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Faraday instability in a linear viscoelastic fluid
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Abstract. – The onset of surface waves in a vibrated layer of a viscoelastic fluid is investigated
theoretically. For vibration frequencies close to the inverse relaxation time of the non-Newtonian
fluid, surface waves respond harmonically instead of being subharmonic as is usually the case
in Newtonian fluids. This prediction has been made on the basis of the Maxwell model for
viscoelastic fluids, but the result is robust and has been confirmed by using the empiric viscosity
spectrum for a mixture of 2% polyisobutylene in primol. The parameter range is determined,
where harmonic surface waves are favored.

Introduction. – Our understanding of pattern formation has experienced enormous progress
during the recent decades [1]. Important insights were contributed by studies of Newtonian
fluid systems, such as Rayleigh-Bénard convection [2], Taylor-Couette flow [3] and the Faraday
instability [4-7]. Recently, pattern formation in viscoelastic fluids came into the focus of nonlin-
ear science too. With the memory of viscoelastic fluids an additional time scale is introduced,
which gives rise to a number of interesting phenomena. For example, the interplay between
the viscoelastic relaxation time and the thermal diffusion time lead to an oscillatory onset of
Rayleigh-Bénard convection [8], which exhibits also a multi-critical bifurcation behavior [9].
The competition between the elastic and inertial instability in Taylor-vortex flow leads to a
number of novel phenomena [10], e.g. localized structures [11].

The well-founded theory of Newtonian fluids is one reason of the popularity of fluid systems
in pattern formation. It allows ab initio calculations and hence quantitative comparisons
between theoretical concepts in pattern formation and experimental measurements. For a
number of examples, especially for Rayleigh-Bénard convection and Taylor-vortex flow, a very
precise agreement has been achieved between both approaches. This accelerated the progress
in pattern formation considerably.

For viscoelastic fluids the theoretical basis is less advanced. A generally accepted description
for the large scale motion of viscoelastic fluids —as the Navier-Stokes equations for Newto-
nian fluids— is not available yet. However, for small displacement gradients the “general
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linear viscoelastic model” is broadly accepted as an appropriate description for incompressible
viscoelastic fluids [12]. Nowadays quantitative measurements of the linear viscoelastic flow
properties are available by standard rheological techniques. Accordingly, those experiments,
for which the linear viscoelastic model applies, are expected to compare quantitatively with
the theory.

The present paper deals with the onset of surface waves on a viscoelastic fluid layer subjected
to a vertical vibration, the so-called Faraday instability. For Newtonian liquids Faraday waves
are currently under intensive experimental and theoretical investigation [4, 6, 7]. This system
is experimentally attractive because of its short time scales and the two available control
parameters, namely the vibration amplitude and the vibration frequency. Usually, Faraday
waves resonate subharmonically, i.e. with twice the period of the forcing, except in very thin
layers, where the synchronous (harmonic) response can be observed [6, 7].

In viscoelastic fluids an inherent material specific frequency is defined by the inverse elastic
relaxation time. On selecting the external vibration frequency close to this value, viscoelastic
effects are expected to influence the onset of surface waves. Indeed, for a specified parameter
range we predict that the surface waves resonate harmonically with the vibration.

System. – We consider an incompressible horizontal fluid layer with density ρ and with
surface tension α, which is vertically vibrated. The vibration leads in the co-moving frame
of the container to a modulation of the gravitational acceleration g(t) = g0 + a cos (2Ωt). In
the quiescent basic state there is no flow in the fluid layer and no deformation of the surface.
Therefore, the onset of Faraday waves can be calculated with equations linear in the velocity
and surface deformation. The linearized Navier-Stokes equation is

ρ
∂v

∂t
= −ρ g(t) ez +∇ · σ , with σij = −p δij +

∫ t

−∞
dt′G(t− t′) γ̇ij(t

′) (1)

and the pressure p(r, t). The right part in (1) makes use of the constitutive equation of
linear viscoelasticity, which relates viscous stresses to the history of the rate of strain tensor
γ̇ij = (∇ivj + ∇jvi). G(t) is the relaxational modulus (see, e.g., [12]). Since i) a linear
stability analysis assumes infinitesimal perturbations and ii) Faraday waves bifurcate out of
the motionless state, the linear viscoelastic model is fully sufficient for the present problem.
More complex viscoelastic flow properties, such as normal stress differences, can be neglected
here. They would enter the description beyond threshold in the nonlinear regime. Note, that
the present situation is similar to the problem of thermal convection in viscoelastic fluids [8,9],
but differs from the Couette-Taylor instability, where the finite velocity gradients of the basic
Couette-state [3] require knowledge of nonlinear material properties.

A complete description of surface waves requires boundary conditions (for details see,
e.g., [5]). As this paper is focused on the viscoelastic bulk effects, we consider a half-infinite
liquid layer between z = 0 and z → −∞. Surface deformations are described by the Monge-
function z = η(r⊥, t), where r⊥ abbreviates the horizontal coordinates (x, y). With respect to
r⊥, the linear equations for the velocity and the surface deformation η(r⊥, t) can be Fourier-
transformed and the z-dependence of the velocity can be integrated. Using a Floquet ansatz
for the time dependence of both fields, one obtains

η(r⊥, t) = e(σg+iβΩ)t
∞∑

n=−∞

1

2π

∫ ∞
−∞

dkei(k·r⊥+2nΩt)η̂(k, 2nΩ) , (2)

and a similar expansion for the velocity field. We always find real values for the Floquet
parameter σg. Hence, the discrete Fourier sum is harmonic (H) with respect to the external
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driving if β = 0 and subharmonic (S) if β = 1. Then the marginal stability criterion, σg = 0,
leads to a tridiagonal system for the Fourier coefficients[

ω2
0 − ω

2 + ω2X(k, ω)
]
η̂(k, ω) + a

| k |

2
[η̂(k, ω + 2Ω) + η̂(k, ω − 2Ω)] = 0,

with X(k, ω) = 4i

(
ν?k2

ω

)
+ 4

(
ν?k2

ω

)2 (√
1 + iω/(ν?k2)− 1

)
. (3)

The solvability condition determines the neutral vibration amplitude a(k). A subsequent
minimization with respect to the lateral wave vector k yields the threshold ac. In eq. (3) we
have ω = 2nΩ for the harmonic response and ω = (2n+ 1)Ω for the subharmonic one, where
n runs form −∞ to +∞. Furthermore, ω2

0 = g0 | k | +(α/ρ) | k |3 and the complex kinematic
viscosity is

ν? = ν ′(ω)− iν ′′(ω) = (1/ρ)

∫ ∞
0

G(t)e−iωtdt . (4)

The real and imaginary parts of ν? account for the dissipative and the elastic character of
the fluid. For a = 0, eq. (3) coincides with the complex dispersion relation for free (=unforced)
viscoelastic surface waves studied in [13]. The last term on the right-hand side of eq. (3) reflects
the parametric drive and couples different temporal Fourier modes.

Truncated solution. – The thresholds for the harmonic and the subharmonic branch are
fairly good approximated by truncations of the system of equations (3). For the subharmonic
branch a two-mode truncation (n = −1, 0) leads to a driving force a(S)(k), which is minimal
at the wave number kS:

a(S)
c = a(S)(kS) '

2Ω2

| kS |
=[X(kS,Ω)] , where kS solves ω2

0(kS)/Ω2 + <[X(kS,Ω)] ' 1 . (5)

<[X] and =[X] are the real and imaginary part of X(k,Ω), respectively. For the harmonic
response a three-mode truncation (n = −1, 0, 1) yields

a(H)
c = a(H)(kH) '

√
40
√

6

Ωω0(kH)

| kH |

√
=[X(kH, 2Ω)] , (6)

with the critical wave number kH solving

ω2
0

4Ω2
+

(
<[X(kH, 2Ω)]−

√
2

3
=[X(kH, 2Ω)]

)
' 1. (7)

Linear viscoelastic materials. – The complex kinematic viscosity ν? in many polymeric
solutions exhibits an extended power-law region with ν′, ν′′ ∝ Ω−γ and γ around unity [12].
The dissipative real part ν′ starts at the zero-shear rate viscosity ν0 = ν′(Ω→ 0) and decays
by orders of magnitude to a saturation value at large frequencies. For low frequencies the
imaginary part is proportional to Ω but vanishes proportionally to Ω−1 at large frequencies.
Hence the strongest influence of the fading memory is expected at intermediate frequencies,
around the maximum of ν′′(Ω). This is the frequency range we are mostly interested in. A
familiar model which mimics the viscosity spectra of ν′ and ν′′ is the Maxwell model, which
adopts an exponentially decaying memory, G(t) = (ν0/λ)e−t/λ. With eq. (4) one gets

ν?(Ω) =
ν0

1 + iΩλ
=

ν0

1 + (Ωλ)2
− iΩλ

ν0

1 + (Ωλ)2
, (8)
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Fig. 1. – The neutral curves a(k) of Faraday waves are given for the subharmonic (solid) and the
harmonic (dashed) branches at different vibration frequencies, f = Ω/π. In part (a) a Newtonian
fluid is considered for the same viscosity ν0 = 6× 10−4 m2/s and surface tension α = 0.02 N/m as for
the Maxwell model with the relaxation time λ = (0.01/π) s in parts (b), (c).

giving an easy two-parameter approach for the complex viscosity ν?. For real polymeric
solutions the Maxwell model applies only qualitatively. However, it covers the principal
features of viscoelastic liquids, which are important for the effect considered here. Moreover,
our results turn out to be insensitive to the actual power laws. For a special class of aqueous
surfactant solutions [15] the Maxwell model applies even quantitatively.

Numerical results. – The static viscosities ν0 = ν′(Ω = 0) of polymer solutions often exceed
those of their Newtonian solvents by several orders of magnitude. In our numerical example we
use ν0 = 6×10−4 m2/s (600 times that of pure water). Systematic investigations [16,11] reveal
that the relaxation time λ of surfactant or polymeric solutions can be varied considerably by
the salt concentration, the viscosity of the solvent, or the temperature. For our calculation we
choose the value λ = (0.01/π) s, which can be conveniently probed in a Faraday experiment.
The values α = 0.02 N/m for the surface tension and ρ = 1 g/cm3 for the density are
typical for most fluids. In our frequency–wave number range the following inequalities hold:
αk3/ρ � ν2

0k
4 and αk3/ρ � 2ν0k

2/λ. This parameter regime of negligible surface tension
is also addressed by Pleiner et al. [13]. They investigate surface waves without driving in the
transition range between elastic Rayleigh waves at Ωλ� 1 and overdamped surface modes at
Ωλ � 1. Here however, the supercritical parametric drive guarantees standing surface waves
over the whole parameter range, even in the overdamped region.

In Newtonian fluids (λ = 0) as in fig. 1a the neutral stability chart exhibits an alternating
succession of neutral subharmonic and harmonic resonance tongues [5]. Viscoelasticity with
a finite relaxation time λ = (0.01/π)s reduces the vibration amplitudes along the neutral
curves (cf. fig. 1b). Simultaneously, a new harmonic tongue develops. On increasing the drive
frequency to Ω ∝ 1/λ (while keeping the rest of the parameters fixed) the new harmonic branch
falls down below the neighboring subharmonic one and determines the primary threshold (see
figs. 1c and 2a). Further elevation of the frequency beyond Ω ∼ 1/λ makes the subharmonic
tongue re-overtake the primary stability onset.

The harmonic branch as the first instability is intimately related to the viscoelasticity of
the material. For Newtonian viscous fluids the broad harmonic instability tongue as shown in
fig. 1b,c never exists.

The frequency dependence of the minima of the neutral curves of the S- and the H-branch
are shown in fig. 2a. They indicate that the frequency window with the dominating harmonic
response is located around Ω ' 1/λ. The thin lines in fig. 2a are obtained by the truncated
solutions (5)-(7), which are fairly good approximation of the full solution in this parameter
range.
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Fig. 2. – In part (a) the critical vibration amplitudes a
(S)
c and a

(H)
c for the subharmonic (thick solid

line) and harmonic (dashed) Faraday instability in a Maxwell fluid are shown as a function of the
vibration frequency (parameters as in fig. 1). Thin lines are the respective truncated solutions
according to eqs. (5)-(7). Part (b) shows the onset amplitude for the harmonic and subharmonic
Faraday instability calculated for the viscosity spectra of 1.5% polyacrylamide in a 50/50 mixture of
water and glycerin (thin line) and for a mixture of 2% polyisobutylene in primol, a pharmaceutical
grade white oil with ν = 1.5 P (thick line). Viscometric data are taken from ref. [14].

Instead of using the complex viscosity for the Maxwell model, cf. eq. (8), any experimentally
measured spectra for ν′(Ω) and ν′′(Ω) may be used in our calculations. The corresponding
result for two polymeric solutions is given in fig. 2b. For the polyisobutylene mixture (thick
line) the harmonic instability is found to preempt the subharmonic as predicted by the Maxwell
model. Experimental results which support the present theoretical results will be presented in
a following paper [17].

Figure 3a indicates that the harmonic response is preferred in a limited range of the
(λ,Ω)-plane around the curve Ωλ = 1. For given surface tension α the frequency window
of the harmonic response may shrink to zero by changing the static viscosity or the relaxation
time. The critical values where this happens are shown in the (λ, ν0)-plane in fig. 3b for
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Fig. 3. – In part (a) the range is shown where the harmonic branch determines the primary instability
(between the solid lines). Parameters for the Maxwell model: ν0 = 5× 10−4 m2/s, others as in fig. 1.
Along the dashed line one has Ωλ = 1. Below each curve in part (b) there is a finite frequency range
where the harmonic response is preferred for the Maxwell model. νw = 10−6 m2/s is the viscosity of
water.
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different values of α. Since harmonic waves are preferred below each curve in fig. 3b, large
static viscosities and small relaxation times are favorable for a harmonic response.

Conclusion. – The Faraday instability in viscoelastic surface waves occurs in harmonic
resonance with the external drive if the vibration frequency comes close to the inverse elastic
relaxation time. We have shown this in detail for Maxwell fluids, but it is not a specific property
of this model. Calculations with empiric viscosity data confirm this observation. A large static
viscosity, often met in polymeric solutions, and a small relaxation time are favorable for the
observation of the harmonic response. It should be emphasized that the predicted harmonic
response is a viscoelastic bulk effect. This is in contrast to a similar observation in a thin layer
of a Newtonian fluid due to increasing boundary layer dissipation [7].

***

Discussions with V. Steinberg and H. Rehage are gratefully acknowledged.
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