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Surface boundary conditions for the Ginzburg-Landau theory of d-wave superconductors
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We calculate de Gennes’ extrapolation length fod-aave superconductor near a surface within Fermi-
liquid theory. The extrapolation length depends critically on the orientation of the surface relative to the crystal
axes and on the surface roughness. This sensitivity of the boundary conditiond-fea\se order parameter to
surface conditions is not found in traditiormlvave superconductors, and is a signature of anisotropic pairing
with a changing sign of the order parameter along the Fermi surface. de Gennes’ method is used to calculate
the reduction ofT; in thin strips of highT. superconductors.

I. INTRODUCTION symmetries. All types of pairing which are presently dis-
cussed in the context of high: materials lead to a one-
The Ginzburg-LandayGL) theory is among the most component order parameter with the same bulk GL equa-
successful and versatile theories of superconductivity. It hasons. As a consequence, bulk experiments on
amazing predictive power which led, for example, to the disthermodynamic properties ned@g (heat capacity, phase dia-
covery of the vortex state by Abrikosband of the phenom- grams, vortex structures, vortex lattice, gtdo not carry
enon of surface superconductivity by Saint-James and dmformation on the symmetry of the GL order parameter.
Genne<. In addition, it is the only theory which is simple This is different from the GL theories of heavy fermion su-
enough to handle very complex superconducting phenomergerconductors which could, for example, explain the anoma-
such as the response of unconventional superconductors tdaus phase diagram ne#.'! The GL boundary conditions
magnetic field* In view of the ongoing controversy as to at surfaces and interfaces are more selective. They depend, in
the proper microscopic approach to highsuperconductiv- general, on the symmetry of the order parameter. The most
ity, it should be emphasized that a fundamental phenomengrominent examples are the Josephson coupling energy in
logical theory such as the GL theory holds for any of thed-wave  superconductors  with  tetragonal crystal
commonly discussed microscopic mechanisms. A microsymmetry'>!® anomalies in the tunneling spectfa® and
scopic theory of highF, superconductivity enables us to cal- spontaneous breaking of time-reversal symmgtifhe Jo-
culate the phenomenological parameters of the GL theorgephson couplings between cj2_,2 superconductor &,
(such as the symmetry of the order parameter, the criticadymmetry and ans-wave superconductorAj symmetry
temperature, the coherence length, et will leave the have opposite signs at tleeandbx interfaces, whereas two
general form of the GL theory unchanged. s-wave superconductors have the same coupling constants at
We are interested here in the GL theory for layeredthese interfaces. The sign change is a substantial qualitative
d-wave superconductors, and its potential application to thelifference whose measurement in tetragonal systems would
high-T. cuprates. Thel-wave model of superconductivity is be a direct proof of an order parameter of nontrivial
in fairly good agreement with most of the experimental data(# A;) symmetry. These fundamental effects require the Jo-
on highT, superconductorsand thus competes with vari- sephson coupling to a different superconductor or the same
ous alternative modéis'® for the proper microscopic ap- but differently oriented superconductor, and will not occur at
proach to highF. superconductivity. In contrast to the mi- the surface of a superconductor in contact with an insulator.
croscopic models, which are controversial and disputed, thBlevertheless, one expects significant quantitative differences
good accuracy and reliability of the phenomenological GLbetweens-wave andd-wave superconductors near such sur-
model is undisputed. The minimum energy solution of thefaces for the following reasons. Following de Gerfieme
GL equation is a good approximation to the order parametedescribes the effects of a surface on the superconducting
in thermodynamic equilibrium provided fluctuations can bestate by an extrapolation lenglth An isotropic conventional
neglected. Fluctuations are included in the GL theory if thesuperconductor has=c at a nonmagnetic, fully reflecting
GL free energy is used as the free energy functional in theurface. On the other hand, one expectsderave super-
Ginzburg-Landau-Wilson functional integrals. NeBy this ~ conductors and other strongly anisotropic supercon-
theory is considered an exact theory of the thermodynamicductor$®1® a short extrapolation length of the order of the
of superconductors. Being restricted to the temperature range-independent coherence length. The reason is that surface
near T, and to thermodynamic phenomena is not the onlyscattering is pair breaking in these systems and pulls down
disadvantage of the GL theory. In view of the controversy orthe order parameter in the vicinity of the surface. The actual
the symmetry of the superconducting state in highmate-  strength of the pair breaking effect is expected to depend on
rials another disadvantage of the GL model should be merthe quality of the surfacéspecular or roughand on its ori-
tioned. Many phenomena which are accessible to GL thecentation with respect to the anisotropic order parameter.
ries do not distinguish superconductors with different We calculate in this article the extrapolation length for the
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GL model ofd-wave superconductors from the Fermi-liquid equations including the boundary conditions by an expansion
theory of superconductivity. The extrapolation length can ben T.—T. The quasiclassical equations expanded to first or-

obtained from classical correlation functions of Landau'sder in both the microscopic order parametefp;,R) and

quasiparticle excitations in the normal stitdn Sec. Il we he off-diagonal quasiclassical propagat¥(o. B:e.) have
present the quasiclassical theory of the extrapolation Iengtjhe form 9 q propagatti(pr ,R; en)

for singlet superconductors with arbitrary quasiparticle ban
structure, pairing symmetry, and surface quality. In Sec. Ill S S M By =N
we introduce thel-wave model and our model surfaces, and (2enthve VR)TH(ps,Ri€n) =2mA(pg,R)=0. (1)

derive de Gennes’ kerne¥ for d-wave pairing. de Gennes’ \ye use the Matsubara technique for equilibrium phenomena.
kernel describes superconductors near a second-order transhis is indicated by a superscript on the propagator, and
tion to the normal state and can be used, for example, tds dependence on the discrete Matsubara energies,
study the effec.t. of impurities, surfaces, and interfaces on. = (2n+1)wkgT. Equation(1) is a first-order linear differ-
T, or on the critical fieldH., andH_ 3. We study hfare the ential equation forf'\"(f)f ﬁifn), with an inhomogeneity
effects of surfaces, and calculate from de Gennes’ keajel R . Lo o .
the dependence of the extrapolation length on the quality angA(Pr.R). The spatial derlvatlve in Ed1) is in the direc-
orientation of a surface ang) the size effect o, spe- tion of the Fermi velocityv¢, which is a function of the
cifically its reduction in a slab. The results are summarized=ermi momentef)f. The variables,, and 5f may be consid-
and discussed in Sec. IV. ered as parameters of the differential equation. The transport
equation(1) must be supplemented by the BCS gap equation

II. QUASICLASSICAL APPROACH

A. General theory A(ps yﬁ)ZZKBTGZO d?p; n(py)
We assume in the following that the conduction electrons x oy eMed
in high-T, cuprates can be described by the Fermi-liquid XVecs(Ps,Pe) (Pt R; €n), 2

theory, and calculate the boundary conditions for the GL or- . , . L .
der parameter from the Fermi-liquid theory of anisotropicWh€reéVecs(Pr,pr) is the dimensionless pairing interaction,

superconductors. The most powerful formulation of theand J d?p; denottis a normalized integral over the Fermi sur-
Fermi-liquid theory of superconductivity is the “quasiclassi- faces [ [d?p; n(p;)=1]. The surface elementd?p; is
cal theory,” which may be interpreted as the generalizationweighted in these integrals by the local density of states,

of Landau’s transport equation for normal Fermi liquids ton(p,). The total density of states is included, as a factor, in
the superconducting state. Like Landau’s transport equationhe dimensionless interaction. The momentum dependence of
which is basically a classical equation, the quasiclassicahe pairing interaction determines the symmetry and anisot-
theory has to a large degree the structure of a classical traniso—py of the microscopic order parametk(p; ,R).

port theory. An early version of a quasiclassical approach t0 "1ha gifferential equatioril) requires, for a finite system,

superconductivity is de Gennes’ method of correlation,, ndarv conditions fof™ at surfaces. The ageneral bound-
functions'®?° de Gennes discovered that the leading order, y ' g

. S _ ary condition for elastic reflection at surface€is

terms in an expansion in powers of the superconducting or-

der parameter can be calculated from correlation functionsof L L L

classical particles moving with Fermi velocity. He was able fM(p?”t,R;en)=f d?pf n(pMR(PM, P M(p,R;€n),

to solve, with this method, a variety of problems of super- &)

conductivity near surfacés.de Gennes’ method was refor-

g‘ma__tgd in te;ms Ofdaé ng'asSiC@ Bo(;tzmz;nrr]]tretl)nspc()jrt equatioyhereR(p$™,pi") is the probability for a normal state qua-
y Luders and Usadet. They introduced the boundary con- siparticle moving towards the surface with momentﬁ#‘h

ditions at surfaces and interfaces, originally designed for eing scattered into an outaoing quasiparticle with momen-
Boltzmann distribution function, into the theory of supercon- 9 going g P

ductivity. Both de Gennes’ method and the Boltzmann equatum p_(fm- The quasiparticle current into the surface and away

tion approach were restricted to equilibrium phenomena nedfom it must cancel each othéconservation of the number

a second-order transition to the superconducting phase. T duasiparticles which leads to the conditigh

breakthrough in the Fermi-liquid theory ofégperconductivity

came with the publications by EilenbergerLarkin and 240Ut ¢ Zouty e Sout iy Lo Zouty _ 1 2in

Ovchinnikov?z‘z“pand Eliashbe)rlé? They showed that de P n(PrOR(PEPHYT (P =—vr (Pr). (4)

Gennes’ quasiclassical method can be generalized, and that o ,

the complete theory of superconductivity in Fermi liquids W& used the notationy for the component of the Fermi

can be formulated in terms of quasiclassical transport equa/€locity perpendicular to the surface. Equatiéts (2), and

tions. This theory covers the full temperature range of inter{3 form a closed set of equations. They always have the

est and equilibrium phenomena, as well as linear and nonlin?oninteresting, trivial solutiomrA=0. Nontrivial solutions

ear dynamics out of equilibrium. We use here theWill b_e found for_certaln d|_s_crete temperatures, whose largest

quasiclassical theory in the notation described in Refs. 26,22n€ is the physical transmog] temperature. For instance, the
In order to keep contact with other papers on the quasiPulk transition temperatur& is obtained by solving Egs.

classical theory ofi-wave superconductivit2®58ve will (1), (2) for an infinite system. The solutiak® is independent

start from the full quasiclassical equations, and derive the Giof R, and one obtains the following equation o}
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A% p! R R §§ -
(Pr) . W(Rsur) = — (nsurf)a%vﬂw(Rsurf)- (12

n » Rsurf,

5 I
_ _ . o © The tensorgiﬁla(n,Rsurf) generalizes the scalar extrapola-
This equation pins dowil; and the momentum dependence tion lengthb to anisotropic systems. We are interested here,

of the bulk microscopic order parametsP(p). For conve-  in particular, in the dependence @bn the orientationrf) of
nience, we normaliza°(p;) to the surface with respect to the anisotropy axes of the micro-
scopic order parameter. This dependence can be measured, in
PPN E P principle, by varying the surface orientation. Such experi-
f d°ps n(p)|AY(Pp)[*=1. 6) ments would give information on the anisotropy of the mi-

. . . ) _.croscopic order parameter, and thus provide some insight
Since the anisotropy of the microscopic order parameter i,y the type of pairing in hight, superconductors.
pinned to the crystal lattice, the momentum dependence of ¢

A%(p;,R) is fixed in the GL range, and one can separate the
dependencies oﬁf andR:

A%(py)=2mkeTe 2 f d”p{ n(pf)Vecs PrP})

B. Slab geometry

The pair breaking effect at surfaces leads to a size effect
onT.; small samples will have a reducé&d. The reduction
of T, depends on the size and shape of the sample, and on
The function‘l’(ﬁ) is conveniently chosen as the GL order the qualit.y of its surfaces. For simplicity we consider here a
parameter, and one finds the following bulk GL equations: slab of widthL> &, cut from a perfect crystal. The norm»al to
the surfaces shall have a fixed orientati@mit vectorn)

A(ps,R)=A%p) X ¥ (R). (7)

0

T . . . 2e. . with respect to the crystal axes. We assume homogeneity
70 Y(R)+| Vi %A(R) along the slab which leads to the following solution of the
¢ @ GL equation(8) with the boundary condition&l2):
. L 2e. . -
X (&2) B(V—i—A(R)) VY(R)=0, (8) _ x+bl>
“ hc WP (x)=sin , 13
’ o= & 19
where A is the vector potential, and the coherence-lengthwhere¢, (T) is the GL coherence length perpendicular to the
tensor ¢?) «p 1S given by the integral slab,
743) L Ul P V(P Te
(§z)aB=ch2)J d?p; n(pf)|AO(pf)|2T, £(T)= ﬁé, (14)
©) b, the corresponding extrapolation length,
where (v?)=[d?p; n(py)|v¢(ps)|?, and we introduced a 2
temperature-independent coherence lerigtby b, = gi , (15)
a(n)
ﬁ<vf2>1/2 - .
= —o0- (10 and &, the T-independent perpendicular coherence length,
2mkgTe £ =(n,£55np) "% We chose here and in the following a
The result(9) follows directly from Eqgs(1), (2), (5). coordinate system with the axis perpendicular to the slab,
Substantially more involved is the calculation of the ex-and the boundaries at=0 andx=L. _
trapolation length. Phenomenologically one introddgéise The transition temperatufg; is determined by the condi-

extrapolation lengti(fig,) by starting from the GL surface tion ¥(L+b,)=0, which gives forL.>¢,
energy T ¢ )
Cc 1

T L+2b,

2

(16)

=1-m

Qsu=Ni f dF a(n,Reud P (Rudl®,  (11) o N
The reduction in the transition temperature andRha@epen-
where we factorized out the density of states fadderfor ~ dence of the order parametdf(fz) can be calculated for
convenience. The integrdldF is a surface integral over the arbitrary slab size4, i.e., also forL<¢, , from the quasi-
sample surface, and the lenglin,Rg,) is a phenomeno- classical Eqs(1)—(3). A comparison of these results with the
logical parameter which measures the strength of the pafL results (13) and (16) allows us to determine the
breaking atR, induced by a surface with surface normal orlentatlon-_dependent extrapolanQ length, andéto de-
nA parametem=0 means no pair breaking,=c means duce from it the surface-paw-breakmgﬁ parametén). We
infinitely strong pair breaking, and a negatiaevould mean Wil follow this route for calculatinga(n) in this paper. It
an enhancement of superconductivity at the surface. Thehould be emphasized that thaiﬁ), calculated for the
boundary condition for? is obtained by minimizing the simple slab geometry in the absence of a magnetic field, can
bulk GL energy together with the surface energy, and onde used in a GL theory for much more complex physical
obtains situations. An example would be a superconducting grain of
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nontrivial geometry in a magnetic field, whose study by thetation in the classical transport problem for quasiparticles.
full Fermi-liquid theory of superconductivity is feasible but They describe the contributions to the distribution functions

difficult. The GL theory of such a grain, on the other hand, isfM(F;f X €,) originating from reflections at the surfaces. The

a routine task for pre.sent Qay computers. _ reflection termF* (F™) describes the effect of the surfaces
We start the quas_lclassmal theory_of the slab by _solvmgbn right-moving (left-moving quasiparticles. This interpre-
the transport equatioril). One obtains for an arbitrary i tion can be inferred directly from Eg7), (18). The two

A(ps,x) the solution terms are coupled via Eq&0), (21). The surface-to-surface
o « coupling is caused by multiple reflection at the two surfaces,
fM(p; :X;En):—+j dx’ exg —k*(x—x")] and decreases exponentially for a large surface-to-surface
filvidps )| Jo separation L. This leads to the exponential factors

- - xexp(—«~L) in the coupling terms in Eq$20), (21). For a
XA(pf X')+FT(p{ sen)exp(—xX) large separationl(>¢&,) the regions of distorted supercon-
(17) ductivity near the left and right surfaces become decoupled.
A solution of Egs.(20), (21) together with Eq(7) deter-
mines the reflection terms as linear functions of the order
2 L parameteft (x). Insertion into Eqs(17), (18) then gives us
mj dx’ exg k™ (x=x")] the distribution functiong™ in terms of ¥'(x). This result
PARTEJ1x can be used for eliminating from the self-consistency
XA([S{ ,x’)+F‘(|5f_ ceexg k (L—x)] equation(2) in favor of ¥(x). One ends up with a linear
integral equation fol (x), whose kernel is de Gennes’ ker-
(18 nel generalized td-wave pairing. The integral equation will
for particles moving in the negative direction. We use the be used to calculate the GL extrapolation length and the tran-
superscripts+ [ — ] for quasiparticles moving in the positive Sition temperature _of a narrow slab. Analogous ca_llculations
[negativd x direction, i.e.,vfx(5?)>0 [vfx(5{)<0]. The for p-wave pairing in superfluidHe have been published in

exponential decay of the integrands depends on the Fernﬁefs' 31.32.
velocities and the Matsubara energies, and is set by

2e
K= :h|—(;i)|' (19 A. Model for layered d-wave superconductors

vt . .
e " , f , o . In order to proceed further one has to specify the various

The distinction between quasiparticles moving in posmveinlout material parameters in Eqq), (2), and(3). These are

and negative directions is important for the boundary con- . > > e .

" B -~ o , -.  the Fermi-surface datp; and v¢, the pairing interaction

ditions atx=0 andx=L. Quasiparticles with momen®@ v/, . and the reflection probabilities at the surface,

(py) are “outgoing” atx=0 and “incoming” atx=L (and  gegout 5iny | the following we discuss the simplest model
vice versa. The boundary conditioit3) gives two coupled  for 5 |ayeredd-wave superconductor with a negligible small
equations interlayer coupling. The Fermi surface shall be approximated
by a single cylinder of radiup; oriented along the direc-
F(p; ;en)zf d?p; n(p; )R(p; ,p;) tion. The Fermi velocity in the direction is zero in this
model, and the layers are decoupled. It is convenient to pa-
2 L - rametrize the Fermi surface by cylindrical coordinates, i.e.,
X(mfo dx’ exp(—«"x’) the momentum in the direction, p;,, and the polar angle
ix( Ps ¢ in the p,-p, plane. We will put the origin of the polar
R R coordinates,p=0, in the x direction. This is the direction
XA(ps X" )+F (ps ;en)exp(—« L) |, normal to the surfaces of the sléasee Fig. 1 The direction
of the crystala axis is, in general, rotated by an angig
(200  with respect to the surface normal. The perpendicular mo-
and mentum to the layersp¢,, is unimportant in the model of
decoupled layers, and can be dropped. Thus, the normalized
Fermi-surface integrals are given in these coordinates by

for particles moving in the positivie direction and

fM(p; X €n) =

Ill. RESULTS

F(Br 1= | o7 (B RGBT B

- dt
2m (L . fdpf n(pa---efz—--. (22
X mfo dx" exd —«k"(L—x")] ™

Pt We take the pairing interactidiieq. (2)] as purelyd wave of

symmetryBq;

Vecs(#,¢') =29 co§2(p— o) [co§2(d'— )], (23

XAy X)+F(pf enexp(—«TL) |,

21
_ _ S ) whereg is a dimensionless interaction constant. The maxima
which serve to pin down the two functios™(p; ;€,) and  of the the gap are locked to the main crystal axes at
F~(ps ;en). These functions have a direct physical interpre-¢=* ¢, (a axis), and == (po+ m/2) (b axis).
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out Fermi velocity v¢ which enters the coherence length
&o=hvi/2mkg T, and will be absorbed intd,, and(c) the
roughness parameter of the surface. The first two param-
eters disappear if we measure temperatures in unir§ ahd
lengths in units of¢;. Hence, the remaining parameters of
interest for our calculations ar'B’TS, p, and the geometric
parameterd./ &, (slab width and ¢, (slab orientation

. . o B. Numerical calculations
FIG. 1. Sketch of the classical trajectory of a quasiparticle ap-

proaching a rough wall along the incomifig) part of the trajec- We focus in our calculation on wide slabk/€,>1) for
tory and being reflected into the outgoitigut) part. The angles Which the coupling terms in Eq&0), (21) can be neglected.
" and ¢°“ specify the directions of the Fermi velocity of the In this case, Eqs(20), (21) can trivially be solved for=*
incoming and outgoing quasiparticles. andF~. The result can be inserted into E¢$7), (18), and
the resulting distribution function8” can be used to convert
Eq. (2) into an equation for the microscopic order parameter
_ _ A(ps,R). Equation(2) then turns, by using the translational
The simplest model for a surface with some degree oOfpyariance along the slab and the factorization,
roughness is the Reuter-Sondheifiemodel, in which a
quasiparticle is reflected diffusely with probability, and A(ﬁfﬁ):\p(x)x \/Ecog(/,_%), (25)
specularly with probability % p:

R(¢%,¢"™) = pm|cog ¢")|+(1—p)27($*"'+ ¢~ ). L L
(24) \If(x)=gf dx’ .,%’-'}”'k(x—x’)\lf(x’)+gf dx' 7P
The model of Reuter and Sondheimer has one parameter, the ° 0
diffusivity p. ) , L AL , ,

The Fermi-surface data, pairing interaction, and surface X(X,x" )W (X )+9J0 dx" Z7 (x,x")¥(x"). (26)
model complete the list of material parameters for our calcu-
lations. They define what may be considered the simpledEquation (2), which determines the above kernefg®',
nontrivial model of a layeredi-wave superconductor with . 7%{?), and.7Z{", requires summation over the Matsubara
weak interlayer coupling. The model has three relevant maenergies and a Fermi-surface integral. The Matsubara sum is
terial parametersta) the coupling constang which deter- a geometric series, and one is left with the following Fermi-
mines T2 and will be eliminated in favor off?, (b) the  surface integralsd integrals:

into an integral equation foWw (x) of the form

w2 d¢ 2T co(24¢)

w2 d¢ 2T sir?(2¢)

I =X =coS(2¢0) | oo T x| TS0 | o _ T, (27)
cos(qﬁ)sm)—(T o4 d) cos{qs)smr(T cos ) )
Q%%O)(X,X,):¥[C034¢0)+1]fm2 dé 2T cog(24) ,
a2 27 . X
cos{¢)sml‘<T m )
1- w2 d 2T sirf(2¢)
+ 5 tcosag -1 [~ S o
cos(qb)sml—(T cos ) )
w2 dgp®'t (372 dp™ 27T cog2¢°"cog2¢™M)
T I o A hT (28)
S'”H cod 67| " | cod 4 ”
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1— 2 d¢ 2T coS(2¢)
(L) - P
T (X X") = [005(4¢0)+1]f . I-(TZL_X_X, )
T cod )sinh T =~
cog ¢)
/2 d¢ 2T sirf(2¢)
T cod )sinh T|———
¢ cos )
w2 dgp" (372 dp® 27T cog 24 cog 24!
+pco§(2¢o)f L/Z or 5 = ) > (29
S o ™| ™ | cog ¢o)
|
The bulk kernel 2% derives from classical trajectories of &
excitations which do not hit the surfaces. The surface kernels b( o) = a’ (32

79 and 7§ derive from classical trajectories of excita-

tions which hit the surface at=0 andx=L, respectively.
The temperaturd@ is measured in Eq$27)—(29) in units of
T2 and the lengths in units af.

Equation(26) still contains the coupling constagtwhich

where £2 is the GL coherence length, ant}, measures the
relative orientation of the axis of maximum gap and the sur-
face normal. We determinig( ¢,) by calculating the ampli-
tude ¥ (x) of the microscopic order parameter ndarfor a

must be eliminated in favor of the bulk transition tempera-slab of widthL and orientation,. The amplitude is defined
ture TO. We do this by using the equation for the bulk tran- by the relation

sition temperaturd?
te o buk
=f dx J/To (x—x"), (30

where the kernel%?‘é'k is obtained from Eq(27) by setting

A(X, ) =P (X)Ao(¢),

where the anisotropic part of the microscopic order param-
eter is fixed in our model td o( ) = \/5c0$2(¢— ¢p)]. For a
wide slab this microscopic amplitude will agree away from
the surfaces with the GL order parameter, and one obtains
the extrapolation length by fitting the microscopic solution

(33

T=1, i.e., to the bulk transition temperature. The eliminationaway from the surfaces to the GL soluti¢h3). Figure 2

of g in Eq. (26) thus leads to our final equation fdf(x):

+ o
f dx’

L L
= JO dx’ 722K x—x")W(x")+ fo dx' 7P

7/‘.'}3'k(x X)W (x)

shows typical results for the amplitudé(x) in a slab of
width 15¢, and specular surfaces. Thewave order param-
eter is not affected by the surfaces for the ideal orientation
$o=0°, and maximum pair breaking occursgat 45°. This
result is a consequence of the very different behavior of the
microscopic order parameter along reflected trajectories of

L = =
X(x,X’)‘I’(X’)JrfO dx’ 7P (x,x )W (x"). (31 ' e NN
P NN

o8r //,;7 \*Q\\\ \
The elimination ofg also eliminated a logarithmic singular- X / /7 \l‘\\ \
ity which plagues both Eqg26) and (30). The singularities E06 . PN
cancel each other in E¢31), and it becomes free of diver- % YA 4 =0. o N
gences forx—x’—0. The linear integral equatiofB1) is > 04t 7 $,=10.0 3
thus in a form which admits a routine numerical solution. We Al T 0o =22.5 N\
first calculate the various kernelg® (9 and.7z®), o2t// T 0, =45.0 N
defined in Eqs(27), (28), (29), by standard integration rou- '/ \\‘
tines, and then solve Eq31) by discretizing the integrals 0.0 . : .
and using standard routines for finding eigenvalues and 0.0 50 X/ 100 150

0

eigenvectors of the resulting homogeneous linear system.

C. Extrapolation length

FIG. 2. Spatial variation of the order parameter ofl-avave
superconductor in a slab of width §bwith smooth =0) bound-

_ In our Fermi-surface model the coherence-length tensor igries. The depletion of the order parameter near the boundaries
diagonal, and the extrapolation-length tensor, introduced ilepends on the relative orientation angig of the surface and the
Eq. (12), simplifies to crystal lattice.
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-——= ¢, =10.0°

15| — ¢,=45.0° A
’% /////
B“E //////
) e
c | A7
= 0.5 .
9 - -
= -

“b
-0.5 .
-5.0 0.0 5.0
X/E,

FIG. 4. The function arcsji¥(X)/¥a] IS used to extract the
extrapolation lengthb from the order parameter in a slab. This
arcsine function is linear in the region of validity of the GL theory,
and the extrapolation of the linear part determines the extrapolation
quasiparticles. Forp,=0 the order parameter along an in- length. We display typical examples for a slab with smooth walls
coming trajectory is the same as along the outgoing onend two orientation angles. The order parameté(x) are shown
(constructive trajectoy i.e., Ao(¢°“t)=A0(<;/>'”). Conse- in Fig. 2. The extrapolation length is zero for the orientation angle
quently, the contribution of a reflected trajectory in the slabof maximal pair breaking ¢,=45°), infinity for ¢o=0° (not
is the same as that of a straight trajectory with directionshown, and ~4.5¢, for the intermediate orientation angle
#™ in a bulk sample, and there is no pair breaking at thes¢o=10°
surfaces. In the second case, on the other hand, the micro-

scopic order parameter flips sign along a reflected trajectorio the orientation, and only a small anisotropy is left for a
because Ag(¢™)=—Ag(4"). The reflected trajectories rough surface. Figure 7 shows our results for the reduction in
contribute negatively to the kernel, and are strongly pairr_ in slabs ofd-wave superconductors of thickneiss The
breaking (destructive trajectoy This strong pair breaking amount of reduction depends on the orientation of the slab
effect is a consequence of the microscopic order parametgit respect to the crystal axes and on the surface quality. A
changing sign in a reflection at tH&10) plane. This effect slab with specular walls shows fak,=45° (orientation of

will not occur for anisotropics-wave superconductors with strong pair breakinga jump toT,=0 at a critical thickness

no sign change, or only small regions on the Fermi surfac¢ " The critical thickness and the jump decrease with in-

with an order parameter of different sign. Results for thet'creasing roughness. A rough slab still has a fihigebut T,

order parameter of a slab with rough surfaces are shown Beems to approach zero continuoushiat No significant

F'.g' 3. Constructive and d_estructlve trajectories are alway ifferences between different orientations of the surface are
mixed at a rough surface, independent of its orientation, an

one finds an intermediate extrapolation length of the order

FIG. 3. Same as Fig. 2, but for a slab with rough=1) bound-
aries.

&o- 2.0 . . .
A comparison of the microscopic solution and the GL ' . ¢0=0,0°
solution(a sine functionis shown in Fig. 4. The plot shows -, =225
the arcsine of the microscopic amplitude, which would give 151 o ¢°_45 0°
o = 45.

straight lines for a pure sine function. The figure demon-

strates the good fit to the GL solution in the interior of the

slab and the deviations near the surface. The extrapolation of uf 1o
the straight line determines the extrapolation lergte Fig. £

4). Formally, the extrapolation length of the GL theory is

obtained from the microscopic calculations in the limit of an 05
infinitely wide slab. Our calculations are done for finite

slabs, and we show in Fig. 5 the dependence of the extrapo-

lation length on the width. of the slab. These results ap- 0.0 . ' .

proach the GL extrapolation lengh{ ¢,) for L—o0, and the 0.0 5.0 C;m 150 200
deviations at finiteL give estimates of the accuracy of the %

GL theory for slabs of finite thickness.

Our main results are given in Figs. 6 and 7. Figure 6 giG. 5. Dependence of the extrapolation length on the width
shows the calculated dependence of the extrapolation lenghj the slab. The true GL extrapolation length is obtained in the limit
on the orientation and roughness of the surface. The extrap@-—.«. TheL dependence of the extrapolation length has no direct
lation length depends strongly on the surface-to-lattice orienphysical meaning. The shown deviationsbofrom the GL extrapo-
tation for perfectly reflecting surfacep0). It ranges here lation length give an estimate for the error in a GL calculation for
from 0 to . Any roughness weakens this strong sensitivitysystems of finite siz&. At L=15&;, e.g., the error is below 10%.
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8.0 : : : : breaking. Just the opposite situation holds for a 0° surface.
. Specularly reflected trajectories are not pair breaking, and
* ¢,=0.0 roughness mixes in pair breaking trajectories.
6.0 . 9,=10.0°
0
* 4 =225 IV. SUMMARY

%’?40 In view of the ongoing discussion of both the symmetry
of the condensed pairs and the proper theory of Higlsu-
perconductors, it is desirable to measure properties which

20}

carry information on the pairing symmetry, and which can be
. . analyzed by a quantitative theory of superconductivity. The
;_”r__‘,_f,———*/““ Ginzburg-LandauGL) theory provides a powerful tool for
00,5 0.2 0.4 06 08 1.0 analyzing the effects al-wave pairing on the superconduct-
p ing properties. In particular, the surface and interface terms
of the GL theory show important qualitative, as well as quan-
FIG. 6. Dependence of the GL extrapolation lengtton the titative, differences betweesrwave andd-wave pairing in

surface roughness. Results are shown for the modiéiwave su-  tetragonal crystals.

perconductor, and several surface-to-lattice orientation angjes In this work we study the GL theory af-wave supercon-
A very strong dependence bfon the orientation angle is obtained ductors near surfaces. The boundary Condltlon' for'the order
for smooth surfacesp<1). parameter of the phenomenological GL equation is formu-

lated in terms of an “extrapolation length” of the order pa-
found for rough p=1) surfaces, as shown in Fig. 7. It rameter at the surface. One purpose of this work is to de-
should be noted that increasing roughness increases the p4f/oP the theory of the extrapolation length for an
breaking effect for the,=0° orientation, whereas it re- anisotropic superconductor with an anisotropic Fermi surface
duces the pair breaking effect for thi,=45° orientation. and anisotropic pairing amplltqde.. A gecond purpose 1s to
Specular reflection at a 45° surface leads to a sign change fgl_en:jonstra(\jte th_at sizable fqur?ntltatlve dllff_erenlces '?] the mag-
all trajectories, and thus to a maximal pair breaking. Randon{'tY ed ?nl'd anisotropy of the extrapolation engtd are ex-
scattering at the surfaces mixes in less destructive trajectori@€cted ford-wave andanisotropi¢ s-wave superconductors.

e.g., with no sign changeand thus reduces the surface pair Ve calculate the kernel to the linearized gap equation using
(€9 d 9e P de Gennes’ method as developed fewave superconduct-

ors, and derive from it the dependence of the extrapolation
length on the surface orientation and the degree of surface
roughness. The most pronounced effectslafiave pairing
on the GL boundary condition are expected for smooth sur-
faces(specular reflection One finds a large difference in the
extrapolation length fof100 and(010) surfaces, which have
an infinite extrapolation length, vers(kl0) surfaces, which
have an extrapolation lengtk &,. This result follows di-
rectly from symmetry arguments, as first shown in Ref. 31.
The anisotropy is diminished to some degree with increasing
roughness of the surface. Effects which measure these
anisotropies are, for instance, the reductiorT jnin narrow
geometries(size effect, the surface critical fieldH 5, tun-
neling, and other surface sensitive probes. We present de-
L/¢& tailed results for the depression ®f in narrow slabs, which
might be observed in strips of cuprate superconductors with
FIG. 7. Critical temperature of a-wave superconductor as their long axis in thea-b plane.
function of the width of the slab. The marked curves show results After completing this work we became aware of a manu-
for smooth surfacesp(=0), rough surfacesp=1), and two differ-  script by Barash, Galaktionov, and ZaikhThe authors dis-
ent surface to lattice orientation angles. The solid line is shown fol; ;55 in Sec. Il the extrapolation length at specular surfaces of
comparison. It represents the result of the GL theory for an extrapog_yave superconductors with spherical Fermi surfaces.
lation lengthb=0. The calculations use the wide-channel approxi-thase results are fully equivalent to our results for supercon-

mationL> &1, whereér. is the effective coherence length at the d . P . . P
" uctors with cylindrical Fermi surfaces in the lingt=0.
transition temperature of the slaby.= éoTB/TC. The two dashed y m

lines show the location of the curvels=¢&;. (left line) and

L=2¢&;. (right line). This indicates roughly the dividing line at ACKNOWLEDGMENTS

which our approximation breaks down. Calculated results beyond ) ) .

the right dividing line are shown as dashed continuations of the This work was supported by the “Graduiertenkolleg fu
solid lines. The breakdown of the wide-channel approximation isMaterialien und Phaomene bei sehr tiefen Temperaturen” of
clearly seen for the slab with optimal orientatign=0 and ideal the Deutsche Forschungsgemeinschaft. We thank D. Rainer
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