiffiffiffiffiffiffiffi
2� e
p

¼ f ðbÞ from (C4b), which can-

not be satisfied for e < 1 though. Thus only the trivial solu-

tion v 	 0 of Eq. (C4b) is possible.

For the case X >1 one has e < 0. In this case it is

instructive to make a replacement
ffiffi
e
p
¼ iq, where q

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
X� 1
p

has a sense of the wave-vector. Thus, the solution

of the scattering problem for Eq. (C4) can be presented in

the form

u ¼ Aþ ceiðqnþdþÞ þ cre
�iðqnþdþ�pÞ

� �
; when n < 0;

A�cte
iðqnþd�Þ; when n > 0;

(

(C7a)

v ¼ 0: (C7b)

Here A6¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ tanh2ðn6ncÞ

q
, d6¼arg [iq� tanh(n6nc)]

and c is an arbitrary constant. Applying the conditions

u(�0)¼u(þ0) and u0(�0)¼u0(þ0) one obtains the relations

ct¼ cTeidt , cr ¼ cReidr Since Aþð�1Þ ¼A�ðþ1Þ, the

coefficients T and R play the role of transmission and reflec-

tion coefficients, respectively

T ¼ q 1þ q2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

b
2

sin4 b
2
þ q2 1þ q2

� �2

r ; (C8a)

R ¼
cos

b
2

sin2 b
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2
b
2

sin4 b
2
þ q2 1þ q2

� �2

r : (C8b)

The corresponding phase-shifts read

dt ¼ arg q q2 � cos b
� �

� i cos
b
2

2q2 þ sin2 b
2

� �	 

; (C9a)

dr ¼ dt þ
p
2
: (C9b)

Note that for the case X >1 (e < 0) Eq. (C4b) has only local-

ized bound solutions. In this case v¼ 0 for the same reasons

as above.
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