
BROWNIAN DYNAMICS OF TETHERED POLYMERS IN FLOWR. RZEHAK,1 D. KIENLE,1 T. KAWAKATSU2 AND W. ZIMMERMANN1;31 IFF and FORUM Modellierung, Forschungszentrum J�ulich, D-52425 J�ulich2 Dept. Comput. Sci. Eng. Nagoya University, Nagoya 464-8603, Japan3 Theoretische Physik, Universit�at des Saarlandes, D-66041 Saarbr�uckenE-mail: wz@lusi.uni-sb.deThe shape and the dynamics of tethered polymers in ow are described by bead{spring models taking into account the hydrodynamic interaction and the excludedvolume e�ects. The Brownian dynamics of these bead{spring models is simulatedby replacing the discretized Langevin equation with a scheme which introducesarti�cial inertia for the beads. With this scheme the preservation of the Boltzmanndistribution is guarateed in leading order and the integration timestep can bechosen up to a factor of 10 larger. Besides various applications of this scheme, wedevise an e�cient way to calculate the relaxation spectrum and -modes from thesimulation data using the Karhunen{Lo�eve method.1 IntroductionPolymers exhibit a hierarchy of time and length scales which covers a very widerange. There are modes of the polymer dynamics with relaxation times which areas slow as the macroscopic hydrodynamic modes. In this case the microscopic andmacroscopic degrees of freedom do not decouple in a simple manner as for simpleuids like water. The viscoelasticity of polymer solutions is a consequence of thiscoupling of very di�erent length and time scales 1;2;3.The behavior of polymers in owing solution has already been investigated ex-perimentally for a long time but only by volume averaging measurements such aslight scattering, birefringence, rheometry and small angle neutron scattering. Anunderstanding of viscoelasticity, however, requires an analysis of the nonlinear in-teraction between individual polymers and the ow �eld. Two elementary processesseem to be crucial for the interaction: How does a ow �eld deform a polymer andhow does the deformed polymer perturb the ow �eld?Only recently a huge step forward in understanding the ow-induced polymerdeformation has been achieved by studying single DNA molecules. DNA is muchlarger than synthetic polymers and can be manipulated with optical tweezers. Whendecorated by uorescent dyes, the action of ows on the polymer can be followedunder an optical microscope4�7.Theoretically the deformation of a tethered polymer in ow can be described byvarious models. These are for instance the dumbbell model2 and various kinds ofblob models8�13 which neglect a large number of internal degrees of freedom of thepolymer. More details are kept in bead{spring models where the actual polymeris replaced by a string of beads connected by springs, cf. �g. 1, each of whichcorresponds to at least one Kuhn segment for a exible chain3. Such bead{springmodels have been investigated so far only with various averaging approximationsfor the hydrodynamic interactions (HI) between the beads 14;15;16. Here and inRefs. [10; 11] the HI are described in the so-called Oseen-approximation withoutany averaging. At �rst sight these simulations with HI require O(N3) operations,proc1: submitted to World Scienti�c on March 19, 1999 1



Figure 1. Sketch of the coarse{graining procedure leading to the bead{spring model. The smallsolid circles represent chemical groups in the backbone of the polymer with the solid lines indicatingchemical bonds between them. The large shaded circles are the beads which are connected bysprings reecting the entropic elasticity of the subchain.but with a suitable approximation the operation count is reduced to � O(N2:25)operations, as described in appendix B.Simulations of the model equations as described in sec. 2 provide the shape ofthe ow-deformed polymer as well as the perturbation of the ow �eld and theyshow that polymers in ow are neither impenetrable as assumed in former blobmodels8 nor free draining.Another central issue in polymer dynamics is the determination of the spec-trum of relaxation times and modes of a polymer1;3. The former provides the linkbetween the microscopic dynamics of the polymers and macroscopic viscoelasticcontinuum theory17. Analytically the relaxation spectrum can be calculated onlyfor the simplest polymer models, namely those of Rouse and Zimm 18;19;20. Both ofthese models share the feature that they yield linear equations governing the mo-tion of the polymer. For more realistic nonlinear polymer models one encountersa fundamental di�culty 1;21;22: The nonlinearity leads to a coupling of modes andindependently relaxing modes like in the linear case do not exist.A common way out of this situation is to simply assume that the amplitudesof the Rouse modes contain useful information on the relaxation of the polymerchain even in the nonlinear case. The relaxation times are then determined from anexponential �t to the timeseries of these amplitudes. Even if one accepts the premiseof using the Rouse modes, the determination of the relaxation times is tedious anderror-prone so that in practice only the few longest relaxation times can be obtainedthis way. Another approach which aims at the relaxation spectrum directly 4 is toapply an inverse Laplace transform to a single timeseries of some observable likethe end{to{end distance. This, however, is an ill-conditioned problem due to thepresence of noise in the data and requires the use of special regularization techniques23;24. The results then in general depend strongly on the regularization parameter.Therefore the e�cient and reliable computation of relaxation spectra is also a verypractical problem.Here we suggest a way to determine the relaxation spectrum and -modes ofproc1: submitted to World Scienti�c on March 19, 1999 2



polymers which solves both of the problems discussed above using the Karhunen{Lo�eve (KL{) method 25.2 Bead{Spring Models for Polymer DynamicsIn order to study the long-time dynamics of polymers in dilute solution, coarse{grained models are used because atomistic models of long polymer chains are in-tractable even numerically with present day computing equipment. A commonclass of such models are the so-called bead{spring models26 where coares{grainingis achieved by replacing a subchain of a real polymer by a bead and a spring witha suitable force{elongation law 3;27. Friction and mass of the subchains are lumpedinto the beads as depicted in �g. 1. The solvent acts as a heat bath which causesa stochastic motion of the polymer.Usually one considers the motion on the di�usive timescale only, i.e. beadinertia are neglected28. The equation of motion for the position of the i{th bead(i = 1 : : :N) is then obtained from a balance between all forces acting on the beads.These forces comprise viscous drag forces FH on one side and spring{ and stochasticforces F�, FS on the other: �FHi = F�i + FSi : (1)The drag forces are proportional to the di�erence between the velocity of the bead,Vi, and the ow velocity at its position, u0(Ri):�FHi = � (Vi � u0(Ri)) : (2)The single bead friction coe�cient � is given by Stokes law, i.e. � = 6��a where� is the solvent viscosity and a is the e�ective hydrodynamic radius of a bead.In thermal equilibrium of course u0 � 0. The stochastic forces are related to thedissipative drag by the uctuation dissipation theorem in order to ensure the correctequilibrium distribution. We haveFSi =p2kBT � �i (3)where T is the solvent temperature, kB is the Boltzmann constant and �i is anuncorrelated gaussian white noise with zero mean:
�(t) �T (t0)� = �(t� t0)1 : (4)Taking velocities and positions of all beads together as single supervectors forthe velocity V and position R, the equations of motion may be written in thefollowing general form:V � @@tR = u0(R) +H � (�rR �) +p2kBT H � : (5)Here we introduced a potential � for the spring forces and the mobility H, which isthe inverse of the friction coe�cient, ��1. In the most general case to be discussedlater on, H will no longer be a simple scalar but a tensor which couples all beads.Boundary conditions are implemented by introducing additional beads with indicesi = 0; N +1 which do not participate in the dynamics. Then for free chain ends wehave R0 = R1 and RN+1 = RN while for �xed ends R0 and RN+1 are constant.proc1: submitted to World Scienti�c on March 19, 1999 3



The Rouse model18 is the simplest conceivable polymer model which embodiesonly the chain connectivity by assuming harmonic springs, i.e. by using in eq. (5),� � �H =Xi 12 kH jRi+1 �Rij2 : (6)The mobility in the Rouse model is simply a scalar, namely the inverse of the singlebead friction coe�cient, i.e. H = ��1 1. All of the above assumptions are tacitlyintroduced in order to make the equation of motion eq. (5) linear so that it may besolved analytically.There are three obvious re�nements all of which render the equation of motioneq. (5) nonlinear. These are a �nite extensibility of the springs (FE), the excludedvolume of the beads (EV), which may be chosen such that the chain cannot crossitself, and hydrodynamic interactions between the beads (HI).Since chemical bonds have a �xed length, real polymers are inextensible. Thiscan be modeled by a nonlinear spring law which keeps the stretching of the springssmall even for large forces. Rather common in simulations is the phenomenologicalFENE (Finitely Extensible Nonlinear Elastic) spring law29 with the potential� � �F = �Xi 12 kFR2F ln�1� jRi+1 �Rij2R2F � : (7)Here kF is the force constant and RF is the maximum extension of the spring.Another approach is to make the chain completely unstretchable by replacing thesprings with rigid rods. In numerical simulations this may be achieved to a goodapproximation by augmenting the FENE spring law by a nearest{neighbor repulsionof the form described in eq. (8) below 30. Obviously the e�ects of �nite extensibilityare most important when the polymer is driven far from equilibrium where the chainmay be strongly stretched.The excluded volume (EV) e�ect arises because di�erent beads cannot occupythe same region in space. This is modeled by a repulsive interaction between anypair of beads as described e.g. by a truncated Lennard{Jones potential30�LJ = 8>>>><>>>>:Xi;j 4� � �jRj �Rij�12�� �jRj �Rij�6+ 14! for jRj �Rij < RLJ0 for jRj �Rij � RLJ (8)Here � and � de�ne energy and length scales of the excluded volume interactionand RLJ = 21=6� is the minimum of the conventional 6-12 Lennard{Jones potential.This term is included in the potential � in eq. (5) along with the spring potential.For a suitable choice of the parameters the bead{spring chain becomes self{avoidinglike real polymers. The e�ects of excluded volume are most prominent in or closeto thermal equilibrium where the polymer chain assumes a coil shape. Far fromequilibrium, where the polymer chain is strongly stretched and the beads are farapart from each other, the excluded volume force tends to zero.The hydrodynamic interaction (HI) is an e�ective interaction between any pairof beads which is mediated by the solvent. It arises in the following way: If theproc1: submitted to World Scienti�c on March 19, 1999 4



solvent exerts a drag force on a bead then by virtue of Newton's third law theremust be a drag reaction force of the same strength but with reverse direction actingas a driving force for the solvent. According to eq. (1) the average of this force isgiven by the potential force �rR �. Neglecting the �nite bead diameter { i.e.idealizing the drag reaction force as a point force { and using the linear equationsof Stokes ow for the solvent dynamics, one can derive a general expression for theperturbation u0 of the imposed ow �eld resulting from the drag reaction forces ofall beads31;3;27, u0(Ri) =Xj 6=i 
(Ri �Rj) � (�rRj �) : (9)The i{th bead is excluded from the sum on the rhs of eq. (9) in order to suppressunphysical hydrodynamic self{interactions. The Stokes friction force on bead i asgiven by eq. (2) now arises from the bead velocity relative to the perturbed ow �eldu0+u0. Using this perturbed ow �eld instead of u0 alone in eq. (5) and collectingall terms containing �rR �, one identi�es the components of the mobility, whichhas now become a conformation dependent supermatrix, asHij = 8<: 1� 1 for i = j
(Ri �Rj) for i 6= j : (10)Here the Oseen tensor3 is nothing but the Greens function for Stokes ow,
(r) = 18��jrj (1+ r̂r̂T ) : (11)It su�ers from the de�ciency that it becomes non-positive at small bead separations.Therefore it is necessary to introduce EV along with HI10 or to use a regularizationof the Oseen tensor32. So far we considered deterministic forces only. In orderto complete the equation of motion for the case with HI, we need to specify thestochastic forces. Fortunately it turns out that the uctuation dissipation theoremfor this case has precisely the same form as before33.The collective e�ect of the hydrodynamic interactions is often condensed inthe so-called non{draining assumption, i.e. the assumption that the polymer coilmay be replaced by a sphere with some e�ective radius into which the externalow does not penetrate. This assumption is inspired by Zimm's calculation of thedi�usion coe�cient of a polymer coil with HI19 which is given by an expressionsimilar to that of a hard sphere3. Apart from additional approximations in thecalculation (see below) this evidence seems rather scarce support for the conclusiondrawn. Only recently the perturbed ow �eld has been calculated directly 11 andthis calculation revealed that the ow is weakened inside the polymer coil butnot completely suppressed as shown in �g. 2. Furthermore there is a signi�cantpenetration depth where the ow remains strong and a large long range e�ect thatare neglected in the simple traditional picture.If any of the three e�ects discussed above is to be included in the model withoutfurther approximations one has to rely on numerical simulation in order to solve theequation of motion. Only if we restrict ourselves to the Rouse model with HI, anproc1: submitted to World Scienti�c on March 19, 1999 5



approximate treatment becomes possible by replacing H(R) with its equilibriumaverage. This so-called preaveraging approximation has the e�ect of linearizing theequation of motion again. This procedure was proposed by Zimm19, wherefore it isreferred to as the Zimm model, who also obtained an expression for the relaxationspectrum. The relaxation modes, however, cannot be found in closed form 20;22.Far from equilibrium the simple preaveraging approximation obviously breaks down.Various other approximation schemes have been proposed which avoid the use ofthe equilibrium distribution but which still lead to linear equations 14;15;16.Since a direct time discretization in eq.(5) may lead to a violation of the equi-librium distribution, we introduce an arti�cial mass m for all beads as discussedin appendix A. This equation with inertia is integrated with a velocity{Verletalgorithm as follows:R(tn + h) = R(tn) +V(tn)h+ h22m F(tn)mV(tn + h) = mV(tn) + h2m (F(tn + h) + F(tn)) (12)F(tn) = �  p2kBT H(R(tn)) �(tn) 1ph��H(R(tn)) @�@R(tn) +V(tn)�! (13)Here h = tn+1 � tn is the time step of integration. Formally this scheme is quitesimilar to that used in MD{simulations with a Langevin{thermostat, whereas itsinterpretation is di�erent34;30. Noise and dissipation in the MD-simulations are apurely arti�cial device which is used to simulate a canonical ensemble while themasses of the particles represent true physical quantities. In our case in contrastthe masses of the particles are introduced as a computational device to speed up thesimulation while the stochastic and dissipative forces represent the solvent degreesof freedom, which do not appear explicitly in the equations of motion.In the simulation we keep the temperature at kBT = 1:0. Together with thevalues for the friction coe�cient, � = 1:0, and the bond length, b = 1:0 for harmonicsprings and b = 0:961 for FENE springs, this �xes the units of energy, force, lengthetc. . The choice � = 0:2 for the solvent viscosity, with the bead radius a determinedfrom � = 6��a, results in a value of h� = q 3� ab � 0:25 for the dimensionlessparameter h� measuring the strength of the HI. This value is compatible withother work22.Several tests of the numerical scheme with respect to the equilibrium distri-bution of the bond length for the linear and nonlinear springs and the scaling ofthe root{mean{square end{to{end distance as a function of the number of beadsare described in appendix C. The agreement with analytical solutions for theseequilibrium properties is nearly perfect. A comparison between results of the directdiscretization and integration of eq. (5) and the scheme eq. (12) shows that thelatter allows the integration time step h to be chosen by a factor of 10 larger for acertain accuracy of the equilibrium distribution.proc1: submitted to World Scienti�c on March 19, 1999 6



3 The Karhunen{Lo�eve MethodThe Karhunen{Lo�eve method used here for the determination of the relaxationspectrum and -modes of polymers can be traced back to the 19th century35. Sincethen it has been rediscovered many times in various �elds where it goes under dif-ferent headings36, e.g. principal component analysis in statistics35 or proper ortho-gonal decomposition in turbulence37. In nonlinear dynamics the name Karhunen{Lo�eve method, which originally referred to the application to stochastic processes25,is most widely spread.The essence of the KL{method is as follows (more details are given elsewhere38):The eqs. (12) are integrated over a long time and data vectors x(�) = R(� � �t)comprising all bead positions are stored at equidistant time intervals � ��t.Then from this time series the mean positions of the beads are calculatedhRii = 1M MX�=1 Ri(� ��t) (14)as well as the covariance matrix K which is composed of the 3� 3 submatricesKij = h (Ri � hRii) (Rj � hRji)T i : (15)By calculating the eigenvectors �p and -values �p of K, the KL{method yields abasis for the data space.The usefulness of the KL-method relies on the following properties39 of theKL{modes �p and -weights �p.1. The KL{modes form an orthonormal basis of the data space since K is sym-metric, i.e. any data vector may be expressed asx(�) = R(� ��t) = NXp=1 ap(�)�p ; (16)where the expansion coe�cients ap are now random variables like xi.2. If the data are expressed with respect to the KL{basis their coe�cients areuncorrelated, i.e. hapaqi = �p�pq : (17)This also shows that the KL{weights give the amount of variance contained inthe corresponding mode.3. If the KL{modes are ordered according to decreasing weights then the averageerror that occurs upon truncation of the expansion eq. (16) at some k < N issmaller than for any other choice of retained modes, i.e.hkx� kXi=1 ap�pk2i < hkx� kXi=1 bp pk2i ; (18)where f�pg is the set of the �rst k KL{modes and f pg is any other set of korthonormal modes.proc1: submitted to World Scienti�c on March 19, 1999 7



Figure 2. a) Segment density �(x; y; z = 0) and b) time-averaged perturbed ow �eld u(x; y; z = 0)for a chain with N = 200 beads �xed at the origin with one end and subjected to a uniform owin the x-direction with v = 0:02. Both EVI and HI are included and harmonic springs are used.The streamlines go around the region where the density of polymer segments is high.Intuitively the KL{modes and {weights may be pictured as describing the mainaxes and abscissae of an ellipsoid in the data space that optimally captures thedata.Because of property 2 the KL{modes are a natural generalization of the in-dependent eigenmodes for linear systems. Furthermore the corresponding weightsmay be identi�ed with the relaxation times for nonlinear polymer models. In orderto substantiate this assertion a comparison with several known results will be madein the following section.4 Results4.1 Partial draining e�ectIn this subsection we describe results obtained in simulations of a bead{spring chainwhich is �xed at the origin and subjected to a uniform ow in the x-direction withvelocity v = 0:02. The chain has N = 200 beads connected by harmonic springsand both EV and HI are taken into account. In �g. 2a) the temporally averagedsegment density is shown as a measure of the chain deformation. The full ow�eld u(r) including the perturbation due to the HI between the beads is shown in�g. 2b). The ow velocity assumes its smallest values near the x-axis in the interval0 < x < 50 where the beads are met with the largest probability. The importantresult from these simulations is that the ow at the average location of the polymercoil is nonvanishing. This ow penetration is a superposition of two e�ects: Theow penetrates the polymer coil at any moment and due to thermal uctuationsthe polymer does not stay at a �xed location.With increasing ow velocity and polymer elongation the average distance be-tween the beads increases and therefore the hydrodynamic interaction decreases.This reduction is stronger close to the tethered end than near the free end, as longas the chain is not fully stretched. At this stage of deformation the e�ects of HIproc1: submitted to World Scienti�c on March 19, 1999 8



Figure 3. Illustration of the chain conformation corresponding to the �rst Rouse mode of a chainwith N = 10 beads. The bead positions are on a straight line with direction Ê� in real space asshown on the right of the plot. The diagram shows the distance of the i{th bead from the originwhere the chain is �xed.vary signi�cantly along the polymer chain.In recent theoretical considerations about tethered polymers the blob modelwith impenetrable spherical blobs has been introduced8. Our present simulationindicates that the assumption of complete impenetrability is too strong and hasto be replaced by a partial penetration. A generalized blob model taking this andthe spatially dependent HI e�ects into account has been suggested in Ref.12 andelsewhere in this issue13.4.2 Relaxation times and modes of polymer chainsThe analytical solution of the Rouse model for a chain with one end �xed and theother end free yields a relaxation spectrum38�p = �kH �4 sin2� 2p� 12N + 1 �2���1 ; (19)where p = 1 : : : N is the number of the Rouse mode. A large part of the spectrumfollows a scaling law �p / (2p� 1)�2, cf. �g. 4. Deviations from this scaling law atlarge mode numbers are due to the �nite number of beads.The Rouse modes R�p are special chain conformations which will be describedin the following. The position of the i{th bead in the mode with indices �; p maybe written in the product form R�pi = Rpi Ê�. This means that all beads are on astraight line with unit direction vector Ê� as illustrated in �g. 3. Since there arethree independent directions in real space there are three possible values for � forwhich we may take the axes of a Cartesian coordinate system, i.e. � = x; y; z. Theproc1: submitted to World Scienti�c on March 19, 1999 9



Figure 4. a) Comparison of the relaxation spectrum of the Rouse chain obtained analyticallyvia eq. (19) (solid line) and from numerical data by means of the KL method (open triangles).On the abscissa we plot 2p+ 1 instead of the mode number p alone because due to the boundaryconditions with one end �xed it is only the former quantity for which a scaling law can be expected.b) Comparison of several Rouse modes (p = 1; 5; 9) as calculated analytically38 (solid line) andfrom numerical data by means of the KL method (open triangles).distance function Rpi =r 2N sin�i 2p� 12N + 1 �� (20)gives the distance of the i{th bead from the origin. There are N di�erent patternsof bead spacings corresponding to the values p = 1 : : : N .The distance function Rpi is normalized according toPNi=1 R2pi = 1, furthermorePNi RpiRqi = 0 for p 6= q. Together with the orthonormality of the Ê� in realspace this expresses the orthonormality of the Rouse modes in conformation space.Since there are 3N modes, these form a basis for the conformation space, i.e.each conformation R may be expressed as R =PNp=1P�=x;y;z A�pR�p . The modeamplitude A�p is just a common scaling factor applied to the position vectors of allbeads in the chain. The amplitudes A�p for the three coordinate directions in realspace are often taken together as a vector amplitude Ap.In equilibrium none of the three directions of a Cartesian coordinate systemis distinguished. Therefore the spectrum of polymer relaxation times is threefolddegenerate. The modes corresponding to each triplet of relaxation times di�er onlyin their directions Ê� in real space while the spacing of beads along this direction isthe same for all three modes in the triplet. Since no direction in space is preferred,the directions obtained by the KL method will be arbitrary.Note that in equilibrium the average position of all beads is at the coordinateorigin. In nonequilibrium the beads have in general di�erent nonzero average posi-tions. Since the modes serve to decompose uctuations,R�p is then to be interpretedproc1: submitted to World Scienti�c on March 19, 1999 10



Figure 5. a) Scaling of the �rst (longest) relaxation time with the number of segments for a modelwith harmonic springs and EV. The symbols are simulation results, the solid line is a �t to a powerlaw � / �N� with the values � = �0:55108833 and � = 2:1919907 for the �t parameters. Scalingarguments predict a value of 2� + 1 � 2:2 for � where � is de�ned in eq. (41). b) First triplet(p = 1) of relaxation modes as calculated by the KL{method from simulation data for a tetheredFENE chain with N = 100 beads subjected to a uniform ow with velocity v = 0:2. The lowercurve corresponds to the mode with direction along the ow while the two upper curves representthe two degenerate modes in perpendicular directions. Note that Rpi is here the deviation of thei{th bead from its mean position when the mode is excited.as the deviation of the true bead position from its mean value.In �g. 4 we compare the analytical results for the Rouse chain to the results ofa KL{analysis as described in the previous section. The data set which was usedfor the analysis consisted of 10000 samples taken at time intervals of �t = 100:0which were generated by a simulation program using the algorithm described insection 2 and in the appendices. An initial transient of 100 samples was discardedin order to eliminate e�ects of the initial conformation which wasRi = i b Êx. Afterthis period the end{to{end distance had approached its equilibrium value of 10.0within a statistical error of 2%. In order to obtain the above results we exploitedthe permutation symmetry of the coordinate axes and averaged �p and Rpi overthe three coordinate directions Ê�. The values of the KL{weights, cf. �g. 4a),obtained for the individual coordinate directions showed deviations of less than 5%from these averages. This deviation is approximately proportional to the size of thedataset. In order to explicitly exhibit the symmetry that was averaged over before,it was necessary to increase the size of the dataset by a factor of four. If on theother hand only half of the data are used, the Rouse times of less than �p � 0:1 areunderestimated by the KL{method.The KL-modes for p = 1; 5; 9 are shown in �g. 4b) in comparison with theanalytical results for the Rouse modes. We �nd that approximately the �rst 10 %of the modes are reproduced accurately. For higher mode numbers the tips of thesine are underestimated.proc1: submitted to World Scienti�c on March 19, 1999 11



A further test for the KL{approach to polymer relaxation times is furnished bythe scaling law1 �1 / N2�+1 � N2:2 (21)for the dependence of the longest relaxation time of a Rouse chain with EV on thenumber of segments. The corresponding result for the relaxation times of such achain as calculated by the KL{method is shown in �g. 5a). The �t of a straightline to the data in the log-log plot clearly shows that the KL relaxation times doobey a power law. The exponent obtained from the �t has a value of 2:18 which isin very good agreement with the result derived from scaling arguments.As a preliminary result for a nonequilibrium situation we show in �g. 5b) the �rsttriplet of modes for a tethered FENE chain subjected to a uniform ow. It is obviousthat the form of the modes is drasticaly changed compared to the equilibrium Rouseform. This also leads to relaxation times which depend on the ow velocity as doesthe precise form of the modes.So far we only considered a tethered polymer where all degrees of freedom relax.For a freely oating polymer, however, the center{of{mass motion is di�usive. Thiscorresponds to an in�nite relaxation time which spoils the numerics. The situationis remedied easily though, by performing the KL{analysis on the bead positionsrelative to the center{of{mass. Thus the relevant case for rheological applicationscan also be treated with the method we suggest.5 ConclusionWe introduced a modi�ed Brownian dynamics scheme, cf. eq.(12), which guarateesthat the equilibrium distribution is preserved during simulations, in contrast to di-rect discretization of eq. (5). Therefore this scheme allows the integration timestepto be chosen by a factor of 10 larger for a prescribed accuracy of the Boltzmandistribution.Simulation of the Brownian dynamics of bead{spring models for tethered poly-mers allows a test of the validity ranges of previous more coarse{grained modelapproaches as described in more detail in Ref.10. Furthermore a detailed studyof the polymer statics and dynamics provides a starting point for the generaliza-tion and modi�cation of these models such as the f-shell blob model for tetheredpolymers as introduced in Refs.11;12;13.Therefore this study of the behavior of tethered polymers in uniform ow is a�rst step in bridging the gap between the microscopic scale at which the interactionof single polymers and ow takes place and a more coares{grained description up tothe macroscopic continuum dynamics of polymer solutions. Further steps leadingto a thorough understanding of the non-Newtonian behavior of polymer solutionsare the analysis of the nonlinear interaction of polymers with more complicatedows, e.g. parallel ows like shear ow and Poiseuille ow, but also extensional,curvilinear and even turbulent ow. Such an analysis may provide a basis for theformulation of the essentially nonlinear description of the macroscopic dynamics ofpolymer solutions. In plane Poiseuille ow, for instance, we could recently showthat small deformable objects like polymers will migrate to the center where theproc1: submitted to World Scienti�c on March 19, 1999 12



shear vanishes. This is another important ingredient for the theory which allowsto incorporate the build-up of inhomogeneous concentration pro�les of the polymercomponent of the solution.AppendixA Brownian dynamics simulation schemeThe purely dissipative equation of polymer motion eq. (5) is not appropriate forcomputer simulations because it does not ensure the correct Boltzmann distributionat equilibrium. However, instead of discussing the equation of motion (5) we hereconsider a simpler model problem, which retains only the essential di�culty ofsimulating overdamped stochastic equations.As an aside we note that the noise in eq. (5) is of multiplicative nature be-cause its strength is a function of the chain conformation via the mobility matrixH. However, the statistical properties of the multiplicative noise are expected todepend only on the chain conformation averaged over a certain short time interval.Therefore, it is not necessary to discretize the equation of motion by treating faith-fully the multiplicative nature of the thermal noise 40. This allows us to treat themultiplicative noise as Ito type instead of treating it as Stratonovich type.The model we use to analyse the violation of the Boltzmann distribution is�(x) _x(t) = � @�@x +G(x) �(t) ; (22)where x is the N -dimensional state vector, � is the potential, � and G are x-dependent square matrices and �(t) is again the uncorrelated Gaussian white noise,
�(t) �T (t0)� = �(t� t0)1 : (23)The uctuation-dissipation relation requires that GGT = ��1�, whereGT denotesthe transposed matrix ofG and � = 1=kBT . In order to construct a �nite di�erencescheme of eq. (22), we rewrite it as_x(t) = ���1(x) @�@x + ~G(x) �(t): (24)where ~G � ��1G. As mentioned above, we regard the multiplicative nature of thenoise only in a time-averaged sense, which allows us to construct a �nite di�erencescheme of eq. (24) that is correct up to O(h) as41;40x(tn + h)� x(tn) = ���1(x(tn)) @�@x(tn) h+ ~G(x(tn)) �(tn)ph+O(h3=2) ; (25)where h is the time step of the integration and tn � nh is the time at the begin-ning of the n-th time step. The discretized white noise � is again an N -vector ofindependent Gaussian random numbers with zero mean and unit variance, i.e.
�(tn) �T (tn0)� = �nn0 1 : (26)In thermal equilibrium, the probability distribution for the variable x is given by thecanonical distribution exp(���(x)) which remains unchanged by the time evolutionproc1: submitted to World Scienti�c on March 19, 1999 13



of the system according to the equation of motion (22). In order not to violate afundamental physical principle, the �nite di�erence scheme eq. (25) should alsopreserve the canonical distribution up to O(h), which is checked in the following.Using eqs. (25) and (26), we can calculate the probability distribution of �ndingy = x(tn + h) under the condition that we had z = x(tn) ashyi = z� ��1(z) @�@z h+O(h3=2)
 (y � hyi) (y � hyi)T � = ��1 �(z)h+O(h3=2) : (27)Due to the linearity of eq. (25) and the Gaussian nature of the random vector �(tn),the probability distribution of x(tn+h) becomes a Gaussian distribution, too. Usingeq. (27), the probability distribution of y = x(tn + h) under the condition of z isgiven byP�yjz� = �2�h� �Ndet���1(z)�!� 12 exp�� �2h (y � �y)T �(z) (y � �y)� (28)with �y = z� ��1(z) @�@z h : (29)Then the time{invariance of the canonical distribution is expressed asexp�� ��(y)� = Z dz exp�� ��(z)�P(yjz) : (30)If the condition eq. (30) is violated, the canonical distribution is no longer accuratelyful�lled and the scheme eq. (25) cannot guarantee the existence of the correctequilibrium state. Expanding eq. (30) in a power series in the time step h, oneeasily con�rms that the leading order of the numerical error in the condition eq. (30)associated with the time discretization is linear in h. As this error is larger thanthe truncation error in the numerical scheme eq.(25), the equilibrium condition isnot accurate up to leading orders.One way to eliminate the di�culty of the violation of the stable equilibriumstate is to extend the equation of motion eq. (22) to a second order di�erentialequation by including an arti�cial inertial term. Then the equation of motion readsm�x(t) + �(x) _x(t) = � @�@x +G(x) �(t) ; (31)where the arti�cial mass m is taken identical for all the components of x for sim-plicity. In this case, the �nite di�erence time integration scheme that is correct upto O(h), is given byy = z+ v(tn)h+O(h3=2) (32)mv(tn + h) = mv(tn) + G�z��(tn)ph��@�@z + �(z)v(tn)�h+O(h3=2)proc1: submitted to World Scienti�c on March 19, 1999 14



where v � _x is the velocity and z = x(tn). Introducing y = x(tn+h), u = v(tn+h)and w = v(tn), and using eq. (26), we �ndhyi = z+w h+O(h3=2) � �y +O(h3=2)mhui = mw ��@�@z + �(z)w� h+O(h3=2)� m�u+O(h3=2)
 (y � hyi) (y � hyi)T � = O(h3=2)
 (u� hui) (u� hui)T � = ��1�(z)h+O(h3=2)
 (y � hyi) (u� hui)T � = O(h3=2) (33)Then, the probability distribution of �nding (y;u) under the condition (z;w) isgiven byP�y;ujz;w� = �2�h� �Ndet���1(z)�!� 12 exp�� �2h (u� �u)T�(z)(u� �u)� ��y � �y�(34)where �y and �u are de�ned in eq. (33). With this equation one can constructa balance equation for the equilibrium canonical distribution that is similar toeq. (30),exp�����(y) + 12m juj2�� = Z dz dw exp�����(z) + 12m jwj2��P (y;ujz;w) :(35)Expanding eq. (35) with respect of h, one can con�rm that the discretization error inthe balance condition is of the order as O(h2), which is smaller than the truncationerror in the di�erence scheme eq. (32).B E�cient Evaluation of Stochastic Forces in the Presence of HIA key issue for the present study with emphasis on HI is the calculation of thematrix pH in eq. (5) and eq. (12). In order to make the whole algorithm prac-tical, an e�cient way to evaluate the square root of the mobility matrix H mustbe developed. The straight forward calculation of such an expression42 involves adiagonalization of H which numerically requires an e�ort of O(N3) machine in-structions. A second standard method for the calculation of matrix functions is viaseries expansion of the desired function42. A Taylor series will contain only powersof the matrix argument which are easily evaluated numerically. However, matrixmultiplication also requires O(N3) operations. A third method which again needsO(N3) operations but which o�ers the most favorable prefactor becomes possibleby noting that the square root is not precisely what is needed. Instead one can alsouse the Cholesky decomposition of H. This idea was exploited in the classic workby Ermak & McCammon43. In all cases the numerical e�ort of O(N3) makes thecomputation prohibitive for long chains. Therefore to our knowledge all previousproc1: submitted to World Scienti�c on March 19, 1999 15



BD studies of polymer dynamics which took HI into account were limited to chainswith N � 20 beads with one exception, the work of Fixman44, where a few resultsfor a chain of 56 beads are given.An approximate method which requires only � O(N2:25) operations was pro-posed by Fixman45. The starting point for this method is an expression of thesquare root in terms of a complete set of polynomials as in method two above, i.e.pH = MX�=1P�(H) : (36)A reduction of the computational e�ort becomes possible by noting that the know-ledge of the matrix pH is actually much more than what is really needed sinceonce it is known it could be applied to many di�erent random vectors �. For thesimulation however it needs to be applied to one single realization only. A schemewhich takes advantage of this is obtained by multiplying both sides of eq. (36) with�. Taking � into the sum on the rhs one obtains a series expression for pH �pH � = MX�=1P�(H) � : (37)This expression contains only matrix{vector products and thus its evaluation re-quires an e�ort of O(N2) only. Furthermore the individual terms in the sum maybe calculated recursively keeping the number of these operations low, too.The polynomials P�(x) may be taken from any complete set in function space.The most economic choice are not simple powers P�(x) = x� but Chebychev poly-nomials C�(x)46;47. These can be evaluated by means of the recursion relationC�+1(x) = 2xC�(x) � C��1(x) ; (38)with C1(x) = x ;and C0(x) = 1 : (39)Since the Chebychev polynomials are de�ned on the interval [�1; 1], which is notsuitable in the present context, one applies a transformation of the independentvariable x = 2yb� a � b+ ab� a ; (40)which maps the domain of the problem y 2 [a; b] to the domain x 2 [�1; 1] of theChebychev polynomials. The C�(y) appear frequently in numerical analysis andare referred to as shifted Chebychev polynomials46;47.If, as in the problem under consideration, the argument x is a matrix, not asimple scalar, then [a; b] is the range of eigenvalues of x. An estimate of the rangeof the eigenvalues of H is furnished by a simple physical argument: If two nearbybeads experience a force in the same direction, the induced perturbations of thevelocity �eld will have a large degree of coherence and thus add up to a largerperturbation while if the forces are in opposite directions, the induced perturba-tions will cancel out to a large extent. Since beads which are neighbors along thechain are likely to be also close in space, an estimate for the largest eigenvalue isproc1: submitted to World Scienti�c on March 19, 1999 16



Figure 6. Probability distribution for the bond length jQj = jRj+1�Rj j at thermal equilibrium formodels with a) harmonic springs, both with (triangles) and without (squares) EV, and b)FENEsprings. In the latter case the addition of EV has no e�ect on the bond length distributionsince nearest{neighbor repulsion is included in the spring potential anyways. The solid lines areobtained by evaluating the Boltzmann factor exp(��=kBT ) with the potentials given by eq. (6)for the Rouse model (left ) and eq. (7) for the FENE model (right). In the latter case there is nodi�erence between the case with and without EV as far as the bond lengths are concerned. Thesymbols give the results of the corresponding simulations for a chain with N = 100 beads. Fromthe distribution data the mean bond length is calculated as b = 1:33 for the Rouse model withEV and as b = 0:965 for the FENE model.obtained by using a force vector with equal forces for all beads as a testvector F toform the Rayleigh quotient42 FT HF=FT F. Similarly an estimate for the smallesteigenvalue is obtained by using a force vector with alternating forces for all beadsas a testvector. In order to compensate for deviations of these estimates from thetrue values of largest and smallest eigenvalue of H one takes a somewhat largerinterval for the shifted Chebychev polynomials.The order of truncation of the series, M , has to be determined empirically andincreases somewhat with N whence the �nal e�ort goes with a somewhat higherpower than 2. In order to monitor the accuracy of the approximation we computethe exact square root of H via the spectral theorem using a QR algorithm42 for thediagonalization whenever the conformation is saved. This happens only every 100- 10000 timesteps of the integration and is thus acceptable in terms of computertime.C Program testsAt thermal equilibrium the simulations can be compared with several well-knownanalytical results. The equilibrium distribution of the bond lengths can be calcu-lated via the Boltzmann factor exp(��=kBT ) using the spring potentials given insec. 2. These analytically calculated distributions are compared in �g. 6 with theproc1: submitted to World Scienti�c on March 19, 1999 17



Figure 7. a) Equilibrium scaling of the end{to{end distance RE with the number of segmentsN for the Rouse (open triangles) and FENE models (open squares). The solid lines are dueto the scaling relation RE = bpN , with the mean bond length b = 1:0 for the Rouse chainand b = 0:961 for the FENE chain. b) Equilibrium scaling of the end{to{end distance with thenumber of segments for the Rouse (solid triangles) and FENE models (solid squares) including theexcluded volume e�ect. The solid lines are �ts with a power law RE = bN� . The �t parametersare � = 0:602, b = 1:37 for the Rouse model and � = 0:617, b = 1:13 for the FENE model.distributions obtained from simulations using these potentials for the springs.For the Rouse model the bond length distribution is of course a Maxwellian. Forthe FENE model the distribution is sharply peaked around its maximum value sothat it can be regarded as a good approximation to a freely jointed chain model. Thebond length distribution for the Rouse model with excluded volume interactionsreveals that the repulsive potential acts as a rather hard wall. Hence the distributionis deformed and its mean value is shifted to larger values. The addition of theexcluded volume interactions to the FENE model of course leaves the bond lengthdistribution unchanged because nearest neighbor repulsion is included anyways asdescribed in section 2. As the analysis of the scaling of the end{to{end distancewith the number of segments shows (see below), the e�ective bond length is ratherclose to the distance b = 0:961 where the bond length distribution has its maximum.A second more global test is the comparison of the numerically obtained end-to-end distance RE as a function of the number of segments N with the scalingresult due to Flory48 RE = bN� : (41)Here � is the scaling exponent while b may be interpreted as an e�ective bondlength. For any model with purely local interactions between the beads it is wellknown that the exponent is � = 1=23. In �g. 7a) we verify this behavior for the pureRouse and FENE models. In these cases of course also the bond lengths are knownso that we can contrast the numerical values with an analytical result without anyadjustable parameters. The small di�erence between both models comes from theproc1: submitted to World Scienti�c on March 19, 1999 18
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