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We calculate de Gennes’ extrapolation length for ad-wave superconductor near a surface within Fermi-
liquid theory. The extrapolation length depends critically on the orientation of the surface relative to the crystal
axes and on the surface roughness. This sensitivity of the boundary conditions for ad-wave order parameter to
surface conditions is not found in traditionals-wave superconductors, and is a signature of anisotropic pairing
with a changing sign of the order parameter along the Fermi surface. de Gennes’ method is used to calculate
the reduction ofTc in thin strips of high-Tc superconductors.

I. INTRODUCTION

The Ginzburg-Landau~GL! theory is among the most
successful and versatile theories of superconductivity. It has
amazing predictive power which led, for example, to the dis-
covery of the vortex state by Abrikosov1 and of the phenom-
enon of surface superconductivity by Saint-James and de
Gennes.2 In addition, it is the only theory which is simple
enough to handle very complex superconducting phenomena
such as the response of unconventional superconductors to a
magnetic field.3,4 In view of the ongoing controversy as to
the proper microscopic approach to high-Tc superconductiv-
ity, it should be emphasized that a fundamental phenomeno-
logical theory such as the GL theory holds for any of the
commonly discussed microscopic mechanisms. A micro-
scopic theory of high-Tc superconductivity enables us to cal-
culate the phenomenological parameters of the GL theory
~such as the symmetry of the order parameter, the critical
temperature, the coherence length, etc.! but will leave the
general form of the GL theory unchanged.

We are interested here in the GL theory for layered
d-wave superconductors, and its potential application to the
high-Tc cuprates. Thed-wave model of superconductivity is
in fairly good agreement with most of the experimental data
on high-Tc superconductors,

5 and thus competes with vari-
ous alternative models6–10 for the proper microscopic ap-
proach to high-Tc superconductivity. In contrast to the mi-
croscopic models, which are controversial and disputed, the
good accuracy and reliability of the phenomenological GL
model is undisputed. The minimum energy solution of the
GL equation is a good approximation to the order parameter
in thermodynamic equilibrium provided fluctuations can be
neglected. Fluctuations are included in the GL theory if the
GL free energy is used as the free energy functional in the
Ginzburg-Landau-Wilson functional integrals. NearTc this
theory is considered an exact theory of the thermodynamics
of superconductors. Being restricted to the temperature range
nearTc and to thermodynamic phenomena is not the only
disadvantage of the GL theory. In view of the controversy on
the symmetry of the superconducting state in high-Tc mate-
rials another disadvantage of the GL model should be men-
tioned. Many phenomena which are accessible to GL theo-
ries do not distinguish superconductors with different

symmetries. All types of pairing which are presently dis-
cussed in the context of high-Tc materials lead to a one-
component order parameter with the same bulk GL equa-
tions. As a consequence, bulk experiments on
thermodynamic properties nearTc ~heat capacity, phase dia-
grams, vortex structures, vortex lattice, etc.! do not carry
information on the symmetry of the GL order parameter.
This is different from the GL theories of heavy fermion su-
perconductors which could, for example, explain the anoma-
lous phase diagram nearTc .

11 The GL boundary conditions
at surfaces and interfaces are more selective. They depend, in
general, on the symmetry of the order parameter. The most
prominent examples are the Josephson coupling energy in
d-wave superconductors with tetragonal crystal
symmetry,12,13 anomalies in the tunneling spectra,14–16 and
spontaneous breaking of time-reversal symmetry.17 The Jo-
sephson couplings between adx22y2 superconductor (B1
symmetry! and ans-wave superconductor (A1 symmetry!
have opposite signs at thea andbx interfaces, whereas two
s-wave superconductors have the same coupling constants at
these interfaces. The sign change is a substantial qualitative
difference whose measurement in tetragonal systems would
be a direct proof of an order parameter of nontrivial
(ÞA1) symmetry. These fundamental effects require the Jo-
sephson coupling to a different superconductor or the same
but differently oriented superconductor, and will not occur at
the surface of a superconductor in contact with an insulator.
Nevertheless, one expects significant quantitative differences
betweens-wave andd-wave superconductors near such sur-
faces for the following reasons. Following de Gennes18 one
describes the effects of a surface on the superconducting
state by an extrapolation lengthb. An isotropic conventional
superconductor hasb5` at a nonmagnetic, fully reflecting
surface. On the other hand, one expects ford-wave super-
conductors and other strongly anisotropic supercon-
ductors15,16 a short extrapolation length of the order of the
T-independent coherence length. The reason is that surface
scattering is pair breaking in these systems and pulls down
the order parameter in the vicinity of the surface. The actual
strength of the pair breaking effect is expected to depend on
the quality of the surface~specular or rough! and on its ori-
entation with respect to the anisotropic order parameter.

We calculate in this article the extrapolation length for the
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GL model ofd-wave superconductors from the Fermi-liquid
theory of superconductivity. The extrapolation length can be
obtained from classical correlation functions of Landau’s
quasiparticle excitations in the normal state.19 In Sec. II we
present the quasiclassical theory of the extrapolation length
for singlet superconductors with arbitrary quasiparticle band
structure, pairing symmetry, and surface quality. In Sec. III
we introduce thed-wave model and our model surfaces, and
derive de Gennes’ kernelK for d-wave pairing. de Gennes’
kernel describes superconductors near a second-order transi-
tion to the normal state and can be used, for example, to
study the effect of impurities, surfaces, and interfaces on
Tc or on the critical fieldsHc2 andHc3 . We study here the
effects of surfaces, and calculate from de Gennes’ kernel~a!
the dependence of the extrapolation length on the quality and
orientation of a surface and~b! the size effect onTc , spe-
cifically its reduction in a slab. The results are summarized
and discussed in Sec. IV.

II. QUASICLASSICAL APPROACH

A. General theory

We assume in the following that the conduction electrons
in high-Tc cuprates can be described by the Fermi-liquid
theory, and calculate the boundary conditions for the GL or-
der parameter from the Fermi-liquid theory of anisotropic
superconductors. The most powerful formulation of the
Fermi-liquid theory of superconductivity is the ‘‘quasiclassi-
cal theory,’’ which may be interpreted as the generalization
of Landau’s transport equation for normal Fermi liquids to
the superconducting state. Like Landau’s transport equation,
which is basically a classical equation, the quasiclassical
theory has to a large degree the structure of a classical trans-
port theory. An early version of a quasiclassical approach to
superconductivity is de Gennes’ method of correlation
functions.19,20 de Gennes discovered that the leading order
terms in an expansion in powers of the superconducting or-
der parameter can be calculated from correlation functions of
classical particles moving with Fermi velocity. He was able
to solve, with this method, a variety of problems of super-
conductivity near surfaces.19 de Gennes’ method was refor-
mulated in terms of a classical Boltzmann transport equation
by Lüders and Usadel.20 They introduced the boundary con-
ditions at surfaces and interfaces, originally designed for a
Boltzmann distribution function, into the theory of supercon-
ductivity. Both de Gennes’ method and the Boltzmann equa-
tion approach were restricted to equilibrium phenomena near
a second-order transition to the superconducting phase. The
breakthrough in the Fermi-liquid theory of superconductivity
came with the publications by Eilenberger,21 Larkin and
Ovchinnikov,22–24 and Eliashberg.25 They showed that de
Gennes’ quasiclassical method can be generalized, and that
the complete theory of superconductivity in Fermi liquids
can be formulated in terms of quasiclassical transport equa-
tions. This theory covers the full temperature range of inter-
est and equilibrium phenomena, as well as linear and nonlin-
ear dynamics out of equilibrium. We use here the
quasiclassical theory in the notation described in Refs. 26,27.

In order to keep contact with other papers on the quasi-
classical theory ofd-wave superconductivity28,29,15,16we will
start from the full quasiclassical equations, and derive the GL

equations including the boundary conditions by an expansion
in Tc2T. The quasiclassical equations expanded to first or-
der in both the microscopic order parameterD(pW f ,RW ) and
the off-diagonal quasiclassical propagatorf M(pW f ,RW ;en) have
the form

~2en1\vW f•¹W R! f M~pW f ,RW ;en!22pD~pW f ,RW !50 . ~1!

We use the Matsubara technique for equilibrium phenomena.
This is indicated by a superscriptM on the propagator, and
its dependence on the discrete Matsubara energies,
en5(2n11)pkBT. Equation~1! is a first-order linear differ-
ential equation forf M(pW f ,RW ;en), with an inhomogeneity
}D(pW f ,RW ). The spatial derivative in Eq.~1! is in the direc-
tion of the Fermi velocityvW f , which is a function of the
Fermi momentapW f . The variablesen andpW f may be consid-
ered as parameters of the differential equation. The transport
equation~1! must be supplemented by the BCS gap equation

D~pW f ,RW !52kBT (
en.0

E d2pf8 n~pW f8!

3VBCS~pW f ,pW f8! f M~pW f8 ,RW ;en!, ~2!

whereVBCS(pW f ,pW f8) is the dimensionless pairing interaction,
and*d2pf denotes a normalized integral over the Fermi sur-
faces @*d2pf n(pW f)51#. The surface elementd2pf is
weighted in these integrals by the local density of states,
n(pW f). The total density of states is included, as a factor, in
the dimensionless interaction. The momentum dependence of
the pairing interaction determines the symmetry and anisot-
ropy of the microscopic order parameterD(pW f ,RW ).

The differential equation~1! requires, for a finite system,
boundary conditions forf M at surfaces. The general bound-
ary condition for elastic reflection at surfaces is20

f M~pW f
out,RW ;en!5E d2pf

in n~pW f
in!R~pW f

out,pW f
in! f M~pW f

in ,RW ;en!,

~3!

whereR(pW f
out,pW f

in) is the probability for a normal state qua-

siparticle moving towards the surface with momentumpW f
in

being scattered into an outgoing quasiparticle with momen-
tum pW f

out. The quasiparticle current into the surface and away
from it must cancel each other~conservation of the number
of quasiparticles!, which leads to the condition20

E d2pf
out n~pW f

out!R~pW f
out,pW f

in!v f
'~pW f

out!52v f
'~pW f

in!. ~4!

We used the notationv f
' for the component of the Fermi

velocity perpendicular to the surface. Equations~1!, ~2!, and
~3! form a closed set of equations. They always have the
noninteresting, trivial solutionD[0. Nontrivial solutions
will be found for certain discrete temperatures, whose largest
one is the physical transition temperature. For instance, the
bulk transition temperatureTc

0 is obtained by solving Eqs.
~1!, ~2! for an infinite system. The solutionD0 is independent
of RW , and one obtains the following equation forTc

0
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D0~pW f !52pkBTc
0 (

en.0
E d2pf8 n~pW f8!VBCS~pW f ,pW f8!

D0~pW f8!

en
.

~5!

This equation pins downTc
0 and the momentum dependence

of the bulk microscopic order parameterD0(pW f). For conve-
nience, we normalizeD0(pW f) to

E d2pf8 n~pW f8!uD0~pW f8!u251 . ~6!

Since the anisotropy of the microscopic order parameter is
pinned to the crystal lattice, the momentum dependence of
D0(pW f ,RW ) is fixed in the GL range, and one can separate the
dependencies onpW f andRW :

D~pW f ,RW !5D0~pW f !3C~RW !. ~7!

The functionC(RW ) is conveniently chosen as the GL order
parameter, and one finds the following bulk GL equations:

Tc
02T

Tc
0 C~RW !1S ¹W 2 i

2e

\c
AW ~RW ! D

a

3~j2!abS ¹W 2 i
2e

\c
AW ~RW ! D

b

C~RW !50 , ~8!

whereAW is the vector potential, and the coherence-length
tensor (j2)ab is given by the integral

~j2!ab5
7z~3!

4
j0
2E d2pf n~pW f !uD0~pW f !u2

v fa~pW f !v fb~pW f !

^v f
2&

,

~9!

where ^v f
2&5*d2pf n(pW f)uvW f(pW f)u2, and we introduced a

temperature-independent coherence lengthj0 by

j05
\^v f

2&1/2

2pkBTc
0 . ~10!

The result~9! follows directly from Eqs.~1!, ~2!, ~5!.
Substantially more involved is the calculation of the ex-

trapolation length. Phenomenologically one introduces18 the
extrapolation lengthb(n̂surf) by starting from the GL surface
energy30

Vsurf5NfE dF a~nW ,RW surf!uC~RW surf!u2, ~11!

where we factorized out the density of states factorNf for
convenience. The integral*dF is a surface integral over the
sample surface, and the lengtha(nW ,RW surf) is a phenomeno-
logical parameter which measures the strength of the pair
breaking atRW surf induced by a surface with surface normal
nW . A parametera50 means no pair breaking,a5` means
infinitely strong pair breaking, and a negativea would mean
an enhancement of superconductivity at the surface. The
boundary condition forC is obtained by minimizing the
bulk GL energy together with the surface energy, and one
obtains

C~RW surf!52~nW surf!a

jab
2

a~nW ,RW surf!
¹bC~RW surf!. ~12!

The tensorjab
2 /a(nW ,RW surf) generalizes the scalar extrapola-

tion lengthb to anisotropic systems. We are interested here,
in particular, in the dependence ofa on the orientation (nW ) of
the surface with respect to the anisotropy axes of the micro-
scopic order parameter. This dependence can be measured, in
principle, by varying the surface orientation. Such experi-
ments would give information on the anisotropy of the mi-
croscopic order parameter, and thus provide some insight
into the type of pairing in high-Tc superconductors.

B. Slab geometry

The pair breaking effect at surfaces leads to a size effect
onTc ; small samples will have a reducedTc . The reduction
of Tc depends on the size and shape of the sample, and on
the quality of its surfaces. For simplicity we consider here a
slab of widthL@j0 cut from a perfect crystal. The normal to
the surfaces shall have a fixed orientation~unit vector nW )
with respect to the crystal axes. We assume homogeneity
along the slab which leads to the following solution of the
GL equation~8! with the boundary conditions~12!:

C~x!5sinS x1b'

j'~T! D , ~13!

wherej'(T) is the GL coherence length perpendicular to the
slab,

j'~T!5A Tc
0

Tc
02Tc

j' , ~14!

b' the corresponding extrapolation length,

b'5
j'
2

a~nW !
, ~15!

and j' the T-independent perpendicular coherence length,
j'5(najab

2 nb)
1/2. We chose here and in the following a

coordinate system with thex axis perpendicular to the slab,
and the boundaries atx50 andx5L.

The transition temperatureTc is determined by the condi-
tion C(L1b')50, which gives forL@j'

Tc
Tc
0 512p2S j'

L12b'
D 2. ~16!

The reduction in the transition temperature and theR depen-
dence of the order parameterC(RW ) can be calculated for
arbitrary slab sizesL, i.e., also forL,j' , from the quasi-
classical Eqs.~1!–~3!. A comparison of these results with the
GL results ~13! and ~16! allows us to determine the
orientation-dependent extrapolation lengthb' , and to de-
duce from it the surface-pair-breaking parametera(nW ). We
will follow this route for calculatinga(nW ) in this paper. It
should be emphasized that thea(nW ), calculated for the
simple slab geometry in the absence of a magnetic field, can
be used in a GL theory for much more complex physical
situations. An example would be a superconducting grain of

53 5865SURFACE BOUNDARY CONDITIONS FOR THE GINZBURG- . . .



nontrivial geometry in a magnetic field, whose study by the
full Fermi-liquid theory of superconductivity is feasible but
difficult. The GL theory of such a grain, on the other hand, is
a routine task for present day computers.

We start the quasiclassical theory of the slab by solving
the transport equation~1!. One obtains for an arbitrary
D(pW f ,x) the solution

f M~pW f
1 ,x;en!5

2p

\uv f x~pf
1!u E0

x

dx8 exp@2k1~x2x8!#

3D~pW f
1 ,x8!1F1~pW f

1 ;en!exp~2k1x!

~17!

for particles moving in the positivex direction and

f M~pW f
2 ,x;en!5

2p

\uv f x~pf
2!u Ex

L

dx8 exp@k2~x2x8!#

3D~pW f
2 ,x8!1F2~pW f

2 ;en!exp@k2~L2x!#

~18!

for particles moving in the negativex direction. We use the
superscripts1 @2# for quasiparticles moving in the positive
@negative# x direction, i.e.,v f x(pW f

1).0 @v f x(pW f
2),0#. The

exponential decay of the integrands depends on the Fermi
velocities and the Matsubara energies, and is set by

k65
2en

\uv f x~pf
6!u

. ~19!

The distinction between quasiparticles moving in positive
and negativex directions is important for the boundary con-
ditions atx50 andx5L. Quasiparticles with momentapW f

1

(pW f
2) are ‘‘outgoing’’ at x50 and ‘‘incoming’’ at x5L ~and

vice versa!. The boundary condition~3! gives two coupled
equations

F1~pW f
1 ;en!5E d2pf

2 n~pW f
2!R~pW f

1 ,pW f
2!

3S 2p

\uv f x~pf
2!u E0

L

dx8 exp~2k2x8!

3D~pW f
2 ,x8!1F2~pW f

2 ;en!exp~2k2L ! D ,
~20!

and

F2~pW f
2 ;en!5E d2pf

1 n~pW f
1!R~pW f

2 ,pW f
1!

3S 2p

\uv f x~pf
1!u E0

L

dx8 exp@2k1~L2x8!#

3D~pW f
1 ,x8!1F1~pW f

1 ;en!exp~2k1L ! D ,
~21!

which serve to pin down the two functionsF1(pW f
2 ;en) and

F2(pW f
2 ;en). These functions have a direct physical interpre-

tation in the classical transport problem for quasiparticles.
They describe the contributions to the distribution functions
f M(pW f ,x;en) originating from reflections at the surfaces. The
reflection termF1 (F2) describes the effect of the surfaces
on right-moving~left-moving! quasiparticles. This interpre-
tation can be inferred directly from Eqs.~17!, ~18!. The two
terms are coupled via Eqs.~20!, ~21!. The surface-to-surface
coupling is caused by multiple reflection at the two surfaces,
and decreases exponentially for a large surface-to-surface
separation L. This leads to the exponential factors
}exp(2k6L) in the coupling terms in Eqs.~20!, ~21!. For a
large separation (L@j0) the regions of distorted supercon-
ductivity near the left and right surfaces become decoupled.

A solution of Eqs.~20!, ~21! together with Eq.~7! deter-
mines the reflection terms as linear functions of the order
parameterC(x). Insertion into Eqs.~17!, ~18! then gives us
the distribution functionsf M in terms ofC(x). This result
can be used for eliminatingf M from the self-consistency
equation~2! in favor of C(x). One ends up with a linear
integral equation forC(x), whose kernel is de Gennes’ ker-
nel generalized tod-wave pairing. The integral equation will
be used to calculate the GL extrapolation length and the tran-
sition temperature of a narrow slab. Analogous calculations
for p-wave pairing in superfluid3He have been published in
Refs. 31,32.

III. RESULTS

A. Model for layered d-wave superconductors

In order to proceed further one has to specify the various
input material parameters in Eqs.~1!, ~2!, and~3!. These are
the Fermi-surface datapW f and vW f , the pairing interaction
VBCS, and the reflection probabilities at the surface,
R(pW f

out,pW f
in). In the following we discuss the simplest model

for a layeredd-wave superconductor with a negligible small
interlayer coupling. The Fermi surface shall be approximated
by a single cylinder of radiuspf oriented along thec direc-
tion. The Fermi velocity in thec direction is zero in this
model, and the layers are decoupled. It is convenient to pa-
rametrize the Fermi surface by cylindrical coordinates, i.e.,
the momentum in thec direction,pfz , and the polar angle
f in the px-py plane. We will put the origin of the polar
coordinates,f50, in the x direction. This is the direction
normal to the surfaces of the slab~see Fig. 1!. The direction
of the crystala axis is, in general, rotated by an anglef0
with respect to the surface normal. The perpendicular mo-
mentum to the layers,pfz , is unimportant in the model of
decoupled layers, and can be dropped. Thus, the normalized
Fermi-surface integrals are given in these coordinates by

E d2pf n~pW f !•••→E df

2p
•••. ~22!

We take the pairing interaction@Eq. ~2!# as purelyd wave of
symmetryB1g ;

VBCS~f,f8!52g cos@2~f2f0!#cos@2~f82f0!#, ~23!

whereg is a dimensionless interaction constant. The maxima
of the the gap are locked to the main crystal axes at
f56f0 (a axis!, andf56(f01p/2) (b axis!.
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The simplest model for a surface with some degree of
roughness is the Reuter-Sondheimer33 model, in which a
quasiparticle is reflected diffusely with probabilityp, and
specularly with probability 12p:

R~fout,f in!5ppucos~f in!u1~12p!2pd~fout1f in2p!.
~24!

The model of Reuter and Sondheimer has one parameter, the
diffusivity p.

The Fermi-surface data, pairing interaction, and surface
model complete the list of material parameters for our calcu-
lations. They define what may be considered the simplest
nontrivial model of a layeredd-wave superconductor with
weak interlayer coupling. The model has three relevant ma-
terial parameters:~a! the coupling constantg which deter-
mines Tc

0 and will be eliminated in favor ofTc
0 , ~b! the

Fermi velocity v f which enters the coherence length
j05\v f /2pkBTc and will be absorbed intoj0 , and ~c! the
roughness parameterp of the surface. The first two param-
eters disappear if we measure temperatures in units ofTc

0 and
lengths in units ofj0 . Hence, the remaining parameters of
interest for our calculations areT/Tc

0 , p, and the geometric
parametersL/j0 ~slab width! andf0 ~slab orientation!.

B. Numerical calculations

We focus in our calculation on wide slabs (L/j0.1) for
which the coupling terms in Eqs.~20!, ~21! can be neglected.
In this case, Eqs.~20!, ~21! can trivially be solved forF1

andF2. The result can be inserted into Eqs.~17!, ~18!, and
the resulting distribution functionsf M can be used to convert
Eq. ~2! into an equation for the microscopic order parameter
D(pW f ,RW ). Equation~2! then turns, by using the translational
invariance along the slab and the factorization,

D~pW f ,RW !5C~x!3A2cos~f2f0!, ~25!

into an integral equation forC(x) of the form

C~x!5gE
0

L

dx8 K T
bulk~x2x8!C~x8!1gE

0

L

dx8 K T
~0!

3~x,x8!C~x8!1gE
0

L

dx8 K T
~L !~x,x8!C~x8!. ~26!

Equation ~2!, which determines the above kernelsK T
bulk ,

K T
(0) , andK T

(L) , requires summation over the Matsubara
energies and a Fermi-surface integral. The Matsubara sum is
a geometric series, and one is left with the following Fermi-
surface integrals (f integrals!:

K T
bulk~x2x8!5cos2~2f0!E

2p/2

p/2 df

2p

2T cos2~2f!

cos~f!sinhS TU x2x8

cos~f!
U D 1sin2~2f0!E

2p/2

p/2 df

2p

2T sin2~2f!

cos~f!sinhS TU x2x8

cos~f!
U D , ~27!

K T
~0!~x,x8!5

12p

2
@cos~4f0!11#E

2p/2

p/2 df

2p

2T cos2~2f!

cos~f!sinhS TU x1x8

cos~f!
U D

1
12p

2
@cos~4f0!21#E

2p/2

p/2 df

2p

2T sin2~2f!

cos~f!sinhS TU x1x8

cos~f!
U D

1pcos2~2f0!E
2p/2

p/2 dfout

2p E
p/2

3p/2 df in

2p

2pT cos~2fout!cos~2f in!

sinhFTS U x

cos~fout!
U1U x8

cos~f in!
U D G , ~28!

FIG. 1. Sketch of the classical trajectory of a quasiparticle ap-
proaching a rough wall along the incoming~in! part of the trajec-
tory and being reflected into the outgoing~out! part. The angles
f in and fout specify the directions of the Fermi velocity of the
incoming and outgoing quasiparticles.
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K T
~L !~x,x8!5

12p

2
@cos~4f0!11#E

2p/2

p/2 df

2p

2T cos2~2f!

cos~f!sinhS TU2L2x2x8

cos~f!
U D

1
12p

2
@cos~4f0!21#E

2p/2

p/2 df

2p

2T sin2~2f!

cos~f!sinhS TU2L2x2x8

cos~f!
U D

1pcos2~2f0!E
2p/2

p/2 df in

2p E
p/2

3p/2 dfout

2p

2pT cos~2f in!cos~2fout!

sinhFTS U L2x

cos~f in!
U1U L2x8

cos~fout!
U D G . ~29!

The bulk kernelK T
bulk derives from classical trajectories of

excitations which do not hit the surfaces. The surface kernels
K T

(0) andK T
(L) derive from classical trajectories of excita-

tions which hit the surface atx50 andx5L, respectively.
The temperatureT is measured in Eqs.~27!–~29! in units of
Tc
0 and the lengths in units ofj0 .
Equation~26! still contains the coupling constantg which

must be eliminated in favor of the bulk transition tempera-
tureTc

0 . We do this by using the equation for the bulk tran-
sition temperatureTc

0

1

g
5E

2`

1`

dx8 K T
c
0

bulk
~x2x8!, ~30!

where the kernelK T
c
0

bulk
is obtained from Eq.~27! by setting

T51, i.e., to the bulk transition temperature. The elimination
of g in Eq. ~26! thus leads to our final equation forC(x):

E
2`

1`

dx8 K T
c
0

bulk
~x2x8!C~x!

5E
0

L

dx8 K T
bulk~x2x8!C~x8!1E

0

L

dx8 K T
~0!

3~x,x8!C~x8!1E
0

L

dx8 K T
~L !~x,x8!C~x8!. ~31!

The elimination ofg also eliminated a logarithmic singular-
ity which plagues both Eqs.~26! and ~30!. The singularities
cancel each other in Eq.~31!, and it becomes free of diver-
gences forx2x8→0. The linear integral equation~31! is
thus in a form which admits a routine numerical solution. We
first calculate the various kernelsK bulk, K (0), andK (L),
defined in Eqs.~27!, ~28!, ~29!, by standard integration rou-
tines, and then solve Eq.~31! by discretizing the integrals
and using standard routines for finding eigenvalues and
eigenvectors of the resulting homogeneous linear system.

C. Extrapolation length

In our Fermi-surface model the coherence-length tensor is
diagonal, and the extrapolation-length tensor, introduced in
Eq. ~12!, simplifies to

b~f0!5
j2

a~nW !
, ~32!

wherej2 is the GL coherence length, andf0 measures the
relative orientation of the axis of maximum gap and the sur-
face normal. We determineb(f0) by calculating the ampli-
tudeC(x) of the microscopic order parameter nearTc for a
slab of widthL and orientationf0 . The amplitude is defined
by the relation

D~x,f!5C~x!D0~f!, ~33!

where the anisotropic part of the microscopic order param-
eter is fixed in our model toD0(f)5A2cos@2(f2f0)#. For a
wide slab this microscopic amplitude will agree away from
the surfaces with the GL order parameter, and one obtains
the extrapolation length by fitting the microscopic solution
away from the surfaces to the GL solution~13!. Figure 2
shows typical results for the amplitudeC(x) in a slab of
width 15j0 and specular surfaces. Thed-wave order param-
eter is not affected by the surfaces for the ideal orientation
f050°, and maximum pair breaking occurs atf545°. This
result is a consequence of the very different behavior of the
microscopic order parameter along reflected trajectories of

FIG. 2. Spatial variation of the order parameter of ad-wave
superconductor in a slab of width 15j0 with smooth (p50) bound-
aries. The depletion of the order parameter near the boundaries
depends on the relative orientation anglef0 of the surface and the
crystal lattice.
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quasiparticles. Forf050 the order parameter along an in-
coming trajectory is the same as along the outgoing one
~constructive trajectory!, i.e., D0(f

out)5D0(f
in). Conse-

quently, the contribution of a reflected trajectory in the slab
is the same as that of a straight trajectory with direction
f in in a bulk sample, and there is no pair breaking at these
surfaces. In the second case, on the other hand, the micro-
scopic order parameter flips sign along a reflected trajectory
becauseD0(f

out)52D0(f
in). The reflected trajectories

contribute negatively to the kernel, and are strongly pair
breaking ~destructive trajectory!. This strong pair breaking
effect is a consequence of the microscopic order parameter
changing sign in a reflection at the~110! plane. This effect
will not occur for anisotropics-wave superconductors with
no sign change, or only small regions on the Fermi surface
with an order parameter of different sign. Results for the
order parameter of a slab with rough surfaces are shown in
Fig. 3. Constructive and destructive trajectories are always
mixed at a rough surface, independent of its orientation, and
one finds an intermediate extrapolation length of the order
j0 .

A comparison of the microscopic solution and the GL
solution~a sine function! is shown in Fig. 4. The plot shows
the arcsine of the microscopic amplitude, which would give
straight lines for a pure sine function. The figure demon-
strates the good fit to the GL solution in the interior of the
slab and the deviations near the surface. The extrapolation of
the straight line determines the extrapolation length~see Fig.
4!. Formally, the extrapolation length of the GL theory is
obtained from the microscopic calculations in the limit of an
infinitely wide slab. Our calculations are done for finite
slabs, and we show in Fig. 5 the dependence of the extrapo-
lation length on the widthL of the slab. These results ap-
proach the GL extrapolation lengthb(f0) for L→`, and the
deviations at finiteL give estimates of the accuracy of the
GL theory for slabs of finite thickness.

Our main results are given in Figs. 6 and 7. Figure 6
shows the calculated dependence of the extrapolation length
on the orientation and roughness of the surface. The extrapo-
lation length depends strongly on the surface-to-lattice orien-
tation for perfectly reflecting surfaces (p50). It ranges here
from 0 to`. Any roughness weakens this strong sensitivity

to the orientation, and only a small anisotropy is left for a
rough surface. Figure 7 shows our results for the reduction in
Tc in slabs ofd-wave superconductors of thicknessL. The
amount of reduction depends on the orientation of the slab
with respect to the crystal axes and on the surface quality. A
slab with specular walls shows forf0545° ~orientation of
strong pair breaking! a jump toTc50 at a critical thickness
Lc . The critical thickness and the jump decrease with in-
creasing roughness. A rough slab still has a finiteLc but Tc
seems to approach zero continuously atLc . No significant
differences between different orientations of the surface are

FIG. 3. Same as Fig. 2, but for a slab with rough (p51) bound-
aries.

FIG. 4. The function arcsin@C(x)/Cmax# is used to extract the
extrapolation lengthb from the order parameter in a slab. This
arcsine function is linear in the region of validity of the GL theory,
and the extrapolation of the linear part determines the extrapolation
length. We display typical examples for a slab with smooth walls
and two orientation angles. The order parametersC(x) are shown
in Fig. 2. The extrapolation length is zero for the orientation angle
of maximal pair breaking (f0545°), infinity for f050° ~not
shown!, and '4.5j0 for the intermediate orientation angle
f0510°.

FIG. 5. Dependence of the extrapolation length on the widthL
of the slab. The true GL extrapolation length is obtained in the limit
L→`. TheL dependence of the extrapolation length has no direct
physical meaning. The shown deviations ofb from the GL extrapo-
lation length give an estimate for the error in a GL calculation for
systems of finite sizeL. At L515j0 , e.g., the error is below 10%.
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found for rough (p51) surfaces, as shown in Fig. 7. It
should be noted that increasing roughness increases the pair
breaking effect for thef050° orientation, whereas it re-
duces the pair breaking effect for thef0545° orientation.
Specular reflection at a 45° surface leads to a sign change for
all trajectories, and thus to a maximal pair breaking. Random
scattering at the surfaces mixes in less destructive trajectories
~e.g., with no sign change!, and thus reduces the surface pair

breaking. Just the opposite situation holds for a 0° surface.
Specularly reflected trajectories are not pair breaking, and
roughness mixes in pair breaking trajectories.

IV. SUMMARY

In view of the ongoing discussion of both the symmetry
of the condensed pairs and the proper theory of high-Tc su-
perconductors, it is desirable to measure properties which
carry information on the pairing symmetry, and which can be
analyzed by a quantitative theory of superconductivity. The
Ginzburg-Landau~GL! theory provides a powerful tool for
analyzing the effects ofd-wave pairing on the superconduct-
ing properties. In particular, the surface and interface terms
of the GL theory show important qualitative, as well as quan-
titative, differences betweens-wave andd-wave pairing in
tetragonal crystals.

In this work we study the GL theory ofd-wave supercon-
ductors near surfaces. The boundary condition for the order
parameter of the phenomenological GL equation is formu-
lated in terms of an ‘‘extrapolation length’’ of the order pa-
rameter at the surface. One purpose of this work is to de-
velop the theory of the extrapolation length for an
anisotropic superconductor with an anisotropic Fermi surface
and anisotropic pairing amplitude. A second purpose is to
demonstrate that sizable quantitative differences in the mag-
nitude and anisotropy of the extrapolation length are ex-
pected ford-wave and~anisotropic! s-wave superconductors.
We calculate the kernel to the linearized gap equation using
de Gennes’ method as developed forp-wave superconduct-
ors, and derive from it the dependence of the extrapolation
length on the surface orientation and the degree of surface
roughness. The most pronounced effects ofd-wave pairing
on the GL boundary condition are expected for smooth sur-
faces~specular reflection!. One finds a large difference in the
extrapolation length for~100! and~010! surfaces, which have
an infinite extrapolation length, versus~110! surfaces, which
have an extrapolation length'j0 . This result follows di-
rectly from symmetry arguments, as first shown in Ref. 31.
The anisotropy is diminished to some degree with increasing
roughness of the surface. Effects which measure these
anisotropies are, for instance, the reduction inTc in narrow
geometries~size effect!, the surface critical fieldHc3 , tun-
neling, and other surface sensitive probes. We present de-
tailed results for the depression ofTc in narrow slabs, which
might be observed in strips of cuprate superconductors with
their long axis in thea-b plane.

After completing this work we became aware of a manu-
script by Barash, Galaktionov, and Zaikin.34 The authors dis-
cuss in Sec. II the extrapolation length at specular surfaces of
d-wave superconductors with spherical Fermi surfaces.
These results are fully equivalent to our results for supercon-
ductors with cylindrical Fermi surfaces in the limitp50.
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FIG. 6. Dependence of the GL extrapolation lengthb on the
surface roughnessp. Results are shown for the modeld-wave su-
perconductor, and several surface-to-lattice orientation anglesf0 .
A very strong dependence ofb on the orientation angle is obtained
for smooth surfaces (p!1).

FIG. 7. Critical temperature of ad-wave superconductor as
function of the width of the slab. The marked curves show results
for smooth surfaces (p50), rough surfaces (p51), and two differ-
ent surface to lattice orientation angles. The solid line is shown for
comparison. It represents the result of the GL theory for an extrapo-
lation lengthb50. The calculations use the wide-channel approxi-
mationL@jTc , wherejTc is the effective coherence length at the
transition temperature of the slab,jTc5j0Tc

0/Tc . The two dashed
lines show the location of the curvesL5jTc ~left line! and
L52jTc ~right line!. This indicates roughly the dividing line at
which our approximation breaks down. Calculated results beyond
the right dividing line are shown as dashed continuations of the
solid lines. The breakdown of the wide-channel approximation is
clearly seen for the slab with optimal orientationf050 and ideal
surfacesp51. The exact result isTc /Tc

051, and the approximate
result starts deviating from the exact one at aboutL/jTc52.
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