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Axial particle diffusion in rotating cylinders
Christian M. Dury, Gerald H. Ristow

Abstract We study the interface dynamics of a binary
particle mixture in a rotating cylinder numerically. By
considering only the particle motion in axial direction, it
is shown that the initial dynamics can be well described
by a one-dimensional diffusion process. This allows us to
calculate a macroscopic diffusion constant and we study
its dependence on the inter-particle friction coefficient, the
rotation speed of the cylinder and the density ratio of the
two components. It is found that radial segregation re-
duces the drift velocity of the interface. We then perform
a microscopic calculation of the diffusion coefficient and
investigate its dependence on the position along the cylin-
der axis and the density ratio of the two particle compo-
nents. The latter dependence can be explained by looking
at the different hydrostatic pressures of the two particle
components at the interface. We find that the microscop-
ically calculated diffusion coefficient agrees well with the
value from the macroscopic definition when it is measured
in the middle of the cylinder.
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1
Introduction

A common device used for mixing different kinds of mate-
rials is a rotating kiln or cylinder [1] where the mixing rate
and the particle dynamics depend on the rotation speed of
the cylinder [2, 3]. However, when materials which differ
in size or density are used, particles with different proper-
ties tend to accumulate in different spatial regions which
is called segregation. Two different types of segregation are
commonly observed in rotating cylinders:

(a) a fast radial segregation
(b) a much slower axial segregation.
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The latter leads to band formation along the rota-
tional axis and it takes many cylinder rotations before a
steady state with respect to the observed band structure is
reached [4–10]. In the case of radial segregation, it usu-
ally takes only a few rotations to reach a fully segregated
state where the smaller or denser particles form a central
core right below the fluidized surface layer. This was stud-
ied experimentally and numerically for varying size ratios
[11–16] and density ratios [17–19]. The amount and direc-
tion of segregation depends on the rotation rate [3].

The common method to study the segregation process
starts from a well mixed state and records the segregation
amount or the spatial pattern as function of time. This
works well in the case of radial segregation and quantita-
tive results regarding the dependence of the segregation
process on rotation speed and size ratio were obtained
using a suitable, normalizable order parameter q∞ [15,
16]. However, the axial segregation process is much richer
due to the three-dimensional particle motion and small
changes in the initial mixture seem to have a large effect
on the band formation process. The final number of bands,
their positions and widths varied from experiment to ex-
periment. For example Nakagawa [7] found that a three
band configuration was the most stable after an extended
number of rotations. These bands are normally not pure
and a radially segregated core of smaller or/and denser
particles might still be present [14]. Chicharro et al. [9]
rotated two sizes of Ottawa sand for two weeks at 45 rev-
olutions per minute (rpm) and found a final state of two
pure bands each filling approximately half of the cylinder,
i.e. no radial core was found.

Depending on the particle kinds used in the experi-
ments, the band formation process is more or less pro-
nounced and for some combinations not observed at all.
Different explanations have been proposed:

1. Donald and Roseman [5] concluded from their experi-
ments that no banding occurs when the smaller parti-
cles have a smaller static angle of repose;

2. Das Gupta et al. [6] modified this statement by say-
ing that the relevant quantity is the difference in sur-
face angle of the two components at a specific rotation
speed (dynamic angle of repose) and

3. Hill and Kakalios [8] proposed a model based on a dif-
fusion equation with an effective diffusion coefficient
to account for their finding of “reversible axial segre-
gation”.
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Fig. 1. Sketch of the initial configuration: large particles are
all in the right half of the cylinder and shown in gray

Recently it was argued that other transport mechanisms
can drive the segregation process, especially that
avalanches play a role [20].

In order to have a better defined initial configuration
for binary mixtures, it was proposed to fill one half of the
cylinder with one particle component and the other half
with the other component [21] which is sketched in Fig. 1
for a system with particles of different sizes. Such a con-
figuration allows for a detailed analysis of the individual
dependencies and will be used as initial state throughout
this paper to study the mixing and segregation of binary
particle mixtures along the rotational axis numerically.

The paper is organized in the following way: In the
next section, we describe our numerical model which solves
Newton’s equation of motion for each particle and discuss
the physical interpretation of our simulation parameters.
In section 3, we demonstrate how different dynamic angles
of repose can be obtained using our numerical model and
compare their values to experiments. In section 4, the par-
ticle dynamics along the rotational axis are described by a
one-dimensional diffusion equation and the calculated dif-
fusion constant are studied as function of the inter-particle
friction coefficient, the rotation speed of the cylinder and
the density ratio of the two components. It is also com-
pared in section 5 to a microscopic calculation of the dif-
fusion coefficient based on the individual particle motion
and the agreement is very satisfactory. The conclusions
round off the paper.

2
Numerical model

We use three-dimensional discrete element methods, also
known as granular dynamics [22], which gives us the ad-
vantage to vary particle properties like density and fric-
tion coefficient freely, whereas in experiments the number
of different kinds of beads is rather limited.

Each particle i is approximated by a sphere with radius
Ri. Only contact forces during collisions are considered
and the particles are allowed to rotate; we also include
rolling resistance to our model to correctly describe the
particle rotations (see Ref. [16, 23]). The forces acting on
particle i during a collision with particle j are

Fn
ij = −Ỹ (Ri + Rj − ~rij n̂) − γn~vij n̂ (1)

in the normal direction (n̂) and

F s
ij = − min(γs~vij · ŝ(t), µ|Fn

ij |) . (2)

in the tangential direction (ŝ) of shearing. In Eq. (1) γn

represent the dynamic damping coefficient and in Eq. (2)
γs represent the dynamic friction force in the tangential
direction. ~rij represents the vector joining both centers of
mass, ~vij represents the relative motion of the two par-
ticles, and Ỹ is related to the Young Modulus of the in-
vestigated material. Dynamic friction for particle–particle
collisions is defined in this model to be proportional to the
relative velocity of the particles in the tangential direction
which is a good approximation in many cases [24].

During particle–wall contacts, the wall is treated as
a particle with infinite mass and radius. In the normal
direction, Eq. (1) is applied, whereas in the tangential
direction, the static friction force

F̃ s
ij = −min(ks

∫
~vij · ŝ(t)dt, µ|Fn

ij |) (3)

is used. This is motivated by the observation that when
particles flow along the free surface, they dissipate most
of their energy in collisions and can come to rest in voids
left by other particles. This is not possible at the cylinder
walls. In order to avoid additional artificial particles at
the walls we rather use a static friction law to avoid slip-
ping and to allow for a static surface angle when the rota-
tion is stopped. Both tangential forces are limited by the
Coulomb criterion, see Eqs. (2) and (3), which states that
the magnitude of the tangential force cannot exceed the
magnitude of the normal force multiplied by the friction
coefficient µ. The coefficient of restitution for particle–
particle collisions is set to 0.58 and to 0.76 for particle–wall
collisions. The large particles have a diameter of 3 mm and
a density of ρl = 1.3 g

cm3 . The material properties of the
large particles were chosen to correspond to the measured
values of mustard seeds [25]. The small particles have a
diameter of 2 mm. In order to save computer time, we set
Ỹ to 8 · 103 Pa m which is about one order of magnitude
softer than desired, but we checked that this has no effect
on the investigated properties of the material. This gives
a contact time during collisions of 8.5 · 10−5 s. The total
number of particles we used were up to 13 300.

3
Dynamic angle of repose

Using numerical simulations enables us to study arbitrary
angle differences by varying the inter-particle friction co-
efficient µ in Eqs. (2) and (3). For collisions between large
particles, a value of µl = 0.2 is used which gives a dynamic
angle of repose similar to the measured values of mustard
seeds [26]. When large particles touch the wall, a value
of µw = 0.4 is used to avoid slipping at the boundary.
The additional friction at the end caps leads to an angle
difference of 5◦ in our case which is in agreement with ex-
periments [26]. In order to test different angle differences,
the inter-particle friction coefficient for the small particles,
µ, was varied from 0.05 to 0.4. For collisions between large
and small particles, a value of µeff =

√
µl µ is used.

In Fig. 2, we show the spatial variation of the dynamic
angle of repose, Θ, and its dependence on µ. The cylinder
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Fig. 2. Surface plot showing the dynamic angle of repose as
function of friction parameter µ and position along the rota-
tional axis z

length was 7 cm and the region initially occupied by small
particles corresponds to the interval z = 0 . . . 3.5 cm to the
right. The angles were measured by dividing the cylinder
into 22 slices along the rotational axis and we determined
the angle of repose for a rotation speed of 15 rpm via
the center of mass of all particles in each slice. In order
to reduce the fluctuations, we averaged the angles over an
interval of 2 seconds after the first initial avalanche. When
µ is increased from 0.05 to 0.4, the measured angle at the
right wall shows a drastic increase from roughly 10◦ to
45◦. For glass beads it was found that the dynamic angle
of repose does hardly depend on the particle size [27] and
we achieve the same effect by using a value of µ = 0.2 in
our numerical model. Also clearly visible are the effects of
the two cylinder end caps at z = 0 and 7 cm, which lead
to a higher angle due to the additional wall friction and
this was studied in detail in Ref. [26].

From our numerical data, we can also calculate the
concentration dependence of the dynamic angle of repose.
In order to reduce the influence of the boundary caps,
we only use the values for the angle of repose from the
16 central slices of the total 22 slices and calculate the
volumetric concentration of small particles in each slice,
denoted by C, which is shown in Fig. 3 as function of
the friction coefficient of the small particles, µ. The graph
shows the same general trend as Fig. 2 and one can read off
that no concentration dependence is observed for µ = 0.2
which agrees very well with an experimental study of 2
and 4 mm liquid-filled spheres [28]. In the same experi-
ment, the concentration dependence was investigated for
a rotation speed of 30 rpm and it was found that the an-
gle increases with increasing concentration. Our numerical
data clearly indicates that the same concentration depen-
dence can be found in our case when the small particles
have a higher friction coefficient than the large particles,
see e.g. the values for µ = 0.4 in Fig. 3.
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Fig. 3. Surface plot showing the dynamic angle of repose as
function of friction parameter µ and concentration of small
particles C

4
Mixing at the interface

The shape dynamics and the interface propagation of a
binary particle mixture was investigated for 1 and 4 mm
liquid-filled spheres using magnetic resonance imaging
(MRI) [29]. The initial sharp interface between the re-
gions occupied by large and small particles, see Fig. 1,
will deform and move mostly due to particle diffusion in
the fluidized surface layer. A nearly fully segregated core
of small particles was observed after rotating a 10 cm
long, 7 cm wide cylinder for 10 min at 11.4 rpm. Since
recording a full three-dimensional MRI-image is still a
time-consuming task and requires special equipment, most
studies divide the cylinder into vertical slices along the ro-
tational axis and record the particle concentration in each
slice [21, 30, 31]. This leads to a one-dimensional descrip-
tion of the mixing or segregation process and a typical
example from our numerical study is shown in Fig. 4. The
origin was shifted by half the cylinder length to give a po-
sition of z = 0 cm for the initial interface which will be
used throughout the rest of this chapter. The friction coef-
ficient was µ = 0.2 and the density ratio ρ/ρl = 0.82 where
ρl denotes the reference density of the large particles. The
initial sharp interface is clearly visible to the left and one
notes how the interface broadens in time. For t = 36 s, the
first small particles have reached the right wall and con-
sequently, the concentration values at the boundaries will
start to deviate from their initial values, already visible in
the profile to the far right for t = 50 s.

4.1
Approximation through pure diffusion process

Assuming random particle motion in the axial direction
(z axis), one component systems could be well described
by a diffusion process according to Fick’s Second Law [30,
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Fig. 4. Surface plot showing the time evolution of the concen-
tration profile for small particles along the rotational axis z

31]. The interface of a two component system can also be
studied in this fashion and the diffusion equation reads

∂C(z, t)
∂t

=
∂

∂z

(
D

∂C(z, t)
∂z

)
(4)

where C(z, t) and D denote the relative concentration by
volume of the smaller particles and the corresponding dif-
fusion coefficient, respectively. The initial condition for a
cylinder with length L are

C(z, 0) =
{

1, −L
2 ≤ z < 0

0, 0 < z ≤ L
2

whereas the boundary conditions read

∂C

∂z

∣∣∣∣
z=− L

2

=
∂C

∂z

∣∣∣∣
z= L

2

= 0

which states, that there is zero axial flux at the boundaries
due to the end caps.

For a constant diffusion coefficient, Eq. (4) can be
solved analytically for the specified initial and boundary
conditions and the solution reads

C(z, t) =
1
2

− 2
π

∞∑
k=1

1
2k − 1

exp
(

− (2k − 1)2π2Dt

L2

)

× sin
(

(2k − 1)πz

L

)
. (5)

In order to study the short time behaviour, we can
solve our system by diffusion in an infinite cylinder. This
is valid as long as the concentrations at the real cylinder
boundaries have their initial values. Solving Eq. (4) for
this system gives [32]

C(z, t) =
1
2

[
1 − Erf

(
z

2
√

Dt

)]
(6)

where Erf(x) = 2√
π

∫ t

0 e−t2dt is the error function. To de-
termine now the diffusion coefficient we build the norm
of

A(t) := (C(., t) − C(.,∞)) ∈ L2[0,
L

2
] (7)

where C(z,∞) = 1
2 is the steady state concentration:

||A(t)||2 =
∫ 0

−L/2
(C(z, t) − C(z,∞))2 dz

=
∫ 0

−L/2

(
Erf

(
z

2
√

Dt

))2

dz (8)

which leads to

=
L

2
Erf2

(
L

4
√

Dt

)
−
√

Dt

π

{
−2

√
2Erf

(
L

2
√

2Dt

)

+ 4 exp
( −L2

16Dt

)
Erf

(
L

4
√

Dt

)}
. (9)

But this result holds anyway just for small t where C(L/2, t)
' 1 and therefore we have

Erf
(

L

4
√

Dt

)
' 1

and out of the monotonic behavior of Erf() also

Erf
(

L

2
√

2Dt

)
' 1

and for small t we get

exp
(

− L2

16Dt

)
' 0 .

Using this we finally obtain

||A(t)|| = ||A(0)||
(

1 − 4
L

√
2Dt

π

)
. (10)

The physical interpretation of ||A(t)|| will become clea-
rer by looking at a concentration profile extracted from
Fig. 4 which is shown in Fig. 5. Three profiles are shown,
namely the theoretical initial concentration profile as thick
line, a computed profile for t = 10 s denoted by circles
and the expected steady state profile as dotted line. The
quantity ||A(t)|| is a measure of how close the concentra-
tion profile is to the expected steady state profile and we
shaded the region which enters our calculation in Eq. (8).

The highest value of ||A(t)|| is given for t = 0 s and
a decrease linear in

√
t is expected for short times, see

Eq. (10). This is shown in Fig. 6, using the same simula-
tion parameters as for Figs. 4 and 5, where we plot ||A(t)||
normalized by the initial value ||A(0)|| vs.

√
t. From the

slope of the linear fit shown as dotted line in Fig. 6, we
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Fig. 5. Concentration profiles for different times, from Fig. 4

can calculate a constant diffusion coefficient based on our
approximations which gives D = 0.022 ± 0.002 cm2/s and
agrees well with values extracted from experiments [29].
When small particles are close to the opposite wall, our
approximation of an infinite long cylinder does not hold
anymore which leads to a systematic deviation from the√

t-behaviour, visible for times larger than 20 s in Fig. 6.
For this specific run, the first small particle can be found
in the slice at the opposite wall at t = 32 s. This time
difference of 15 s where the graph deviates from the lin-
ear behaviour and the time the first particle reaches the
boundary comes from the fact that the particles feel the
boundary quite early.

Fig. 6. Plot of ||A(t)||
||A(0)|| vs.

√
t. The linear fit, shown as dashed

line, is used to determine the diffusion coefficient

4.2
Dependence on friction coefficient

The dependence of the diffusion coefficient on the friction
coefficient of the small particles is quite small and shown in
Fig. 7. The tendency of lower D for higher µ even persists
for quite large friction coefficient, where small particles
have a much higher angle of repose than the large parti-
cles (for µ = 0.2 and Ω = 15 rpm the angle of repose is
the same for large and small particles). This weak depen-
dence can be explained by the so called “roller coaster”
effect. Suppose we have a sharp front between small and
large particles, then the angle of repose exhibits also a
sharp front. A particle on top of the free surface with the
higher angle of repose will see the angle difference and
the motion of the particle will be directed towards the
region of the lower angle of repose. But the same thing
happens in the lower part of the free surface, where now
the situation is reversed, and the particle will move back.
Therefore, in first approximation, there will be no net ef-
fect on the drift (or diffusion) due to this difference in the
angle of repose, and what is left is a normal random walk
on the free surface of the particle in the direction along
the rotational axis. If we now pay tribute to the fact, that
our particles have different sizes and therefore will exhibit
radial segregation, the “roller coaster” motion will not be
as perfect as described above. Suppose the small particles
exhibit a higher angle of repose (µ > 0.2), the path of
small particles will lead over the free surface of the large
particles and they can therefore be trapped into a radial
core, thus will be removed from the free surface motion
and so also from the diffusion process, which decreases
the diffusion coefficient D. On the other hand for µ < 0.2,
large particle will not be trapped into a core and can con-
tinue to participate in the diffusional process even when

Fig. 7. Diffusion coefficient for different values of µ of the
small particles
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a b

Fig. 8a,b. Cross section of the cylinder close to the inital
interface for (a) µ = 0.15 at t = 33 s and (b) µ = 0.4 at

t = 27 s. Large particles are shown in black and small particles
in white

they get stuck during the “roller coaster” motion, which is
more probable the wider the “roller coaster” path, i.e. the
larger the difference in the angle of repose. So D increases
with decreasing µ.

In order to demonstrate the increase of radial segrega-
tion due to an increase of friction coefficient, we show in
Fig. 8 two cross sections of the cylinder which represent
the configuration close to the initial interface. For a value
of µ = 0.15, we show in part (a) the particle configuration
at t = 33 s and a segregation of the small particles, drawn
in white, is hardly visible. In contrast to this, a nice segre-
gation is visible in part (b), which shows a configuration
for µ = 0.4 and t = 27 s. This supports our hypothesis
that radial segregation will hinder the diffusion of small
particles and thus decrease the diffusion coefficient with
increasing friction coefficient.

4.3
Dependence on rotation speed

When investigating the mixing process of glass beads,
Hogg et al. [30] found that the dynamics could be well
described by using the number of revolutions instead of
the time in Eq. (4). This directly implies that the calcu-
lated diffusion constant should be directly proportional to
the rotation speed of the cylinder. We checked this for our
system by investigating an Ω-range of 7.5 to 45 rpm for
the simulation parameters ρ/ρl = 1 and µ = 0.15 which
is shown in Fig. 9. Also shown as dashed line is the lin-
ear dependence proposed in [30] and as expected it is only
a valid assumption for low rotation speeds. On the other
hand, our numerically calculated values for D rather show
a more than linear dependence when the whole Ω-range is
considered, which was fitted by a quadratic function and
added as a solid line to Fig. 9. This deviation from the
linear behavior is due to the fact that the particles will

bounce off the cylinder wall, after they flowed down the
free surface. This effect of bouncing is also observed in
experiments [3].

4.4
Dependence on density ratio

The particle motion depends on the density ratio ρ/ρl

which is illustrated in Fig. 10 for a constant value of
µ = 0.2. To the left, Fig. 10a, the diffusion constant is
plotted as function of this density ratio showing a min-
imum value for ρ/ρl = 1 and a large increase for lower
and higher values. In contrast to the previous section, ra-
dial segregation will be present towards both sides of the

Fig. 9. Diffusion coefficient for different values of the angular
velocity Ω of the cylinder
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Fig. 10a,b. Calculation of the functional dependence
on the density ratio ρ

ρl
of the small particles for (a) diffu-

sion coefficient, D, where the inset magnifies the region close to

ρ
ρl

= 1 with a non-linear fit as solid line and (b) final amount
of segregation, q∞

graph. In general, smaller and denser particles will segre-
gate radially, so increasing the density ratio will enhance
radial segregation, but when decreasing the density ra-
tio, the larger particles become denser and eventually the
large particles will segregate into the radial core, see also
Ref. [18]. Also shown in the same graph as inset is a magni-
fication of the region close to ρ/ρl = 1 with a non-linear fit
as solid line. This inset shows that our numerical model
always gives a diffusion coefficient larger than zero thus
indicating that the front is not stable, regardless of the
density ratio of the two particle components.

In order to quantify this process, we use a procedure
outlined in Refs. [15, 16] to normalize the final amount of
segregation. The drum is divided into concentric rings and
the final percentage by volume of small particles for large
times is estimated in each ring and normalized with re-
spect to a perfectly well radially segregated configuration.
Due to the non-negligible width of the fluidized layer, a
value of one cannot be achieved. This quantity, denoted by
q∞, is plotted in Fig. 10b as function of the density ratio.
With increasing density ratio, q∞ increases and saturates
around a value of 0.6. The slight decrease for values of
ρ/ρl > 2 is due to the definition of q∞ which does not take
the shifting of the center of mass of the smaller particles
into account. For ρ/ρl = 0.5, the two competing effects of
size- and mass-segregation cancel each other and we get a
perfect mixing of small and large particles indicated by a
small value of q∞ in Fig. 10b.

Remembering our hypothesis that radial segregation
will hinder diffusion from Sec. 4.2, one might wonder why
the diffusion coefficient starts to rise again for ρ/ρl > 1
even though the radial segregation increases when the den-
sity of the smaller particles increases. For ρ/ρl < 1, the
diffusion coefficient rises as expected due to the larger mo-

bility of the smaller particles. In contrast to the previous
section, we now have to take into account the different par-
ticle densities. We are starting with an initial front where
the small particles are on the left and the large particles
on the right half of the cylinder (see Fig. 1). The pressure
at the interface resulting from the particles above is in
first approximation the hydrostatic pressure for granular
media [33]:

p = cρg
(
1 − e

−hd
c

)
(11)

where c is a parameter, which depends on the friction co-
efficient and the boundaries of the investigated geometry.
The initial pressure for small depths hd is like in a fluid
p = ρghd, but for larger hd the pressure saturates expo-
nentially to p = ρgc, in contrast to all normal liquids.
This general pressure dependence is by itself an interest-
ing property for granular media and is independent of the
grain size.

For density ratios different than 1, we get a pressure
difference at the interface which enhances the mixing of
the particles. This results in our simple model in a higher
diffusion coefficient and consequently, we get a minimum
in D for ρ/ρl = 1 which is clearly visible in Fig. 10a. This
phenomena will be discussed in more detail in section 5.2
below.

5
Microscopic calculation of diffusion coefficient

Another way to investigate the front diffusion is by looking
at the particle trajectories directly. When recording only
the displacement of the particles along the rotational axis,
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Fig. 11a,b. Microscopic calculated diffusion coefficients: (a)
for different density ratios ρ/ρl and (b) calculated separately

for the small and large particles for ρ/ρl = 0.5

we obtain a microscopic definition of a diffusion coefficient,
Dm, through

〈z(t)2〉 − 〈z(t)〉2 = 2Dmt + 〈z(0)〉2, (12)

where the spatial average is done over all N investigated
particles via

〈z(t)〉 :=
1
N

N∑
i=1

zi(t). (13)

This technique to obtain a microscopic diffusion constant
is similar to the one used in the experiments by Zik and
Stavans [34] who investigated the diffusional behaviour of
vertically shaken granular material. It enables us to ex-
plicitly consider a drift of the particles whereas this was
incorporated into the macroscopic diffusion constant pre-
sented in the previous section. The drift velocity, v, is
defined by the following relation:

〈z(t)〉 − 〈z(0)〉 = vt. (14)

Another possibility to obtain a microscopic diffusion coef-
ficient would be

〈(z(t) − z(0))2〉 = 2D′
mt,

but in this case, one would also absorb a possible drift
into the diffusion coefficient. It is therefore only useful for
pure diffusion processes and thus will not be used further
in this section, because we want to investigate the drift
velocity and the diffusion coefficient separately.

5.1
Diffusion coefficient

The initial particle rearrangement when the cylinder starts
to rotate cannot be described by a diffusion process. There-
fore, we begin all our measurements at the point when the

continuous flow has set in which corresponds to one eighth
of a cylinder revolution. In order to resolve the diffusion
process spatially, we divide the cylinder into 14 equal slices
along the rotational axis and calculate the microscopic dif-
fusion coefficient in each slice from the particle trajectories
that start in the corresponding slice. This is done for dif-
ferent density ratios, ρ/ρl, of a binary particle mixture
and shown in Fig. 11a. Changing the density ratio has a
dramatic effect on the diffusion coefficient, increasing the
maximum of Dm by a factor of ten when the density of
the smaller particles is increased by a factor of 4. In the
case where ρ/ρl > 1, the maximum diffusion coefficient
can be found in the region of the larger particles (z > 0
cm) and for ρ/ρl < 1 in the region of the smaller parti-
cles; i.e. the spatial maximum of Dm lies on the side of
the lighter particles for all density ratios. Nevertheless, in
each case the maximum value of the diffusion coefficient
is close to the middle.

For comparison, we also calculated the diffusion coeffi-
cient for a system with only the larger particle component
which is referred to as unary mixture. One thing to note
is that the diffusion coefficients for the binary mixture
with equal density, denoted by a cross (+) and the unary
mixture, denoted by a diamond (�) in the following plots,
nearly agree despite the size difference in the binary mix-
ture and hardly show a spatial variation.

In Fig. 11b, we calculate Dm separately for the smaller
and larger particles using a density ratio of ρ/ρl = 0.5. The
squares (ut) denote the average diffusion coefficient, as al-
ready shown in Fig. 11a and the crosses (×) and triangles
(4) stand for the diffusion coefficient of the smaller and
larger particles, respectively. In this case, the maximum of
Dm for the smaller particles is larger than for the larger
particles. It is also seen that the maximum diffusion coef-
ficient for the smaller particles lies in the region where the
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Fig. 13a,b. Microscopic calculated drift velocities: (a) for dif-
ferent density ratios ρ/ρl and (b) calculated separately for the

small and large particles for ρ/ρl = 0.5

small particles have been initially. For the larger particles,
the maximum value of the diffusion coefficient lies in the
region where the larger particles have been initially and
both maxima are very close to the initial interface.

The difference in the maximum value of the diffusion
coefficient of the larger and the smaller particles, ∆Dm,
is shown in Fig. 12 as function of the density ratio. For a
value of ρ/ρl & 1, the larger particles have a larger
maximum diffusion coefficient which agrees with the ex-
perimental observation that for particles with the same
density the large particles have a higher mobility than the
smaller particles [6]. For values ρ/ρl < 1, the mobility of

Fig. 12. Difference in the maximum value of the diffusion
coefficient of the larger and smaller particles as function of
density ratio. The linear least-square fit is shown as solid line

the smaller particles is higher, resulting in a negative dif-
ference in Fig. 12. The linear least-square fit using all data
points is shown as solid line.

5.2
Drift velocity

By using the definition given in Eq. (14), we can calculate
in each of the 14 slices an average drift velocity of all parti-
cles. This is plotted in Fig. 13a for different density ratios
ρ/ρl. For comparison, the spatial dependence for a unary
mixture is also shown, (�), and as before is very close to
the dependence of an equal density binary mixture, (+).
A much larger drift velocity with a well pronounced max-
imum at z < 0 and minimum at z > 0 is observed for
ρ/ρl 6= 1, showing that the global motion exchanges par-
ticles across the interface. The larger the density ratio,
the larger the region with a positive drift velocity. Conse-
quently, the position corresponding to v = 0 will move to
the right for increasing density ratios and move to the left
for decreasing density ratios. Please note that this descrip-
tion only applies to the situation shortly after the start of
the rotation since a symmetric profile is expected in the
steady state due to the symmetry of the problem. The
drift velocity can be explained by applying a “hydrostatic
picture” again: The hydrostatic pressure at the interface
is given by Eq.(11). If we now have two different values
for ρ at the interface, there will be a pressure difference of

∆p ∝ |ρ − ρl|g
(
1 − e

−hd
c

)
(15)

which causes the drift. This drift will not happen on the
free surface (where the pressure difference is zero), instead
the denser particle will push their way through the lighter
ones near the center of revolution, which is well below the
rotational axis. Even though the “roller coaster” effect still
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applies here due to the motion inside the granular material
(see section 4.2 for more details), we get a drift in the case
of two different densities for the particles.

In Fig. 13b, the individual drift velocities for the
smaller and larger particles are shown along the rotational
axis. The density ratio was ρ/ρl = 0.5 and one observes
that the particles close to the end caps of the cylinder
hardly drift at all. On the other hand, the drift veloc-
ity is very large for both components in regions close to
the initial interface. Since the initial stage of the interface
dynamics was investigated, the drift velocity is positive
everywhere for the smaller particles and negative every-
where for the larger particles which clearly shows the par-
ticle exchange over the initial interface.

6
Conclusions

We started with an initially sharp front of particles with
different properties and looked how this front gets dif-
fused. In the first part of this paper we showed that this
process can be well approximated by a pure diffusional
process, which was originally applied only to the case of
one particle component. Also we found that radial seg-
regation hinders diffusion, because the process of radial
segregation will sort the smaller particles out which are
then unable to take place in the diffusion process.

When changing the density of the small particles, we
get least mixing for particles with the same density. For
different density there is a pressure difference at the inter-
face and the denser particles will penetrate into the lighter
ones. This is not a pure diffusional process anymore, be-
cause of the non-vanishing drift of the particles, it is more
like a core movement combined with diffusion.

Previous to this work the radially segregated core was
mostly thought to be a solid block in which no (or just
minimal) movements can take place. The MRI studies by
Hill et al. [14] suggested that it may be dynamically in-
volved in the axial segregation process. We now showed
that for different particle densities, and maybe also for
differences in other particle properties, core movement is
indeed possible. This could shed light on future work on
the axial segregation mechanism.
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