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Deformation of a tethered polymer in uniform owRoland Rzehak1;3;4, Wolfgang Kromen1, Toshihiro Kawakatsu2;3 and Walter Zimmermann1;3;41 FORUM Modellierung and Inst. f�ur Festk�orperforschung, Forschungszentrum J�ulich, D-52425 J�ulich, Germany2 Dept. of Computational Science and Eng., Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan3 Max{Planck{Institute for Physics of Complex Systems, N�othnitzer Str. 38, D-01187 Dresden, Germany4 Theoretische Physik, Universit�at des Saarlandes, D-66041 Saarbr�ucken, Germanythe date of receipt and acceptance should be inserted laterAbstract. Static properties of a single polymer �xed at one end and subjected to a uniform ow �eldare investigated for several polymer models: the Gaussian chain, the freely jointed chain and the FENE(Finite Extensible Nonlinear Elastic) chain. By taking into account �rst the excluded volume interactionand subsequently also the hydrodynamic interaction the polymer models are gradually completed and therelevance of each e�ect for the polymer deformation can be identi�ed. Results from computer simulationsof these bead spring chains are compared with analytical calculations using either the conformationaldistribution{function or blob models. To this end in contrast to the blob model with non{draining blobsintroduced for a tethered polymer by Brochard-Wyart we here develop also a model with free{drainingblobs. It turns out that a limited extensibility of the polymer { described by nonlinear spring forces inthe model { leads to a ow velocity dependence of the end{to{end distance, segment density etc. whichagrees with the power law predictions of the blob model only for very long chains and in a narrow range ofow velocities. This result is important for comparison with recent experiments on DNA molecules whichturn out to be still rather short in this respect. The relative importance of �nite extensibility, the excludedvolume e�ect and hydrodynamic interactions for polymers in ow is not fully understood at present. Thesimulation of reasonably long chains becomes possible even when uctuating hydrodynamic interactions aretaken into account without employing averaging procedures by introducing e�cient approximation schemes.At medium velocity of the uniform ow the polymer is partially uncoiled and simulations show that thee�ects of excluded volume and hydrodynamic interactions are position dependent. Both are stronger nearthe free end than near the tethered end of the polymer. A crossover from a nearly non{draining polymer atsmall ow velocities to a free{draining almost uncoiled chain at large velocities is found in the simulations.Accordingly, models assuming the polymer to be composed of either free- or non{draining subunits, likethe two blob models, cannot correctly describe the extension and shape of a tethered polymer in ow andsimple power laws for the polymer extension etc. cannot be expected.PACS. 83.10.Nn Polymer Dynamics { 83.20.Di Microscopic Theories { 83.20.Jp Computer Simulation {36.20.Ey Conformation1 IntroductionThe deformation of exible polymers in ow causes thenon{Newtonian uid behavior of dilute polymer solutionswhich has been of both theoretical and practical interestalready for a long time [1{7]. Non{Newtonian ow phe-nomena [8] are often puzzling like rod climbing and thesecondary ows occurring in various geometries. Some-times they are outrightly spectacular like the e�ect of tur-bulent drag reduction [9{13]. They are at the heart ofimportant technological processes such as �ber spinningand �lm blowing and they are successfully applied e.g. forviscosity enhancement in secondary oil recovery. However,a generally accepted theoretical basis for the descriptionof the large scale motion of non-Newtonian uids similar

to the Navier{Stokes equation for simple uids like wateris not available yet.As for the description of simple uids [14{16] also forpolymeric liquids, the basis of a macroscopic theory areconservation laws and the laws of thermodynamics [1,3,17,18]. But it is generally agreed upon that the deforma-tion of the polymer molecules by the surrounding ow iscrucial for the rheology of dilute polymer solutions [19{22].Hence for polymer solutions the usual equations for thesolvent have to be coupled with additional equations de-scribing the deformation and the dynamics of the dissolvedpolymers. However, at present this has been achieved onlyfor special cases.A quantitative analysis of the polymer{ow interactioncausing the deformation of the polymer has been ham-pered by two di�culties. On the experimental side the



2 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owclassic measurement techniques such as light scattering[23], birefringence [24,25], rheometry [26,27] and small an-gle neutron scattering [28] provide only volume averagedquantities from which only little can be deduced about theinterplay between the ow �eld and the individual poly-mers. On the theoretical side the large number of polymerdegrees of freedom which are coupled by various nonlin-ear interactions makes a treatment of the polymer{owinteraction on a fundamental level a formidable task.To facilitate a calculation of the polymer deformationsimpli�ed approaches have been proposed. The Rouse{Zimm model [29{32] uses a description of the polymer dy-namics which is linearized about the equilibrium state andthus is questionable in strong ows. It provides the basisof the upper convected Maxwell model [33]. In the case oftwo beads only, i.e. for the dumbbell, this is also knownas the Oldroyd{B{model which gives a good descriptiononly of a restricted class of substances, the so-called Bogeruids [17]. The restricted applicability of this constitu-tive model must be attributed to the approximations ofthe Rouse{Zimm model. The upper convected Maxwellmodel reduces to the "linear viscoelastic model" (Maxwellmodel) for incompressible viscoelastic uids when the to-tal strain is small [1,3,17,32]. Under this restriction on theow the "linear viscoelastic model" is generally acceptedas a valid description for arbitrary substances. In this lin-ear regime there are also standard rheological techniquesavailable for determining the frequency dependent viscos-ity appearing in the model. When linear disturbances aresu�cient, this approach is able to predict e.g. pattern for-mation in vertically vibrated layers of viscoelastic uids(Faraday instability) [34].Beyond the linear regime only rather qualitative ideasabout the polymer{ow interaction exist. For instance ithas been shown that only ows where the elongationalcomponent dominates vorticity possess the ability to in-duce strong deformations of polymers [35]. It is then im-portant to capture the nonlinear elasticity of the polymerwhich leads to a saturation of the polymer deformationat large elongation rates. Whether the polymer is actuallydeformed depends on the ratio of its longest relaxationtime to the time scale set by the velocity gradient of theow [36]. Due to conformation dependent hydrodynamicinteractions the relaxation time is expected to be largerin the stretched state resulting in hysteretic behavior [19].These ideas have been used to argue for a truncation ofthe turbulent cascade as a qualitative explanation of thedrag reduction phenomenon [37]. To obtain quantitativerheological predictions in simpler ows a phenomenologi-cal dumbbell model has been proposed as a kind of min-imal model for an extensible object [17,22,33,38]. How-ever, these qualitative ideas are not undisputed let alonetheir quantitative expression. Furthermore the neglect ofthe many degrees of freedom of the polymer has not beenjusti�ed and its consequences are unknown.A precise experimental observation of the deformationof a single polymer by ows has become possible only veryrecently. For instance, the experimental work on singletethered DNA molecules in uniform ow [39,40] gives de-

tailed data about the global extension as well as the shapeof the polymer. This new approach for measurements onthe statics and dynamics of polymers in ow has becomepossible because of the development of modern experi-mental techniques such as uorescence microscopy [41,42] and laser tweezers [43,44]. Molecular biology providessamples of model polymers like DNA [45,46] which arelarge enough to be observed directly when they are dec-orated with a uorescent dye. These experimental tech-niques have since been applied to various forces [47] andow �elds [48{52] and to many other systems, e.g. DNAin concentrated solution [53,54]. Especially the investiga-tion of polymers in extensional ow exhibited a great andunexpected variety of conformations [49,50,55].This experimental progress with single polymers hasstimulated theoretical investigations on the response ofpolymers to external �elds [56{58]. Two approaches havebeen applied speci�cally to the case of a tethered polymerin a uniform ow as considered in this work: the blobmodel [59{61] and the dumbbell model [62].The blob model has been widely used for the descrip-tion of the static and dynamic properties of polymerspulled at the end [2,63,64]. From the theoretical point ofview this model is very attractive because scaling laws forboth global and local properties characterizing the exten-sion and shape of the polymer can be derived analyticallyeven in the presence of excluded volume and hydrody-namic interactions. Applied to a tethered polymer in ow[59{61], the blob model allowed the identi�cation of dis-tinct ow regimes corresponding to di�erent shapes of thepolymer. This shape is determined by the balance betweenthermal agitation and tension along the polymer. One candistinguish three regimes depending on the magnitude ofthe ow �eld. The local tension along the polymer in-creases from the free towards the �xed end of the chain.As long as the external forces are small the equilibriumstructure of the polymers is only slightly distorted. Thismay be termed the near{equilibrium regime. For moderateforces the polymer still coils up at the free end due to ther-mal agitation, but towards the �xed end it becomes moreand more unwound. This eventually leads to a polymershape resembling a trumpet [59] (cf. Fig. 1) whence thisis called the trumpet regime. For even larger values of theow velocity there is a �nite fraction of the polymer closeto the �xed end which is already completely straightenedwhereas the free end is still coiled up. This has becomeknown as the stem and ower regime [61]. The price forthis insight, however, are the not immediately obvious as-sumptions and approximations used in the model. Theirvalidity is well worth to be tested by polymer models likebead spring models (cf. Fig. 2) which resolve the manydegrees of freedom of real polymers more faithfully.On the other hand the more detailed bead spring modelbecomes very di�cult to treat even numerically when ex-cluded volume and hydrodynamic interactions are takeninto account [33,65,66]. To facilitate calculations excludedvolume e�ects are often neglected and an averaging ap-proximation for the hydrodynamic interactions is intro-duced [30,67,68]. This procedure, however, is not com-
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Nk kRFig. 1. Sketch of a polymer which is tethered at one end(x = 0) and subjected to a uniform ow of velocity v in thepositive x{direction. For intermediate ow velocities it was sug-gested to describe the polymer by a string of blobs (large dot-ted circles) [59] with radius Ri containing Ni beads, cf. Fig. 2.It was predicted that in this regime the shape of the polymerresembles the form of a trumpet.pletely controlled. In fact, it removes the nonlinearity fromthe equations of motion and therefore necessarily leads toa Gaussian conformational distribution function [69]. Anapproach along these lines was also used to investigate atethered polymer in uniform ow [62]. It was argued thatthe hydrodynamic interaction acts to keep the coil at thefree end of the polymer tightly together so that it may bemodelled as the one bead of a half{dumbbell model. Theresults from this half{dumbbell model were found to be inqualitative agreement with the experimental data.It is di�cult, however, to generalize these results toother conditions. According to its small number of degreesof freedom the dumbbell model cannot describe somethinglike the transition between a coiled and a stretched stateof the polymer [19,20]. It can also not describe a crossoverbetween non{draining and free{draining polymer behav-ior as analyzed in this work. Finally it does not allow tocalculate the perturbation of the imposed ow caused bythe polymer. This latter step in our view, however, con-stitutes a second crucial part of the nonlinear interactionbetween the polymer molecules and the macroscopic owof the solution next to the deformation of the polymerby the ow. An analytical description of this nonlinearinteraction seems impossible at present.The purpose of the present paper is to address some ofthe general questions raised above: the validity of the blobmodel, the relative importance of various interactions forthe bead spring model and the number of beads which isnecessary to faithfully describe the conformations of thepolymer. As a speci�c case we consider these questions fora single polymer which is �xed at one end and subjectedto a uniform ow in the x{direction. Here we concentrateon the deformation of the polymer at steady state. The ex-plicit determination of the perturbation of the ow �eldand the relaxation dynamics of the polymer will be ad-dressed elsewhere [70{72].With respect to generality in the interactions only com-puter simulations of a long bead spring chain are promis-
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zFig. 2. Sketch of a bead spring model for a polymer [29{32]which is �xed at one end (bead index i = 0). The springsconnecting the beads are either harmonic springs described bythe quadratic potential in Eq. (28) or anharmonic springs withthe nonlinear potential given in Eq. (71). The former gives aGaussian distribution of the bond length jQj while thermalequilibrium and the bonds are strongly stretched in the pres-ence of ow. In the latter case the bond lengths remain almostunchanged unless the ow becomes very strong (cf. Sec.3). Inappendix C we consider a chain where the springs are replacedby rigid rods of length b. This gives the freely jointed chainmodel.ing in order to make progress on these issues. To avoiduncontrolled approximations in the hydrodynamic interac-tions two methods are applicable. In molecular dynamicscalculations [73,74] the solvent is taken into account as acollection of individual particles and a canonical ensembleis realized by means of a thermostat. A problem arisingin non-equilibrium systems is the realization of bound-ary conditions for which a standard scheme exists onlyfor the case of simple shear ow [75,76]. Closer to thetheory and as it turns out also favorably in terms of com-puter time are Brownian dynamics simulations [33] wherethe solvent degrees of freedom are integrated out of theequation of motion. This induces conformation dependentcorrelations in the stochastic forces which must be prop-erly accounted for. We avoid averaging procedures [30,62,67,68] and simulate the Brownian dynamics of the poly-mer including the full uctuating hydrodynamics. For do-ing so the straight forward discretization scheme for theLangevin equation is modi�ed to achieve large enough in-tegration steps while still preserving the Boltzmann dis-tribution at equilibrium [77,78]. In contrast to previousBrownian dynamics studies of polymers with uctuatinghydrodynamics [79{84] this allows simulations of reason-ably long chains on present day high-speed supercomput-ers and a partial quali�cation of various model approachesbecomes possible.In section 2 the global and local properties of inter-est, i.e. measures for the extension of the polymer in theow direction and perpendicular to it as well as the den-sity of polymer segments, are de�ned and the quantitiesused within the blob models are related to those suitablefor bead spring models. Results for these quantities are ob-tained for the Gaussian chain, i.e. a bead spring chain withharmonic springs and with no other interactions taken into



4 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owaccount. The methods we use are an analytical calculationbased on the Gaussian conformational distribution func-tion (cf. appendix B) and numerical simulations of theLangevin equation (cf. appendix E). The results for theGaussian chain are compared to the predictions of a blobmodel making the same assumptions which is presentedin appendix A. The scaling behavior of the blob model inthis case agrees well with both the analytical calculationand the numerical simulations.The unrestricted extensibility of polymer models witha Gaussian distribution of the bond lengths obviously con-icts with the fact that the chemical bonds ultimatelyimpose a �xed contour length on the polymer. This con-straint becomes an essential ingredient at larger ow ve-locities. In section 3 we investigate the global and localproperties of a polymer in ow for the freely jointed chainand the FENE (Finite Extensible Nonlinear Elastic )chain. For both models several analytical results on thescaling behavior of the end{to{end distance and the seg-ment density are derived in appendices C and D respec-tively. The scaling of the blob model is now approachedonly for very long chains and it holds only in a rathernarrow range of velocities.In section 4 we make the previous models more com-plete by taking into account the excluded volume e�ectfor both the Gaussian chain and the FENE chain. It willbe shown that the excluded volume e�ects vary along thedeformed polymer. Finally in section 5 we add the e�ectsof hydrodynamic interactions between the beads to bothmodels by employing the Oseen tensor. A crossover be-tween non{draining and free{draining polymer behaviorwill be demonstrated and the quantitative results of thesimulations suggest that for real polymers one cannot ex-pect the simple scaling behavior predicted by blob modelswith either non{draining or free{draining blobs.We close this work with a discussion of the applica-bility of the di�erent models and the relative importanceof the various interactions. While the qualitative behaviorof the polymer is described in sections 2{5 most of thedetails of the analytical calculations are given in appen-dices A for the blob model and appendices B through Dfor the Gaussian, freely jointed and FENE chains respec-tively. The main analytical scaling results are summarizedin table 1. The details of the numerical simulations are de-scribed in appendix E and appendix F.2 Tethered Gaussian chain in thefree{draining limitIn this section we consider the simplest bead spring model(cf. Fig. 2) where the springs are harmonic and no otherinteractions between the beads are taken into account, theso{called Gaussian chain. For this model the polymer de-formation can be calculated both by numerical simulationand by analytical methods which con�rms the accuracyof the numerical scheme. However, analytical scaling lawsfor the extension of a tethered polymer in uniform owas a function of the ow velocity and the number of poly-mer segments have �rst been derived for a blob model (cf.

Fig. 3. Various measures for the chain extension as functionsof the ow velocity v for a Gaussian chain with N = 100beads: end{to{end distance RE (upper curve), square root ofthe xx{component of the end{to{end tensor pExx (middlesolid curve), mean value of the x{coordinate of the end{to{endvector XE (lower curve) and maximum x{coordinate amongall beads Xmax (dotted line as guide to the eye). The symbolsare values obtained from numerical simulation; the analyticalresults are due to Eqs. (1 {3).
Fig. 1) for the non{draining limit [59], i.e. for the casewith strong hydrodynamic interactions. In appendix A wetherefore introduce a modi�ed blob model for a polymerfor the free{draining limit where the hydrodynamic inter-actions are neglected and we derive the scaling behavior ofthe extension L(v) and the segment density along the owdirection �(x) as well as the lateral extension � (x) of thepolymer. These results are now compared with the analyt-ical and numerical results for the more detailed Gaussianchain.For the bead spring model there are several possiblemeasures of the in{ow extension of the polymer [32] asshown in Fig. 3: the end{to{end distance RE (upper solidcurve), the square root of the end{to{end tensor pExx(middle solid curve), the mean x{component of the end{to{end vector XE (lower solid curve) and the mean valueof the maximum x-coordinate among all beads Xmax =hmaxi(Rxi �Rx0)i (dotted line). Xmax cannot be calculatedanalytically (the dotted line in Fig. 3 is only a guide tothe eye) but the other quantities are easily obtained ana-lytically from the conformational distribution function asdetailed in appendix B.2. The corresponding solid lines in



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 5Fig. 3 are calculated according to the relationsRE =phjRN �R0j2i=  b2N +� b2�v3kBT N (N + 1)2 �2!1=2 ; (1)pExx =qh(RxN �Rx0)2i=  b23 N +� b2�v3kBT N (N + 1)2 �2!1=2 ; (2)XE = hRxN �Rx0 i= b2�v3kBT N (N + 1)2 : (3)Here b is the root mean square bond length at equilib-rium, N is the number of beads used in the model, � isthe single bead friction coe�cient, and v is the velocityof the ow in the x{direction. � is related to the solventviscosity � and the e�ective hydrodynamic bead radius aby Stokes law � = 6��a. The values obtained from numer-ical simulation for all four quantities, RE , pExx, XE andXmax, are given by the symbols in Fig. 3. They are foundin perfect agreement with the available analytical results.When the polymer is su�ciently elongated, that is atlarge enough ow velocities, e.g. v >� 0:05 for N = 100 asused in Fig. 3, then all quantities exhibit the same scal-ing. For small values of the ow velocity XE tends to zerowhile the other quantities remain �nite. At v = 0 the sizeof the polymer coil is determined solely by thermal uctu-ations. Therefore we may say that XE measures only theelongation caused by the external ow acting against theentropic elasticity of the polymer while the other quan-tities include some contribution that is due to thermaluctuations directly. At some ow velocity the latter con-tribution becomes negligible and all quantities agree witheach other.For vanishing ow velocity, v = 0, Eq. (1) reduces tothe well-known Flory law for the end{to{end distance as afunction of the number of beads N [2,31,32,85]. The twoexperimentally accessible lengths RE = N1=2b and Nbthen �x the model parameters N and b. These are inter-preted as the number and size of statistically independentparts of the chain, the so-called Kuhn segments [86].If our main focus is on the regime at larger ow ve-locities where the drag forces exerted by the external owdominate the thermal forces, there is more freedom in thechoice of the model parameters. In this case only the con-tour length of the polymer is relevant which �xes only theproduct Nb. Furthermore in the free{draining case consid-ered here each bead experiences a drag force �v, i.e. thetotal drag force experienced by the whole chain is N�v. Ifwe take b and � as units for length and force chains with adi�erent number of beads N may be compared by lookingat the fractional extension XE=(Nb) as a function of thetotal drag N�v. Rewriting Eq. (3) asXENb = b6kBT �v(N + 1) (4)

one �nds that the functional relation between the twoquantities is indeed independent of N provided N is largecompared to 1. If we use RE in place of XE the curvesfor di�erent N will not collapse for small values of v be-cause in this case the velocity independent contributionin Eq. (1) cannot be neglected. This may also be used asan indicator that the direct contribution of the thermaluctuations to the polymer extension is important.The polymer extension L as calculated within the free{draining blob model in appendix A isL / � �akBT �v(Nb)2 : (5)Both the linear scaling with the ow velocity v and thequadratic scaling with the number of beads N agree withthat for the various quantities in Eqs. (1){(3) for largeenough values of v, where the velocity independent contri-butions can be neglected. Hence a tethered polymer maybe described as a string of blobs as indicated in Fig. 1 ifthe chain is su�ciently elongated. For small elongation orequivalently for small ow velocity the blob picture is nolonger valid as also discussed in appendix A. A quantita-tive estimate of the range of validity of the blob modelis furnished by comparing the scaling of the length of astring of blobs L / v given by Eq. (5) with the di�erentmeasures of chain elongation for the more detailed beadspring model shown in Fig. 3. The mean x{component ofthe end{to{end vector XE scales linearly with v and thushas the same scaling as the chain extension L in the blobmodel while the other quantities deviate from this scalingbehavior at small ow velocities. Based on the interpreta-tion of XE given before, this suggests that the blob modeldescribes only that part of the polymer extension whichis due to the action of the ow. Since the other quantitieslike the end{to{end distance RE also contain the directcontribution of the thermal uctuations, a vanishing dif-ference RE � XE might be a reasonable measure for therange of validity of the blob model. This is also con�rmedby looking at the exponent � for the segment density atdi�erent ow velocities (see below).Eqs. (1){(3) indicate that the whole contour of a teth-ered Gaussian chain is considerably stretched with increas-ing values of the ow velocity because the end{to{enddistance can grow without bounds, i.e. for N = 100, REexceeds the contour length at equilibrium Nb for v >� 0:05.This feature can be traced down to a stretching of the in-dividual springs, the mean square length hjQkj2i of whichis given by Eq. (38). Since the blob model uses a constantvalue hjQkj2i = b2 in each blob it is not obvious why theblob model predicts the correct scaling behavior for theGaussian chain. This question will be discussed in moredetail later on.Local information about the polymer shape is providedby the density of polymer segments along the ow direc-tion �(x). The blob model yields an analytical expressionfor the density �(x0�x) measured from the free chain endx0 which shows an inverse power law behavior�(x0 � x) / 1b�kBT�a �v�1=2(x0 � x)�1=2 ; (6)
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Fig. 4. Distribution �(x) of polymer segments along the ow(x{) direction as obtained from simulation of a chain with N =500 beads connected by harmonic springs at a ow velocityof v = 0:01. The solid line is a �t according to the formula�(x) / �(x0�x)�� with the �tted values � = 0:48, x0 = 409:6and � = 10:86. The x-range for the �t (here x 2 [5:6; 396:6])has been chosen such as to maximize the number of data pointsin agreement with the �t. Close to the tetherpoint at x = 0 thesegment density may be smaller than 1 because the segmentsof the Gaussian chain are stretched beyond their equilibriumlength b.as shown in in appendix A. Here again b is the Kuhn lengthand a the hydrodynamic bead radius. This expression di-verges at the position x0 of the free end of the polymer.In numerical simulations of a chain with N = 500beads connected by harmonic springs we obtain a segmentdensity as shown in Fig. 4 at medium values of the owvelocity (v = 0:01). Here �(x) is normalized to give thenumber of beads N . The solid curve is a �t to the powerlaw � / �(x0 � x)�� where the �tted exponent � = 0:48is rather close to the exponent 1=2 in Eq. (6), the ana-lytical expression obtained from the blob model. For theadditional �t parameters we �nd values of x0 = 409:6 and� = 10:86. Since x0 is only slightly beyond the locationof the maximum of �(x) it is tempting to identify x0 withthe position of the free chain end in the blob model.The velocity v = 0:01 for which the data in Fig. 4have been obtained is just at the onset of the validityrange of the blob model (trumpet regime) as determinedfrom the di�erence RE�XE forN = 500. For smaller owvelocities we �nd a decreasing exponent � thus con�rmingthe agreement of RE and XE as a quantitative measurefor the validity range of the trumpet regime.The segment density �(r) as derived from the confor-mational distribution function in appendix B.4 is given

by �(r) = * NXk=0 �( r�Rk )+ (7)= �( r�R0 )+ NXk=1 � 32�kb2�32 exp�� 32kb2 (r� hRki)2� :This is a sum of Gaussian distributions centered about themean position of the k{th bead hRki. Evaluating Eq. (7)numerically for a large number of beads (N = 5000) thefunctional dependence of �(x), which is obtained from �(r)by integrating over y and z, is seen to follow nearly exactlythe power law � / (x0 � x)�1=2 when a small fraction ofbeads close to the free end is discarded.In appendix B.5 we introduce an alternative measurefor the local density of polymer segments along the x{axisby the inverse mean distance in the x{direction betweenneighboring beads. This so{called quasi{segment densitytakes the form�0(x0 � x) = 1b s 3kBT2 � v (x0 � x) ; (8)which again shows the scaling behavior � / (x0 � x)�1=2.Note that the quasi{segment density has the same scalingas the segment density in the blob model for any numberof beads and over the whole range of x{positions. In con-trast the true segment density, obtained either from sim-ulation or from the conformational distribution function,shows the scaling predicted by the blob model only forlong chains and away from the free chain end. The quasi{segment density which is based only on the mean bead{positions can be considered as a mean{�eld type approxi-mation to the true segment density. The true segment den-sity also accounts for the uctuations of the beads aroundthese mean positions which is obvious from the result inEq. (7) which is a sum of Gaussian distributions each lo-cated at the mean position of one of the beads. This is thereason for the deviations between the true and the quasi{segment density for short chains and at the free end. Thecomplete agreement between the quasi{segment densityand the blob model again suggests to view the latter as amean{�eld type theory.Another quantity that has been used to characterizethe polymer shape within the blob model is the polymerextension perpendicular to the ow direction � (x). Oneobtains for the blob model in the free{draining limit, cf.appendix A, the formula� (x) / b�kBT�a �1=2v�1=2(x0 � x)�1=2 ; (9)which describes a trumpet shape of the envelope of thepolymer coil. This quantity has no direct correspondencewithin the bead spring model. We attempt to relate � (x)to the 2{dimensional segment density �(x; y) in the follow-ing way: For each value of the x{coordinate we distribute



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 7the total weight �(x) in the y-direction according to a dis-tribution P(y(x)). A particular choice for P(y(x)) couldbe a Gaussian with variance � (x). Then we can calcu-late the yy-component of the gyration tensor which is thesecond moment of the segment density [31] asGyy = Z dx �(x) Z dy y2 P(y(x)) = Z dx �(x)� (x) : (10)For the second equality we used the fact that the y-integralis precisely the variance of P(y(x)) which is � (x) by ourconstruction. If we insert the relations for � (x) and �(x)from Eq. (9) and Eq. (6) we can put the velocity depen-dent prefactors in front of the integral and thus obtaina prediction of the scaling behavior of the yy-componentof the gyration tensor with the ow velocity v, namelyGyy / v�1. Note that this power law does not depend onthe precise form of P ; the only property of P that reallymatters is its second moment.The power law for Gyy is readily compared to the cor-responding result for a bead spring model. Here the gyra-tion tensor is de�ned asG = 12N2 * NXi=1 NXj=1(Ri �Rj)(Ri �Rj)T+ : (11)Due to symmetry we can use the transverse component ofthe gyration tensorG? = 12(Gyy +Gzz) (12)in place of Gyy which gives a better statistics when eval-uated from numerical data.The result for the Gaussian chain derived in appendixB.3 is G? = 12N2 �13 N3 + 23 N� b23 ; (13)which is independent of the ow velocity. Therefore weconclude that the blob model is not able to make predic-tions about the transverse extension of a Gaussian chainin ow.3 Chains of �nite extensibilityThe tethered Gaussian chain discussed in the previous sec-tion may be stretched by a ow unrealistically strong be-yond its equilibrium contour length. For this reason weinvestigate in this section more realistic polymer modelswhere the contour length is �xed or only slightly stretchedby a ow.A suitable model for numerical simulations is a beadspring chain with a nonlinear (FENE) spring potentialas given by Eq. (69) (see e.g. [87{89]). We calculate theunwinding of a tethered FENE chain in a uniform ow�eld both numerically and semi{analytically in a similarmanner as in the previous section for the Gaussian chain.

Fig. 5. End{to{end distance RE for a tethered FENE chainin the free{draining limit as a function of the ow velocity vfor di�erent chain lengths N = 50 (bottom), = 100 (middle),N = 300 (top). The symbols are data obtained from numericalsimulation while the solid lines are obtained from evaluationof the integrals in Eq. (77). The dashed line is the result forthe freely jointed chain for N = 300 as given by Eq. (64).The semi{analytical part, i.e. the derivation of the for-mula for the end{to{end distance, is described in detail inappendix D. We then compare the results for the FENEmodel to those for a freely jointed chain which prohibitsany stretching of the bonds at all. This model can alsobe treated analytically to some extent as described in ap-pendix C.The ow velocity dependence of the end{to{end dis-tance RE of a FENE chain is shown in Fig. 5 for di�er-ent chain lengths Nb where b = 0:961 (cf. appendix D).The solid lines are obtained by evaluating the integralsin Eq. (77) and the symbols are the results of numericalsimulations of a FENE chain with N = 100 beads.Three di�erent regimes can be recognized in Fig. 5.For very large velocities the end{to{end distance is stillgrowing slowly with some power law RE / v0:3. Thisnonzero but small exponent indicates a residual stretch-ing of FENE chains in very strong ow �elds. For com-parison the end{to{end distance of a freely jointed chainwith N = 300 beads is calculated according to Eq. (64)and shown by the dashed line in Fig. 5. Beyond v ' 0:1the freely jointed chain is almost completely uncoiled asindicated by the plateau of the dashed curve. Comparingthe upper solid line in Fig. 5 with this dashed line gives anestimate of the stretchability of the FENE chain which isonly noteworthy for v >� 0:1 at N = 300. Hence for smallerow velocities there is no signi�cant di�erence betweenthe FENE and the freely jointed chain. An examination
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Fig. 6. End{to{end distance RE for a tethered FENE chainin the free{draining limit as a function of the number of beadsN for di�erent ow velocities v = 0:0005 (bottom), v = 0:005(middle), v = 0:05 (top). The symbols are data obtained fromnumerical simulation while the solid lines are obtained fromevaluation of the integrals in Eq. (77). The dashed line is the re-sult for a freely jointed chain for v = 0:05 as given by Eq. (64).of the distribution of bond lengths at di�erent ow ve-locities shows that the onset of the residual stretchabilityis roughly inversely proportional to N . In an intermedi-ate velocity regime the end{to{end distance for the FENEchain behaves as RE / v0:84 for N = 300. The exponentincreases with N until it is expected to reach a �xed valueof 1 for very long chains which is the value obtained for thefreely jointed chain with N = 5000 in a tiny range of owvelocities (cf. Fig. 8). Finally for very small velocities thepolymer coil is almost undisturbed and the end{to{enddistance is close to its value in thermal equilibrium.TheN{dependence of the end{to{end distance is shownin Fig. 6 for di�erent ow velocities. At small velocitiesRE increases with N1=2 which is the same as the N{dependence at thermal equilibrium. Again the inuenceof the residual extensibility of the FENE chain can beassessed by comparing in Fig. 6 the solid line for v =0:05 with the dashed line, where the latter belongs to theend{to{end distance for the freely jointed chain given byEq. (64). Here even for the largest number of beads thedeviations are still very small indicating that at such ve-locities the FENE chain is stretched by a tiny amountonly.The segment density �(x) for a FENE chain with N =500 beads is shown in Fig. 7 and for three di�erent owvelocities v = 0:002, v = 0:005 and v = 0:01. The shape of�(x) is qualitatively similar to that for a Gaussian chain,(cf. Fig. 4), and this trumpet shaped distribution can

Fig. 7. Distribution �(x) of polymer segments along the ow(x{) direction as obtained from simulation of a chain with N =500 beads connected by FENE springs and for three di�erentow velocities v = 0:002 (left), v = 0:005 (middle) and v = 0:01(right). The solid lines are a �t of the curves with the formula�(x) / �(x0 � x)��. The values of the �t-parameters are � =0:37, x0 = 61:09, � = 16:05 for v = 0:002, � = 0:35, x0 =155:2, � = 9:87 for v = 0:005 and � = 0:28, x0 = 245:4, � =5:76 for v = 0:01. The x-ranges for the �t ([1.6,49.9],[1.6,147.9]and [142.5,140.5]) have been chosen such as to maximize thenumber of data points in agreement with the �t. In contrastto the Gaussian chain (cf. Fig. 4) the segment density is nowalways greater than one.again be �tted by an inverse power law � / �(x0 � x)��.The precise values of all �t parameters are given in thecaption of Fig. 7. For the exponent � one obtains valuesbetween � = 0:37 and � = 0:28. These exponents aresigni�cantly smaller than the value � = 0:5 obtained forthe Gaussian chain which is a consequence of the limitedstretchability of the chain segments.To investigate the validity of the scaling predictions ofthe blob model we show in Fig. 8 the x-coordinate of theend{to{end vector XE and the end{to{end distance REas functions of the ow velocity for freely jointed chainswith N = 500 and N = 5000 beads. This compares toFig. 3 for the Gaussian chain. Again the validity of theblob model may be expected only in the range where thecurves forXE and RE in Fig. 8 coincide. In contrast to theGaussian chain, here the scaling of the blob model, L / v,applies only in some small transition regime, roughly be-tween the two velocities vc1 � 6�10�5 and vc2 � 4�10�4for N = 5000. For N = 500 no scaling regime is visible inFig. 8. That there is now also an upper limit for the scal-ing regime is obvious since the �nite extensibility requiresthe extension to have a plateau at large velocities. The N{dependence of the size of the validity range of the trumpet



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 9

Fig. 8. Flow velocity dependence of the end{to{end distanceRE according to Eq. (64) (upper curves) and the x{coordinateof the end{to{end vector XE according to Eq. (62) (lowercurves) for freely jointed chains with N = 500 (dotted curves)and N = 5000 (dashed curves) beads. The axes are scaled suchthat curves with di�erent N collapse for su�ciently large v asexplained in the previous section. The agreement between thecurves for XE is so perfect that they can hardly be distin-guished.regime is given in Eq. (26) for the free{draining and inEq. (27) for the non{draining blob model (cf. Ref. [61]).This N{dependence is rather weak whence it is alreadyclear form these formulae that very long chains are neededto exhibit a clear scaling regime. According to the estimategiven above N = 5000 is barely su�cient since it givesonly a tiny scaling regime. Therefore, for non-stretchablechains of only up to N ' 3000 Kuhn segments like theDNA used in experiments [39,49,62] one can hardly ex-pect a trumpet regime for the polymer deformation evenin the free{draining limit. As we show in the next sectionsexcluded volume and hydrodynamic interactions requireeven longer chains to reach a scaling regime.Beyond the validity range of the trumpet regime a so{called stem and ower regime was suggested [61]. In thisregime the polymer is divided into two parts. The stemis the completely straightened part close to the �xed endwhere �(x) = 1 and the ower is the part close to the freeend where the usual trumpet scaling holds, i.e. �(x) /x�1=2.This scaling of the segment density is an additional,local measure for the validity of the blob model. To checkthe behavior in the long{chain limit for the freely jointedchain we have to rely on the quasi{segment density �0(x)(cf. appendix B and C) because there is no simple analyticresult for the true segment density. The quasi{segmentdensity has been shown to give the same scaling as the true

Fig. 9. Quasi{segment density �0(x) according to Eqs. (66){(67) for a freely jointed chain with N = 5000 beads and forow velocities v = 1� 10�4 (top) and v = 4� 10�4 (middle).The lower solid line gives the blob scaling �0 / (x0 � x)�1=2.The ordinate here is x0 � x instead of x which is di�erent inFig. 4 and Fig. 7.segment density for the Gaussian chain in the previoussection. We emphasize, however, that both quantities arenot equivalent.For a freely jointed chain with N = 5000 we indeed�nd a power law behavior �0 / (x0 � x)�1=2 as for theblob model in a small range of ow velocities around v =1� 10�4 as shown by the upper curve in Fig. 9. For bothsmaller and larger ow velocities there is a deviation fromthe scaling close to the free end which may be attributed toa break-down of the mean{�eld type approximation usedin the de�nition of �0 (cf. section 2). For larger ow veloc-ity (middle curve in Fig. 9) there is an additional deviationclose to the �xed end which indicates the development ofa stem.The estimate just made for the range of ow velocitieswhere the trumpet regime may be observed agrees withthat obtained from the analysis of the global chain exten-sion in Fig. 8. It also seems to indicate that the densitiesfor FENE chains withN = 500 shown in Fig. 7 correspondalready to the stem and ower regime. However, the �t-ted scaling exponents di�er strongly from the value of 1=2even when the �t range was restricted to some portion ofthe chain near the free end. In order to understand thiswe note that the appearance of the blob scaling for �0(x)depends crucially on a precise knowledge of the locationof the free chain end. This allows to make a logarithmicplot of �0(x) from which a local (x{dependent) exponentcan be read o� and to see for which x{positions it has avalue of 1=2. For the true segment density �(x), however,
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Fig. 10. Flow velocity (v{) dependence of the transverse com-ponent of the gyration tensor G? for a FENE chain (triangles)and a freely jointed chain (dashed line) with N = 100 beads.The data for the FENE chain are calculated from numericalsimulations; the curve for the freely jointed chain is obtainedby evaluating the sum in Eq. (65).the location of the free chain end is not even well-de�nedand one has to use a �t procedure with a prescribed rangeof x{positions to obtain a single global exponent. Fittingthe data for the quasi{segment density in a manner sim-ilar to those for the true segment density in Fig. 7 withan additional �t parameter x0, one �nds that the largestportion of the chain (located close to the �xed end andthus heavily squeezed in Fig. 9) is well �tted with expo-nents similar to those obtained for the true segment den-sity for all ow velocities. The di�erence in these �ttedvalues is already negligible for chains with N = 500 beadsindicating that the asymptotic regime is reached even forN = 500. We conclude that the segment density is maybenot a good observable to discriminate between the trum-pet and the stem and ower regime because uctuationstend to smear out the di�erent scaling � / x� in the stem(� = 0) and in the ower (� = 1=2). In addition at smallow velocities the exponent � is reduced gradually as theblob model ceases to be valid which was observed alreadyfor the Gaussian chain.In Fig. 10 we compare the transverse component ofthe gyration tensor G? as de�ned in Eq. (12) for a FENEand a freely jointed chain with N = 100 beads. At smallow velocities the values of G? for both models agreewith each other and also with the value for a Gaussianchain which is G? = 5:13 for N = 100 and b = 0:961(cf. Eq. (44)). At large ow velocities G? obeys a powerlaw for both models. The exponent, however, is di�erentin both cases. For the FENE chain G? / v�0:8 while

for the freely jointed chain G? / v�0:95. The transverseextension seems to be far more sensitive to the residualstretchability of the FENE springs than the elongationof the chain in the ow direction. Appreciable di�erencesbetween the FENE and the freely jointed chain are alreadypresent at a ow velocity of v = 0:02 for G? while thevalues of RE for both models agree with each other up tov = 0:3 for N = 100.A power law behavior for the transverse extension isalso predicted by the blob model when Gyy is calculatedfrom � (x) as discussed in the previous section (cf. Eq. (10)).The predicted value of �1 for the exponent is in goodagreement with the value obtained for the freely jointedchain. However, the range where the scaling regime for G?appears is at larger ow velocities than the range of thescaling regime for RE . Extrapolating the estimate drawnfrom Fig. 8 the scaling range for RE extends only up tov0:02 forN = 100 while the scaling range forG? in Fig. 10begins only at v ' 0:1. Therefore some doubt remains asto whether the blob model faithfully describes the trans-verse extension of a freely jointed chain. Anticipating someresults from section 5 we �nd that for the bead springmodel the scaling exponent for G? does not depend onwhether hydrodynamic interactions are included in themodel or not. The non{draining blob model, however, pre-dicts Gyy / v�1=� which is di�erent from the predictionGyy / v�1 for the free{draining case discussed above andin section 2.4 Excluded volume e�ectsFor strongly elongated polymers the excluded volume in-teraction (EVI) can be neglected and the assumptionsmade in the previous two sections are justi�ed. EVI onlybecomes important for smaller values of the ow velocity,where the equilibrium conformation is only moderatelydistorted. Only in this regime scaling exponents can be ex-pected which are typical for EVI. Within the blob modelthe e�ects of EVI are easily covered by choosing the ex-ponent of the Flory scaling � = 3=5 instead of � = 1=2 inEq. (15). For the bead spring model with EVI one has torely on numerical simulation since semi{analytical meth-ods as used in the previous two sections are not tractable.In Fig. 11 the end{to{end distance RE is plotted forchains with N = 100 beads connected either by harmonicsprings or by FENE springs and both with and withoutEVI. For large ow velocities corresponding to strong de-formations the EVI becomes less important and thereforethe curves with and without EVI approach each other forthe Gaussian as well as for the FENE chains. With de-creasing ow velocity in contrast, the di�erences betweenchains with and without EVI increase and for vanishingow velocity RE approaches its equilibrium value which islarger with EVI [2,31,32]. In thermal equilibrium, i.e. atv = 0, the end{to{end distance is basically the same forboth the Gaussian and the FENE chains.For the Gaussian chain at intermediate ow velocities,and therefore at medium deformations, the extension of
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Fig. 11. End{to{end distance RE as a function of the owvelocity for Gaussian (open symbols) and FENE (solid sym-bols) chains with N = 100 beads. The squares give data withexcluded volume interactions (EVI) taken into account, thetriangles give data without excluded volume interactions. Thesolid lines with slopes 0:5 and 1:0 correspond to the scalingexponents extracted from the data for the Gaussian chain. Forvanishing ow velocity (thermal equilibrium) the curves for theFENE and Gaussian chains approach each other as expectedin both cases with and without EVI. The small di�erences inthe case with EVI are due to the slightly di�erent e�ectivebond lengths (cf. appendix E): for the Gaussian chain we haveb = 1:0 without EVI and b = 1:37 with EVI while for theFENE chain b = 0:961 both with and without EVI.polymer chains with and without EVI has a di�erent scal-ing with velocity. In the uppermost curve of Fig. 11 weobserve a scaling for the end{to{end distance RE / v0:5.Increasing N to 200 does not change the exponent by anysigni�cant amount (cf. Fig. 12). Between v = 0:05 andv = 0:1 there is a crossover to the scaling RE / v which isthe same power law as for a Gaussian chain without EVIconsidered in section 2. This crossover takes place at aow velocity where the extension of the polymer approxi-mately equals the contour length of the polymer in ther-mal equilibrium. The scaling in the intermediate range,RE / v0:5, must be compared with the scaling of theextension L / v2=3 for a blob model with EVI in the free{draining limit as described in appendix A.In Fig. 12 the RE(v) curves are compared for two chainlengths N = 100 and 200. As explained in section 2 thecurves for di�erent N are expected to collapse for su�-ciently large v when the fractional extension RE=(Nb) isplotted versus the total drag force which is N�v since thechain is free{draining. The two curves in Fig. 12 indeedagree so perfectly that we consider it as signi�cant even

Fig. 12. Normalized end{to{end distance RE=(Nb) for chainsof di�erent lengths Nb (small and large squares) as a functionof the total drag force exerted on the chain. The model assumesharmonic springs and only the excluded volume interaction(EVI) is taken into account. The numbers of beads for thetwo cases were N = 100 and N = 200 while the e�ective bondlength is b = 1:37 for the Gaussian chain with EVI as explainedin appendix E. The total drag force is just vN� in the free{draining case considered here.though the values of N we considered di�er only by afactor of two.For the exponent � for the segment density � / (x0 �x)�� as calculated from numerical simulations of a chainwith harmonic springs and EVI we �nd values between 0:3and 0:4 in the intermediate velocity range v = 0:005 : : : 0:05.For the blob model with � = 3=5 one has � = 2=5 as de-scribed in appendix A. These values are quite di�erentfrom � = 0:5 for the case without EVI (cf. section 2).In contrast to the good agreement between the scalinglaws for the blob model and the Gaussian chain withoutEVI found in section 2, the agreement is less perfect whenEVI is included. A possible explanation is simply that ourchains even with N = 200 are too short. However, thereis a more serious inherent problem in the blob model withEVI. Blob models can only be applied beyond some crit-ical velocity where the polymer is su�ciently deformed.Then the deformation is stronger close to the tether pointthan near the free end. Therefore the EVI is less importantnear the tether{point than near the free end, i.e. the EVIbecomes e�ectively x{dependent. But in the blob modelone and the same exponent � characteristic for EVI is as-sumed in each blob independent of its location close tothe free or close to the tethered chain end. Therefore onecan hardly expect a precise agreement between the scal-ing predicted by blob models with EVI and bead springchains with EVI. Whether the position dependence of the
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Fig. 13. Tension along the chain as a function of the bondindex N � j counted from the free chain end for di�erent val-ues of the ow velocity v = 0:1; 0:2; 0:5; 1:0; 2:0 from bottomto top. The data have been obtained from numerical simula-tions of a chain with N = 100 beads connected by harmonicsprings including the excluded volume interaction (EVI). Forthe largest velocity (uppermost curve) the tension is propor-tional to the bond index indicating that EVI is unimportantfor the uncoiled polymer.EVI becomes unimportant in some velocity range for verylong chains is unclear and it is not possible to attack thisquestion seriously with present day computers.The inhomogeneity of the EVI along the chain canclearly be seen directly from the tension within di�erentparts of the chain. In Fig. 13 the tension TN�j is shownas a function of the bond index N � j for several val-ues of the ow velocity v. Without EVI the tension in-creases linearly from the free (N � j = 1) towards the�xed (N � j = N) chain end because the same drag forceis exerted on each bead. This is the case for the largestvelocity (uppermost curve) in Fig. 13 indicating that asexpected EVI doesn't play a role anymore at large v whenthe polymer is strongly elongated. At smaller ow veloci-ties the EVI, which couples even beads that are far apartalong the chain, provides a mechanism to redistribute ten-sion within the chain. As a consequence the tension withinthe �rst spring at the free chain end is larger than �v whichcan clearly be seen in Fig. 13. Furthermore the slope ofthe TN�j curve is reduced below 1 near the free chainend, e.g. to � 0:77 for v = 0:1. Near the �xed chain endwhere the chain is stretched stronger the EVI is alreadyunimportant and TN�j increases linearly with N � j. Al-together the tension within the very last spring near the�xed chain end again contains the total tension N�v ex-pected in the free{draining limit. In the coiled portion ofthe chain where EVI is important contains only 10 { 20

% of all beads at the smallest value of v shown in Fig. 13but its trend to grow with decreasing ow velocity can beexpected to continue also at smaller v where the statisticalerrors in the data become large.For the FENE chain we cannot expect a scaling regimefor N = 100 beads even without EVI as discussed in theprevious section. As shown in Fig. 8 only for N = 5000there is a small transition regime where the scaling pre-dicted by the blob model applies for a freely jointed chain.With EVI there is the additional complication that atequilibrium the end{to{end distance with EVI is largerthan without EVI but the deformation for large ow ve-locities is the same in both cases. Therefore the di�erencebetween the end{to{end distance at equilibrium and in thefully stretched state is smaller with than without EVI. andthe slope of the RE(v) curves becomes smaller than with-out EVI. Thus it is expected that even longer chains arenecessary to exhibit the blob scaling in the case with EVIif this is possible at all.The discussion of the transverse extension of the poly-mer will be continued in the next section where we inves-tigate the inuence of both EVI and hydrodynamic inter-action for a FENE chain.5 Hydrodynamic InteractionThroughout the previous three sections we have focusedon polymer models where the hydrodynamic interaction(HI) between the beads has been neglected. The HI ismore involved than the other interactions considered inthis work and crucial for an understanding of the defor-mation of polymers in ow [19,20]. Furthermore it makesthe coupling between polymers and solvent two{ways be-cause it induces a perturbation of the imposed ow �elddue to the motion of the polymer. In this section we con-sider both Gaussian and FENE chains but we always takeinto account the EVI discussed in the previous section.For both models we then compare results without andwith HI. In previous publications HI e�ects for tetheredpolymers have been considered either for blob models [59,61] or for bead spring models but in the latter case onlywith averaged HI and discarding the EVI [62].Fig. 14 shows the end{to{end distance as obtainedfrom simulations of a bead spring chain with N = 100 har-monic springs. The upper curve is the same as the uppercurve in Fig. 11 while the lower curve has been calculatedwith the HI between the segments taken into account aswell.The two curves are expected to approach each otherboth for vanishing and for very large ow velocities. Atv = 0 both curves must coalesce because the HI changeonly the kinetic coe�cient in the equation of motion andthus do not a�ect the static properties of polymers in ther-mal equilibrium [2,32]. For large velocities the polymerbecomes uncoiled. Therefore the mean distance betweenbeads that are far apart along the chain increases andthe e�ects of HI are reduced. In addition each harmonicspring of the Gaussian chain is strongly stretched { ap-proximately by a factor of 10 at v = 1:0 { and the dis-
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Fig. 14. End{to{end distance RE as a function of the owvelocity v obtained from numerical simulations of a chain withN = 100 beads connected by harmonic springs with (lowercurve) and without (upper curve) hydrodynamic interactions.In both cases the excluded volume interaction has been takeninto account. The curve for the case without HI agrees withthe uppermost curve in Fig. 11.tance between neighboring beads in the chain increases,too. This e�ect reduces the HI further so that in the limitof very large ow velocities all beads are far apart fromeach other and the HI becomes completely negligible. Inother words for large velocities the model with HI ap-proaches the free{draining limit.Between the limits of vanishing and very large owvelocities the elongation of the polymer is smaller withthan without HI. In the velocity range 0:01 < v < 0:2 (forN = 100) the end{to{end distance for the model withHI (lower curve in Fig. 14) has the same scaling as inthe free{draining limit (upper curve). For larger velocitiesthe slope of the curve with HI has to become larger thanthat without HI to approach the curve without HI in thelimit of very large velocities. But even its maximum slopearound v ' 0:2 corresponding to a power law RE / v1:5is still considerably smaller than the exponent of 2 as pre-dicted by the blob model with HI and EVI [59]. For achain with N = 200 the maximum slope does not increasesigni�cantly (cf. Fig. 17 and Ref. [70]).In order to understand this deviation it is illuminatingto �rst discuss another aspect of HI. Fig. 15 shows thevelocity dependence of the drag force exerted on the wholepolymer chain which can be measured by the tension inthe �rst spring. In the free{draining limit the total dragforce is just the sum of the Stokes forces acting on eachbead which are all proportional to the ow velocity v.Therefore the tension in the �rst spring grows linearlywith the ow velocity as shown by the upper curve of

Fig. 15. Total drag force exerted on the polymer by the ex-ternal ow, measured by the tension in the �rst spring T0, asa function of the ow velocity v. The data have been obtainedfrom numerical simulations of a chain with N = 100 beadsconnected by harmonic springs with (lower curve) and with-out (upper curve) hydrodynamic interactions. In both casesthe excluded volume interaction has been taken into account.The upper curve is a linear function T0 / v.Fig. 15. For a polymer with HI the total drag force T0(v)depends on the shape of the polymer and is therefore anonlinear function of v as shown by the lower curve inFig. 15. The quotient T0=v de�nes a drag coe�cient forthe chain as a whole. In the free{draining case we simplyhave T0=v = N� while with HI the drag coe�cient T0=vis no longer independent of v.It is noteworthy that the drag force for the model withHI is always smaller than that in the free{draining case.This can be understood qualitatively as a consequence ofthe so-called non{draining e�ect, i.e. the screening of theow �eld inside the polymer coil. As a result only thebeads on the "surface" of the coil experience a Stokes drag.Since this is only a fraction of all beads the total drag forceon the polymer is reduced compared to the free{drainingcase. With increasing ow velocity the polymer becomesmore and more unwound which means that more beadsare exposed to the ow. Alternatively we may say that thedensity of polymer segments is reduced which also reducesthe strength of the HI or the screening of the ow �eldrespectively. This weakening of the HI begins to becomeimportant at the ow velocity where the curves with andwithout HI in Fig. 14 cease to be approximately parallel,i.e. at v ' 0:2 for N = 100. It occurs �rst at the �xedchain end where the stretching of the chain is strongest.Then it increases and spreads out towards the free chainend. Since for a chain with harmonic springs the meandistance even between neighboring beads increases the HI
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Fig. 16. Tension within the chain as a function of the bondindex N�j counted from the free chain end for di�erent valuesof the ow velocity v = 0:2; 0:5; 1:0; 2:0; 5:0 from bottom totop. The data have been obtained from numerical simulationsof a chain with N = 100 beads connected by harmonic springswith excluded volume and hydrodynamic interactions. For thelargest velocity (uppermost curve) the tension is almost pro-portional to the bond index indicating that only the harmonicspring forces are e�ective.between them �nally becomes negligible as explained inthe discussion of the chain elongation. Therefore also thedrag forces with and without HI converge for large owvelocities.The scaling behavior predicted for the total drag forceby the blob model with EVI and HI is T0 / v3 according tothe formulae given in Ref. [59]. Simulation data for a beadspring model with N = 100 shown in Fig. 15 give a maxi-mum slope of 1:5 for the T0(v) curve around v ' 0:2. Thisexponent increases slightly to t0 / v1:6 for N = 200 (cf.Ref. [70]). It is very unlikely that the large discrepanciesbetween both models with respect to the total drag forceT0 are solely due to �nite size e�ects. We suspect that theconditions assumed in the blob model are not ful�lled forthe bead spring chain with HI. The blob model assumesimpenetrable blobs all along the string of blobs [59]. How-ever, according to our simulations it is more likely thatthe polymer is neither free{draining nor non{draining asassumed previously but that a partial draining occurs in-stead as shown by directly calculating the perturbed ve-locity �eld in Ref. [70]. Furthermore similarly to the EVIalso the strength of HI varies along the chain. This spatialvariation of both e�ects is not represented in the free{ andnon{draining blob models (cf. appendix A and [59]). Thevariation of the e�ective HI may be taken into accountqualitatively by a modi�cation of the blob model that in-

terpolates between both limits as described in Refs. [70,90].A clue to the inhomogeneous e�ects of HI is given bythe local tension along the polymer. In Fig. 16 we showthe tension TN�j in bond N � j for di�erent ow veloci-ties for a chain with N = 100 beads. In the free{drainingcase without EVI TN�j is a linear function of j becauseeach bead experiences the same drag force �v and theforces on all beads starting from the free chain end addup to the tension in the j{th bond. Therefore a powerlaw TN�j / N � j in the curves in Fig. 16 indicates thatthe corresponding part of the chain is free{draining. Forv = 5:0 (uppermost curve in Fig. 16) this is roughly thecase for the whole chain. For smaller ow velocities thetension increases with a slope larger than 1 close to the�xed end where the polymer becomes more and more un-coiled. Because of the uncoiling the HI becomes weakerand the e�ective drag on each bead increases when the�xed end is approached resulting in an increase of thetension with a slope larger than one. Near the free endthe slope of the TN�j curves is reduced due to EVI e�ectsas discussed in section 4 but the actual value of the slope,0:63 for v = 0:02 (lowest curve in Fig. 16), is now modi�edby HI.In order to compare chains of di�erent lengths Nb weplot the fractional extension versus the total drag force T0in Fig. 17. In the free{draining limit considered in the pre-vious sections the total drag force was simply proportionalto the ow velocity v. When HI is included the drag forcedepends on the polymer conformation. As Fig. 15 shows itdoes not obey a simple power law dependence on v. Usingthe numerical data for T0 we again �nd that the curvesfor di�erent N collapse on a single master curve as shownin Fig. 17. Note that the range of drag forces in Fig. 17does not extend to values as small as in Fig. 12 and Fig. 8because data for T0 corresponding to smaller ow veloc-ities have a rather large statistical error. Therefore thenear{equilibrium regime where the curves fall apart is notvisible in Fig. 17.Finally we turn to the transverse extension of the Gaus-sian chain with EVI and HI. At the same ow velocitypolymers with HI are less elongated in ow direction thanfree{draining polymers (cf. Fig. 14). Assuming that thebead spring chain occupies roughly the same volume withand without HI one may expect that the extension of apolymer perpendicular to the ow direction is larger for achain with HI than without. The mean transverse compo-nent of the gyration tensor de�ned in Eq. (12) is a reason-able measure to test this conjecture. In Fig. 18 we showthese data calculated from simulations of a Gaussian chainwith EVI and both with and without HI. A large part ofthe curves at small to medium ow velocities con�rms thisexpectation. However, the regime at large velocities wherethe chain with HI is contracted transversely compared tothat without HI shows that the e�ects of HI are not al-ways obvious. Hence situations where HI is potentiallyimportant should be considered with care. At very largeow velocities both curves converge towards the value for
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Fig. 17. Normalized end{to{end distance RE=(Nb) for chainsof di�erent lengths N = 50; 100; 200 (small, medium and largediamonds) as functions of the total drag force acting on thechain. The model considered here assumes harmonic springsand both excluded volume and hydrodynamic interactions aretaken into account. Because of the presence of the excludedvolume interactions the e�ective bond length is b = 1:37 (cf.appendix E). The total drag force is measured by the tension inthe �rst spring (cf. Fig. 15). In the free{draining case the totaldrag force is just N times the single bead friction coe�cient�, while in the case with HI considered here it is not knownanalytically. The relation between T0 and v is shown in Fig. 15for N = 100.the Gaussian chain which is G? = 5:56 independent of vaccording to Eq. (13).The ow velocity dependence of the end{to{end dis-tance for a FENE chain with EVI and a FENE chain withboth EVI and HI is compared in Fig. 19. As in the case ofharmonic springs the elongation of the chain is shifted to-wards larger ow velocities when HI is included. Becauseof the limited attainable chain lengths we do not expect toobserve a power law behavior at moderate ow velocities.Both curves do not end in a plateau with RE = Nb = 100at large ow velocities but continue to grow accordingto a power law with some small exponent because of theresidual stretchability of the FENE springs discussed insection 3.As far as the drag force is concerned chains with �-nite extensibility show a major di�erence compared to theGaussian chain when HI is included. For a Gaussian chainthe HI between the beads is reduced with increasing owvelocity for two reasons: Unwinding of the chain increasesthe distance between beads that are far apart along thechain and stretching of each spring also increases the dis-tance between neighboring beads as discussed before. Fora freely jointed chain the segment length is �xed and the

Fig. 18. Transverse component of the gyration tensor G? asa function of the ow velocity v for a chain with N = 100beads connected by linear springs with (diamonds) and with-out (squares) hydrodynamic interactions. Excluded volume in-teractions are taken into account in both cases. For a Gaussianchain with N = 100 beads is G? = 5:56 independent of theow velocity, cf. Eq. (13).

Fig. 19. End{to{end distance RE as a function of the ow ve-locity v obtained from numerical simulations of a FENE chainwith N = 100 beads with (lower curve) and without (uppercurve) hydrodynamic interactions. In both cases the excludedvolume interaction has been taken into account.
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Fig. 20. Transverse component of the gyration tensor G? fora chain with N = 100 beads connected by FENE springs asa function of the ow velocity v without further e�ects (tri-angles), with excluded volume interactions only (squares) andwith both excluded volume and hydrodynamic interactions (di-amonds).second mechanism is absent. Therefore neighboring beadsstay rather close at any ow velocity and hence the e�ectsof HI between neighboring beads are present even in thefully uncoiled state where the chain resembles a straightline. For this model the curves for the tension T0(v) inthe free{draining limit and with HI become parallel butthey never merge. Therefore the variation of the total dragforce with the ow velocity that one can expect for thefreely jointed chain is smaller than that for the chain withharmonic springs. For FENE chains this behavior may beslightly softened due to the residual extensibility of theFENE springs.The comparison of the results for the total drag forceobtained from simulation of a FENE chain with EVI onlyand with both EVI and HI showed that at small ow ve-locities, i.e. v = 0:1 for N = 100, HI reduces the drag byan amount which is twice as large as for the chain withharmonic springs. However, in contrast to the chain withharmonic springs (cf. Fig. 15) this di�erence remained con-stant over the whole range of ow velocities considered.Probably much longer chains than N = 100 are needed toexhibit that variation in the drag force which is solely dueto the unwinding of the polymer.The values of the transverse component of the gyrationtensor G? for the FENE chain with only EVI and withboth EVI and HI are shown by the two upper curves ofFig. 20. In contrast to the chain with harmonic springsG? is now larger with HI than without for all values ofthe ow velocity. Comparing these two cases to the case

with neither EVI nor HI (lower curve in Fig. 20) we �nd apower law behavior with the same exponent G? / v�0:8in all three cases when the ow velocity v is large enough.In comparison to the predictions of the blob model we�nd agreement in so far as the exponent is independentof the EVI when HI are neglected. The di�erent value ofG? / v�1 for the blob model may be ascribed to theresidual stretchability of the FENE chain as discussed insection 3. However, the blob model predicts a behavior asv�1=� in the non{draining case while the simulation datagive a value which is still independent of the presence ofEVI even when HI are included, too. This con�rms thedoubts already expressed in section 3 about the validityof the blob model as far as the transverse extension of thepolymer is concerned.6 Discussion and conclusionsWe have investigated bead spring models and blob modelsfor a single polymer which is �xed at one end and exposedto a uniform ow. The bead spring model is a standardmodel for the investigation of the long-time dynamics ofpolymers, while the blob model is a more coarse grainedmodel which is appealing because of its simplicity. Bothtypes of models are analyzed for di�erent interactions be-tween the polymer segments. Their scaling properties arecompared to each other and to recent experiments on thesame problem.For the simplest case of the bead spring model thebeads are connected by either linear or nonlinear springs{ where the latter restrict the extensibility of the chain {and all other e�ects are neglected. This model is gradu-ally completed by taking into account further e�ects suchas the excluded volume interaction (EVI) and �nally thehydrodynamic interaction (HI). The HI results in a per-turbation of the external ow which modi�es the dragexperienced by the individual beads relative to the free{draining case where each bead experiences the same Stokesdrag caused directly by the unperturbed external ow. Forthe simpler cases without EVI and HI analytical resultshave been obtained which allow to draw conclusions aboutarbitrarily long chains. Furthermore they provide a test ofthe numerical simulations which are the only possibility totreat the more complicated cases.Since the predictions of the blob model are scaling lawsthey are expected to hold only for very long chains. Pre-vious blob models for a tethered polymer in uniform owhave considered only the non{draining limit [59], attempt-ing to model a situation with strong HI. The possiblechain length in simulations of bead spring models, how-ever is most severely restricted by the HI. In order to makea comparison between scaling predictions of blob modelsand simulations of bead spring chains we have thereforederived a blob model for a free{draining polymer in ap-pendix A. The scaling laws for this model are rather di�er-ent from those for the non{draining blob model as shownin table 1 which summarizes the results for the variousblob models together with the analytical results for theGaussian chain.



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 17model L, RE �(~x) � (~x)Gaussian v N2 ~x� 12Blob (fd) � = 12 v N2 ~x� 12 ~x� 12Blob (fd) � = 35 v 23N 53 ~x� 25 ~x� 35Blob (nd) � = 12 exp�vN�b2kBT � =pv ~x�1 ~x�1Blob (nd) � = 35 v2N3 ~x� 23 ~x�1Table 1. Scaling relations for various quantities describingthe extension and shape of a tethered polymer in a uniformow �eld. L, �(~x) and � (~x) are extension and segment densityin the ow direction and the envelope perpendicular to theow direction where ~x measures the distance from the freeend of the polymer. These quantities are calculated for thefree{draining (fd) blob model in appendix A and for the non{draining (nd) blob model in Ref. [59]. The end{to{end distanceRE and the segment density �(~x) for the Gaussian chain arecalculated in appendix B.In thermal equilibrium the scaling relation between theend{to{end distance and the number of Kuhn segments,RE / N� with � = 1=2 or 3=5, is independent of theforce law of the springs connecting consecutive segments.If the chain is exposed to a ow �eld, however, the end{to{end distance at a certain ow velocity are rather di�erentfor Gaussian chains and chains with �nite extensibility.The reason is that the harmonic springs of a Gaussianchain are strongly stretched (cf. section 2 and appendix B)while for a FENE chain there is only a weak stretching ofindividual springs at very large ow velocities as discussedin section 3 and for the freely jointed chain there is nostretching at all. Since the blob model is based on theequilibrium scaling (cf. appendix A) it does not distinguishbetween these cases. The use of a �xed bond length b inall blobs suggests, however, that it is more in the spirit ofthe model to compare it to a freely jointed chain. In fact,real polymers are best modelled as freely jointed chainsfor a wide range of parameters since the chemical bondspossess a de�nite length. This is also the case for DNA [91,92]. However, even though the Gaussian chain is not a veryrealistic model for polymers in external �elds, due to itssimplicity, it nevertheless provides a convenient test casefor the blob model which formally uses the same premises.The analytical scaling laws for blob models as sum-marized in table 1 are obtained by an approximate solu-tion (cf. appendix A) of the model equations. An exactnumerical solution of the latter reveals a behavior of thepolymer extension which is more complex than a simplepower law as shown in Fig. 22 for the free{draining blobmodel. Only for very long chains does the scaling of thepolymer extension L(v) come close to a power law in asmall velocity range. For the non{draining blob model thedeviations between the power law derived from the ana-lytical approximation and the behavior obtained from theexact numerical solution are even larger [90]. Accordinglya perfect power law behavior of the end{to{end distanceRE(v) for beads spring models may not be expected ingeneral.

In section 2 we compared the Gaussian chain, i.e. abead spring chain with harmonic springs and no otherinteractions between the beads, to the free{draining blobmodel without EVI, i.e. with Flory exponent � = 1=2. Asshown in Fig. 3 there is perfect agreement between thescaling of the end{to{end distance for the bead spring{model and the in-ow extension as calculated for the free{draining blob model, L � RE / v, when the ow velocityis larger than some threshold which marks the onset ofthe so-called trumpet regime [61]. Also the power law forthe segment density � / (x0 � x)�1=2 predicted by theblob model is in good agreement with results for the beadspring model (cf. Fig. 4). However, in the case of harmonicsprings there is no upper limit for the validity range ofthe trumpet regime because the elongation of the chain iscaused by a stretching of the individual bonds which cangrow without bounds.For the freely jointed chain in contrast any stretchingof individual bonds is forbidden and the mechanism bywhich the elongation occurs is solely an unwinding of thechain. It was veri�ed in section 3 that the freely jointedchain is well approximated by a FENE chain providedthe ow velocity is not extraordinarily large. The depen-dence of RE on the ow velocity v is not a simple powerlaw for these models. A certain scaling regime exists butit is con�ned to a small range of ow velocities and theexponent of the blob model is approached only for verylong chains (N >� 5000) as shown in Fig. 8. The segmentdensity turned out to be a bad discriminator between thetrumpet and the stem and ower regimes.EVI reduces the slope of the RE(v) curves. In sec-tion 4 (cf. Fig. 11) we found a slope of 0:5 for the beadspring model with harmonic springs at medium values ofthe ow velocity, where EVI are expected to be impor-tant. At larger ow velocities the EVI becomes unimpor-tant and a crossover to a slope of 1:0 characteristic of thecase without EVI occurs. The slope of 2=3 predicted by thefree{draining blob model with the Flory exponent � = 3=5characteristic for EVI is somewhat larger than that ob-tained in the simulations. One reason for this discrepancymight be that the chains with N � 200 used in our sim-ulations are too short. However, for the Gaussian chaingood agreement was obtained in the case without EVI fora chain length of only N = 100. A probably more impor-tant cause of the discrepancy between the blob and beadspring models with EVI is a fundamental de�ciency of theblob model in this case. Because the polymer is stretchedstronger close to the tether point than near the free endfor the bead spring model and also for real polymers thee�ects of EVI are not homogeneous over the whole chain(cf. Fig. 13). In the blob model, however, EVI enters onlyvia the Flory exponent � = 3=5 which is the same in allblobs.Finally in section 5 the e�ects of HI between the beadsare taken into account in addition to the EVI. The HIshifts the elongation of the polymer to larger ow veloc-ities as indicated in Fig. 14 and Fig. 19. In other wordsthe drag force for a given velocity of the uniform ow issmaller in the case with HI between polymer segments



18 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owthan without (cf. Fig. 15). For moderate ow velocitiesv the slopes of the RE(v) curves with and without HIin Fig. 14 agree in the case with harmonic springs whichmeans that the deformation is dominated by EVI for themodel parameters as given in Appendix E. For very largeow velocities in the case with harmonic springs all beadsare separated due to the stretching of the chain and theHI become completely negligible. For a FENE chain incontrast the springs are at most slightly stretched andtherefore HI between next{nearest neighbors remains un-changed when the ow velocity is increased. Therefore thedrag force obtained for a free{draining chain is not ap-proached in this case.In both cases, with harmonic or FENE springs, thereis an intermediate velocity regime where the slope of theRE(v) curves is larger with HI than without. However, thisslope is always smaller than predicted for blob models withimpenetrable blobs [59]. This has two reasons. Similar asthe EVI also the e�ects of the HI depend on the local shapeof the polymer. The crossover to free{draining behavioroccurs already at smaller v near the tether point where thepolymer is more unwound than close to the free end whereit is still coiled up. This spatial dependence of HI e�ectsis not taken into account in blob models. A second reasonfor the disagreement is discovered when the perturbationof the ow �eld caused by the polymer is calculated. Fromthe perturbed ow �eld it can be seen that ow partiallypenetrates the polymer in contrast to the assumption ofimpenetrable blobs in the blob model [70].These e�ects can be taken into account within a blobmodel as described in [70,90], where the so-called F-shellblob model has been introduced. For the F-shell blob modeleach blob consists of a free{draining outer shell (F-shell)and an impenetrable inner core. The thickness of the F-shell is assumed constant for all blobs but relative to theblob size it is deeper for the small ones which eventu-ally become completely free{draining. This model there-fore describes the transition between a nearly impenetra-ble polymer coil at small ow velocities and an almostfree{draining stretched polymer at large ow velocities asobserved in the numerical simulations presented in thiswork. The exponents predicted by the F-shell blob modelare in good agreement with those obtained from the nu-merical simulations. The predictions of the blob modelwith impenetrable blobs may be considered as upper lim-its for the true ones.In recent experiments with DNA the chains containedup to N = 1600 [39] and N = 3000 [62] Kuhn segments.As we have shown such chains are still too short to ex-pect a scaling behavior as predicted by the blob modelin the free{draining case and even less in reality when HIare important. Furthermore the analytic scaling relationfor the polymer extension L is obtained by an approx-imate solution to the blob model which approaches theexact numerical solution only close to vc2, the upper limitof the scaling regime, even for long chains (cf. Fig. 22).But in this velocity regime the polymer is already con-siderably elongated and it has been shown that at largeelongations the semi-exibility leads to a signi�cant devi-

Fig. 21. Normalized end{to{end distance RE=(Nb) for chainsof di�erent lengths N = 50; 100; 200 as function of the reducedow velocity vN3=5b. The model considered here assumes har-monic springs and both excluded volume and hydrodynamicinteractions are taken into account. Because of the presence ofthe excluded volume interactions the e�ective bond length isb = 1:37 (cf. appendix E).ation from the behavior of a freely jointed chain [93,57].Since this interaction is not included in the blob modelthe predicted scaling laws are of limited use for the quan-titative understanding of the experiments on DNA. Foruse in a micro{rheological theory of polymers where onlyqualitative e�ects are important in a �rst step, the e�ectof semi-exibility may be neglected and the blob modelmay be employed to obtain useful estimates.The measured polymer elongation RE(v) [62] has asimilar shape as shown in Fig. 19. For �tting this curvea half{dumbbell model has been used [62] with a phe-nomenological spring{force that was found to be in fairlygood agreement with experiments on DNA molecules whichare pulled at both ends [56,57,93] . With such a model onemight �t the measured data but it gives only limited in-sight about the di�erent mechanisms at work. For instancea model with only one bead and one spring cannot givemuch insight about the increasing penetration of ow intothe polymer or about the spatial variation of the e�ectsof EVI and HI along a deformed polymer.A main focus of the experimental work [39,62] was todetermine the extent to which HI is important dependingon the ow velocity v. The criterion on which the judge-ment was based was the deviation from the data collapsewhich is expected for the free{draining limit when thefractional extension RE=(Nb) is plotted versus the totaldrag force N�v for di�erent chain lengths Nb (cf. Eq. (4)).In Fig. ?? of Ref. [39] it was found that a data collapse



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 19occurs when RE=(Nb) is plotted versus vN� b. This �nd-ing was explained by the non{draining picture, i.e. theidea that strong HI makes the polymer coil behave likea solid object. This picture suggests that up to a loga-rithmic correction [94] the total drag force should scaleas the largest linear extension of the coil. Instead of thetrue elongation RE(v;N) the equilibrium extension of thecoil RE(0; N) / N� b has been used in Ref. [39] to ap-proximate the total drag force. A similar plot is shownin Fig. 21 where the fractional chain extension is plottedover v(N3=5 b). The curves do approximately superimposein the reduced velocity regime vN3=5 b = 0:5 : : : 3:0. Thiscorresponds to v ' 0:03 : : : 0:2 for N = 100, i.e. therange in Fig. 14 where the curves with and without HIare approximately parallel. This is quite surprising sincethe chain is already signi�cantly stretched in this veloc-ity range and RE(0; N) is a quite bad approximation tothe true linear dimension of the coil. In fact, our resultsin Fig. 17 show that when the true drag force is usedthe curves collapse over the whole range of ow veloci-ties larger than some threshold. To explain the behaviorobserved in Fig. 21 there must be a compensating e�ectwhich just cancels the underestimation of the linear ex-tension of the coil implied by the use of the equilibriumscaling for RE . This maybe the neglect of the logarithmiccorrection which accounts for the ellipsoidal shape of thedeformed polymer coil similar as the argument in [62].The purpose of this work was an analysis of how thedi�erent interactions, the type of spring law, EVI, andHI play together at various stages of the polymer defor-mation. Here we have chosen for this purpose one specialset of parameters in the bead spring models as given inappendix E. For comparison with results of speci�c exper-iments other parameters may be required which put moreor less emphasize on the EVI or HI than in this work. Forexample for DNA molecules the EVI{e�ects are expectedto be weaker than assumed in our simulations due to thelarge persistence length of DNA.In this work we only considered the static deformationof a tethered polymer due to the presence of a uniformow. Equally important is the perturbation of the imposedow caused by the motion of the polymer. Taking into ac-count the full uctuating hydrodynamics (cf. appendicesE and F) allowed for the �rst time to calculate this owperturbation explicitly which has been presented in twopreliminary notes [77,70]. The dynamics of the polymerwill be described elsewhere. Since the equation of motion isstrongly nonlinear one has to distinguish the relaxation ofuctuations at steady state [72] and the dynamics of meanvalues when the ow is suddenly turned on or o� [71]. Inthe former case the complete relaxation spectrum can beobtained by applying the Karhunen{Lo�eve method. TheBrownian dynamics algorithm is presently generalized toshear ows which cannot be described by a velocity poten-tial. In Poiseuille ow for instance an interesting migratione�ect has been found recently [95].The case of a tethered polymer in uniform ow pro-vides an especially simple model problem which facilitatesthe investigation of both the polymer deformation and

the ow perturbation. It may serve as a starting pointfor developing improved coarse grained descriptions forpolymers in ow similar to other �elds in polymer physics[96]. Thus the comprehensive study of this model prob-lem is one of the very �rst steps towards a well foundeduid dynamics of dilute polymer solutions. For a deeperunderstanding of the rheology of dilute polymer solutionsit is important to also consider freely oating polymers inmore realistic ow �elds such as simple shear, Poiseuilleand even turbulent ows. This task will be pursued furtherin the future.It is a great pleasure to thank D. Kienle, S. Chu, H. M�uller{Krumbhaar and V. Steinberg for useful discussions.A Blob model for the free{draining limitBlob models have been used to describe scaling proper-ties of polymers in non{equilibrium situations [2] such asa single polymer pulled at both ends [63,64] and the caseunder consideration here, namely a single tethered poly-mer in a uniform external ow [59{61]. In the latter worksimpenetrable blobs were assumed modelling the e�ect ofhydrodynamic interaction between the polymer segments.In this appendix we describe a similar scaling model forthe free{draining limit where the external ow completelypenetrates the polymer coil. We derive the expressions forthe segment density, the integral extension of the polymerin the ow direction, and the lateral extension of the poly-mer. The results obtained here together with the relationsderived in Refs. [59{61] for the non{draining blob modelare summarized in table 1 and compared with results fromdi�erent approaches in sections 2 through 4.The blob model relies on two assumptions in orderto describe a polymer in an external force �eld. The �rstassumption is that under the inuence of the external forcethe equilibrium coil breaks up into a string of blobs assketched in Fig. 1. The portion of the polymer chain withinthe k-th blob acts as an entropic spring that contains sometension Tk in the direction of the external force. The sizeof the k-th blob Rk is determined by a balance betweenthe elastic energy of that spring RkTk and the thermalenergy for one degree of freedom. This is expressed by thePincus rule [63,64] kBTRkTk � 1 : (14)Then within each blob the e�ects of the external forceare small and it is justi�ed to assume that the equilibriumscaling relations ( see e.g. Refs. [2,31,32] ) are still valid,i.e. Rk = bN�k ; (15)where Nk is the number of segments within the k{th bloband b is the Kuhn length. Taking the same value for bin each blob amounts to considering a freely jointed chainhere. For a Gaussian chain in ow the individual segments



20 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owwould be stretched as discussed in the following appendixand section 2 requiring an x{dependent segment length.The exponent � depends on the solvent quality, i.e. � =3=5 for a good solvent and � = 1=2 for a �-solvent [2,31,32,85].Finally one needs to specify the tension Tk within eachblob. This tension is given by the sum of the Stokes frictionforces acting on all blobs starting from the free end (k =1). In the free{draining limit the friction force on eachblob is given by the sum of the friction forces �av actingon each of the segments within the blob. Here �, a and vare the viscosity of the solvent, the e�ective hydrodynamicradius of a segment and the magnitude of the ow velocity,respectively. We thus obtain for the tensionTk / �av kXj=1Nj : (16)Combining Eqs. (14){(16), one �nds the following recur-rence relation for the tension in each blob:Tk � Tk�1 / �av�kBTbTk � 1� : (17)This has to be supplemented by a boundary condition forthe �rst blob which is obtained by noting that Eq. (16)gives T0 = 0. Inserting this in Eq. (17) and solving for T1yields T1 / (�av) ��+1 (kBT=b) 1�+1 . Eq. (17) together withthis boundary condition is now a closed equation for thetension within the blobs.Rewriting Eq. (17) in di�erential form by approximat-ing Tk � Tk�1 � dT=dk one obtains a solution which isvalid in the limit of large k:Tk / ��av k� ��+1�kBTb � 1�+1 : (18)The position of the k-th blob ~xk is found from ~xk =Pkj=1Rj . Here ~x is the x{coordinate measured from thefree end of the chain x0, i.e. ~x = x0 � x.Using Eq. (14) and replacing the sum by an integral,which is consistent with the approximation that lead toEq. (18), one arrives at~xk / �kBT�av � ��+1�b k� 1�+1 : (19)Eliminating the blob index k between Eq. (18) and Eq. (19)yields the law for the tension in the free{draining case,T (~x) / 1b (kBT )1�� (�av~x)� : (20)The corresponding relation for the non{draining case is[59], T (~x) / �v~x ; (21)which is derived in a similar manner by using the relationTk / �vPkj=1 Rj in place of Eq. (16).

Fig. 22. In{ow extension L as obtained by numerically solv-ing the recursion relation Eq. (17) and summing up all blobradii Rk according to Eq. (14) for a free{draining blob modelN = 2000 beads (solid curve) and � = 3=5 corresponding tothe case with exluded volume interaction. The dashed line isthe power law obtained by the approximate analytical solutionEq. (23).An expression for the segment density projected ontothe x-axis �(~x) follows from � � Nk=Rk by using Eqs. (14){(15) and replacing Tk by T (~x):�(~x) / 1b� �avkBT ���1~x��1 : (22)The integral extension L of the chain in x{direction fol-lows from the normalization requirement R L0 d~x �(~x) = N ,where N is the total number of segments in the wholepolymer chain. The result isL / � �avkBT � 1��� (Nb) 1� : (23)From Eq. (23) together with Eq. (20) one obtains T (L) asa measure of the total drag force exerted on the polymer.For the free{draining case the result is T (L) = �avN asexpected (cf. section 2). The extension � (~x) of the chainperpendicular to the ow direction is obtained from � �Rk as � (~x) / b�kBT�av �� ~x�� : (24)There are obvious restrictions on the validity of theblob model. First of all the polymer chain may be modelledas a string of blobs only in a certain range of velocitiesvc1 < v < vc2, the so-called trumpet regime [61]. Thereason is simply that the radius of the blob close to the free



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 21end as determined by the Pincus rule must not be largerthan the Flory radius for the whole chainRF . On the otherhand the smallest blob at the �xed end cannot be smallerthan the segment length b. The �rst situation may occurin very weak ows and the second in very strong ows.The limiting velocities vc1 and vc2 for the free{drainingcase arevc1 = kBT�abN�+1 and vc2 = kBT�abN ; (25)where the ratio between both velocities depends on N asvc2 = N� vc1 : (26)For the non{draining case one has [61]vc2 = N 15 vc1 : (27)The rather weak N{dependence of the ratio vc2=vc1 showsthat very long chains will be needed to obtain a signi�cantrange for the scaling laws derived in Eqs. (22){(24).Furthermore Eq. (18) is derived for large values of theblob index k and therefore the derived scaling behaviormay not hold close to the free end of the polymer wherek is small. To achieve both large values of k and a consid-erable number of segments Nk within the k-th blob oneneeds very long chains. Only then the scaling behavior ascalculated above can be expected for some range of owvelocities. To get an estimate on the required chain lengthwe compare in Fig. 22 the chain extension L as a functionof ow velocity v for the free{draining blob model with� = 3=5 and N = 2000 beads as obtained by numericalevaluation of the exact recursion relation Eq. (17) to thescaling law obtained by the approximation Eq. (18). Itis clear that even at this chain length the scaling regimeis not yet visible. The comparison between the analyticalscaling result and the numerical solution of the recursionrelation is even less fortunate for non{draining blob mod-els as described elsewhere [90]. Accordingly scaling resultsmay be considered as upper limits for the slope of L(v)only.B Gaussian chainStatic properties of exible polymers in thermal equilib-rium can be calculated from the conformational distribu-tion function [31,32]. In this appendix we consider a beadspring model as sketched in Fig. 2 where we assume har-monic springs and the binding between consecutive beadsis the only interaction that is taken into account. For thismodel we calculate several static properties of a tetheredpolymer in uniform ow.A potential for the harmonic springs is given by�H(Qj) = 12 3kBTb2 jQj j2 ; (28)where Qj = Rj+1 �Rj is the j{th bond vector and Rjis the position vector of bead j. The Boltzmann factor for

the potential in Eq. (28) exp(��H=kBT ) gives a Gaussiandistribution for the bond lengths with a mean square bondlength of b in thermal equilibrium (see e.g. Ref. [31,32]).The uniform ow �eld is taken in the x{directionv = v x̂ ; (29)with x̂ the unit vector and v the magnitude of the owvelocity. The drag force acting on each of the beads is �vwhere the friction coe�cient � is given by Stokes formula� = 6��a with � the solvent viscosity and a the e�ec-tive hydrodynamic radius of a bead. For the ow given byEq. (29) the drag force can be derived from a potentialU(r) = ��v r � x̂ : (30)Keeping the �rst bead of the polymer chain �xed atthe origin, the conformational distribution function readsP (fRjg) = �(R0)� 32�b2�32N (31)� exp0@ 1kBT NXj=1 �H(Qj) + U(Rj)1A :With the relationPNj=0 Pj�1i=0 Qi =PN�1k=0 (N�k)Qk thedistribution function can be simpli�ed toP (R0; fQjg) = �(R0 )� 32�b2�32N (32)� exp0@� 32b2 N�1Xj=0 jQj � Sj j21A ;whereSj = �vb23 (N � j) x̂ and � = �kBT : (33)We call Qj � Sj the stretched bond vector. It is now astraight forward task to determine all quantities of interestfrom this distribution function.B.1 Mean bond vectors and mean square bond lengthsThe calculation is most e�ciently organized by �rst deter-mining the �rst and second moments of the distribution ofthe bond vectors P (Qk). For the components of the meanbond vector hQki we obtainhQxki = � 32�b2�32N Z d3Q0 : : : d3QN�1 Qk � x̂� exp0@� 32b2 N�1Xj=0 jQj � Sj j21A= �vb23 (N � k) ; (34)



22 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owwhile the other components must vanish for symmetryreasons, i.e. hQyki = hQzki = 0 : (35)Similarly we �nd for the diagonal components of thecovariance 
QkQTk �
(Qxk)2� = b23 +��vb23 (N � k)�2 (36)
(Qyk)2� = 
(Qzk)2� = b23 ; (37)while the o�-diagonal components again must vanish dueto symmetry.From these expressions all other quantities of interestare easily found, e.g. the mean square length of the k{thbond 
jQkj2� = 
(Qxk)2�+ 
(Qyk)2�+ 
(Qzk)2�= b2 +��vb23 (N � k)�2 : (38)This expression shows that for the Gaussian chain thebonds close to the �xed chain end are considerably stretchedunder the action of a ow. On the other hand the meansquare length of the bonds close to the free end has thesame value b as in thermal equilibrium.B.2 Mean bead positions, end{to{end distance andend{to{end tensorThe mean x{position of the k{th bead hXki is simply thesum over the x{components of the �rst k bond vectors (cf.Eq. (34)), i.e.hXki = k�1Xj=0 
Qxj � = �vb23 2N � k + 12 k ; (39)whereas the y{ and z{components of the mean bead po-sitions again must vanish.For k = N we obtain the mean end{to{end vectorhRN � R0i = (XE ; YE ; ZE)T . Its second moment is theend{to{end tensor E for the components of which we �ndE�� = 
(RN �R0)(RN �R0)T �= b23 N ��� +��vb23 N (N + 1)2 �2 ��x ��x : (40)The trace of the end{to{end tensor is the square of thefamiliar end{to{end distanceR2E = 
jRN �R0j2�= b2N +��vb23 N (N + 1)2 �2 : (41)

B.3 Gyration tensorA further quantity that is often used to characterize theshape and size of a polymer is the gyration tensor. Thelatter is the second moment of the distribution of beadposition vectors relative to the center{of{mass RCM =1=NPNi=0 hRii:G = 1N NXj=0 
(Rj �RCM) (Rj �RCM)T �= 12N2 NXi;j=0 
(Rj �Ri) (Rj �Ri)T � : (42)Expressing (Rj �Ri) = Pj�1k=i Qk in terms of bond vec-tors and counting the number of occurrences of each bondvector Qk in the triple sum we �ndG = 12N2 N�1Xk=0 (N � k � 1) (N � k) 
QkQTk � : (43)Since 
QkQTk � is diagonal so is G.When the polymer is stretched under the action ofa ow the behavior of Gxx as a measure for the in{owextension of the polymer is not quite intuitive becauseGxxis taken relative to the x{position of the center{of{masswhich itself depends on the strength of the stretching ow.The transverse components, however, are good measuresfor the extension of the polymer transverse to the ow.For the Gaussian chain we obtainGyy = Gzz = 12N2 �13 N3 + 23 N� b23 : (44)B.4 Segment densityThe segment density �(r) is de�ned as�(r) = * NXk=0 �( r�Rk )+ : (45)Using the Fourier representation of the �-function�(r) = 1(2�)3 Z d3q exp( iq � r ) ; (46)



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 23Eq. (45) becomes�(r) = �( r�R0 ) (47)+� 32�b2�32N 1(2�)3NXk=1 Z d3q d3Q0 : : : d3QN�1� exp0@iq �0@r� k�1Xj=0Qj1A1A� exp0@� 32b2 N�1Xj=0 jQj � Sj j21A= �( r�R0 )+ NXk=1 1(2�)3 Z d3q exp0@iq �0@r� k�1Xj=0 Sj1A1A� exp0@� k�1Xj=0 b26 jqj21A :The �nal q{integration provides the expression for thesegment density of a Gaussian chain in a uniform ow�eld�(r) = �( r�R0 ) (48)+ NXk=1 � 32�kb2�32 exp�� 32kb2 (r� hRki)2� :This is a sum of Gaussian distributions centered about themean position of the k{th segment hRki with componentsgiven by Eq. (39). The explicit shape of �(x) is obtainedby numerically evaluating the sum in Eq. (48). It can beapproximated by the simple power law as discussed insection 2.B.5 Quasi{segment densityAnother measure for the local density of polymer segmentsalong the x{axis is given by the inverse mean distance be-tween neighboring beads in the x{direction. The latter isexpressed in terms of the x{projection of the bond vectoras 1=hQxki which is �nite for non-vanishing ow velocities.Since 1=hQxki measures roughly the density between beadsk and k + 1 we assign this value to the midpoint betweenthe mean positions of the beads k and k + 1. We call thedensity de�ned this way the quasi{segment density. Ac-cording to the above the quasi{segment density �0(x) isexpressed in a form parametrized by the bead index k as�0k = 1hQxki ; (49)x = 
Xk+1=2� = 12 h(Xk+1 +Xk)i :

This de�nition ensures that �0 is correctly normalized toN . For comparison with the expression given in Eq. (22)the bead index k must be eliminated from Eq. (49) whichcan be done explicitly for the Gaussian chain. For thispurpose we count the beads starting from the free chainend k = N , i.e. we transform the bead{index asl = N � j (50)in Eq. (34) and we put the coordinate origin at the freechain end x0, i.e. we use~x = x0 � x (51)as position variable. Then we �nd from Eq. (39)h ~Xli = �vb23 l�1Xi=0 i = �vb26 (l � 1) l : (52)and ~x = 12( ~Xl+1 + ~Xl) = �vb26 l2 : (53)Solving for l and inserting in Eq. (34) �nally yields the �0as a function of ~x �0(~x) =r 32�vb2 ~x : (54)Thus the quasi{segment density has the same scaling be-havior predicted by the blob model as discussed in sec-tion 2.C Freely jointed chainIn thermal equilibrium Gaussian chains and freely jointedchains show a qualitatively similar behavior [32,31]. How-ever as one can see from Eq. (38) Gaussian chains can bestretched enormously in external �elds. Hence we calculatesome static properties for the freely jointed chain wherethe bond length is �xed, too. In equilibrium no orientationis preferred therefore we havePeq(Qj ) = 14�b2 �( jQj j � b ) : (55)The ow is taken into account via the Boltzmann factorwith the potential in Eq. (30). The conformational distri-bution function is then given byP (R0; fQjg) = �(R0 ) 14�b2 (56)N�1Yj=0 �vb (N � j)sinh(�vb (N � j) )� �(jQj j � b) exp(�v (N � j)Qj � x̂)where � = �=kBT as in the preceding section. The �rstterm in this product results from evaluating the partitionfunction and ensures the proper normalization of P .



24 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owAs for the Gaussian chain we �rst calculate the �rstand second moments of the bond vector distribution P (Qk)in the presence of ow. We �nd for the only non-vanishingcomponent of the mean k{th bond vectorhQxki = Z d3R0 d3Q0 : : : dQN�1Qk � x̂�P (R0; fQjg)= 14�b2 �vb (N � k)sinh(�vb (N � k) )� Z d3Qk �(jQkj � b) Qk � x̂� exp(�v (N � k)Qk � x̂) : (57)The remaining integral is easily evaluated in spherical co-ordinates around the x{axis and one obtainshQxki = bL(�v (N � k) ) ; (58)where L(x) = coth(x)� 1x (59)is the Langevin function. Similarly the only non-vanishingcomponents of the k{th bond covariance areh(Qxk)2i = b2 �1� 2 L(�v (N � k) )�v (N � k) � (60)h(Qyk)2i = h(Qzk)2i = b2 L(�v (N � k) )�v (N � k) : (61)As in the previous section all other quantities of inter-est are easily calculated from these results. In the expres-sion for the mean x{coordinate of the k{th beadhXki = b k�1Xj=0 L(�v (N � j) ) ; (62)we can replace the sum by an integral and obtain an ex-pression in closed form:hXki = 1�v ln�N � kN sinh(�vbN )sinh(�vb (N � k) )� : (63)The expressions for the end{to{end distancehjRN �R0j2i = b2N � b2 N�1Xj=0 (L(�v(N � j) ))2+ b20@N�1Xj=0 L(�v(N � j) )1A2 (64)and the transverse components of the gyration tensorGyy = Gzz = b22N2 N�1Xk=0 (N � k � 1) (N � k) (65)� L(�v (N � k) )�v (N � k)

cannot be simpli�ed any further. The results of their nu-merical evaluation are presented in section 3.The segment density for the freely jointed chain cannotbe brought into an equally simple form as for the Gaussianchain in appendix B.4. However the quasi{segment densityintroduced in section B.5 is amenable to a semi-analyticaltreatment. For comparison we again introduce ~x = x0�xand l = N � j to �nd~x = 1�v ln� sinh(� v b l)� v b l � : (66)To be consistent with the approximation leading to Eq. (63)for hXli we use hQxl i = Xl+1�Xl instead of the exact re-sult Eq. (58) to obtainhQxl i = 1�v ln� l � 1l sinh(� v b l)sinh(� v b (l � 1))� : (67)For small velocities we have xl = �vb2l2=6 and hQxl i =�vb2l=6 which is the same as for the Gaussian chain (cf.Eq. (52)).D Semi-analytical calculations for the FENEspring potentialInstead of using a constraint on the bond lengths like inthe previous section a polymer model with a limited ex-tensibility is also obtained if the forces between the seg-ments are described by a potential composed of a repulsiveLennard-Jones potential and an attractive FENE poten-tial [88,97]. Such a potential is also used in the numericalsimulations described in appendix E. Here we derive an ex-pression for the end{to{end distance of this model whichcan be compared with both the results from numericalsimulations for this model and with analytical results forthe freely jointed chain with a strictly �xed bond lengthderived in appendix C.Again the calculation is based on the conformationaldistribution function like in the previous two appendices;only a di�erent binding potential is used. If the polymeris �xed at one end at R0 the distribution function readsP (R0; fQjg) = �(R0) 1Z (68)� exp0@�� N�1Xj=0 �(Qj) + U(Rj)1A :Here the ow potential U is given by Eq. (30) and Z isthe partition function. The bond potential � is�(r) = �LJ(r) + �FENE(r) ; (69)�LJ(r) = 4� � �jrj�12 �� �jrj�6 + 14!� � (jrj �RLJ) ; (70)�FENE(r) = �kFR2F2 ln�1� jrj2R2F � : (71)



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 25The cut{o� radius RLJ = 21=6� is chosen at the minimumof the Lennard{Jones potential and �(x) is the Heavisidefunction. The other parameters are k = 30:0, RF = 1:5�and � = � = 1:0. This results in a minimum of the bondpotential at jrj = 0:961.For the calculation it is useful to introduce sphericalcoordinates about the x{axis, i.e. to letQj = qj (cos �j ; cos'j sin �j ; sin'j sin �j) : (72)The following integrals appear repeatedly in the calcula-tionsP(p)j = �v(N � j)4� (73)Z d3QjQpj exp(�� (�j � V x̂(N � j)Qj))= Z 10 dqj q(p+1)j exp(���j) sinh (�v(N � j)qj) :Here � = �=kBT and p will assume the values p = 0; 1; 2.The partition function then takes the formZ = N�1Yj=1 4��v(N � j) P(0)j : (74)For the bond vectors one �nds
jQkj2� = P(2)kP(0)k (75)and hQxki = P(1)kP(0)k � 1�v(N � k) : (76)This gives for the end{to{end distance
R2E� = N�1Xj;i=0j 6=i hQxj ihQxi i+ N�1Xj=0 
Q2j�= N�1Xj;i=0j 6=i P(1)jP(0)j � 1�v(N � j)! P(1)iP(0)i � 1�v(N � i)!+N�1Xj=0 P(2)jP(0)j : (77)The results of the numerical evaluation of Eq. (77) arediscussed in section 3.E Bead - spring model for numericalsimulationsFor the numerical simulations we use the bead springmodel as sketched in Fig. 2. Usually one considers the

motion on the di�usive time scale only, i.e. bead inertiaare neglected [98]. The equation of motion for the posi-tion of the i{th bead (i = 1 : : :N) is then obtained froma balance between all forces acting on the beads. Theseforces comprise viscous drag forces FH on one side andpotential{ and stochastic forces F�, FS on the other:�FHi = F�i + FSi : (78)The potential force F�i describes the direct interaction be-tween the beads which consists of two contributions: Thebinding between next{nearest neighbors along the chainis described by one of the two potentials given in Eq. (28)and Eqs. (69){(71) for the case of harmonic (linear) oranharmonic (nonlinear) springs, respectively:�bond = N�1Xi=0 �H(jRi+1 �Rij) or (79)�bond = N�1Xi=0 �FENE(jRi+1 �Rij) (80)= +�LJ(jRi+1 �Rij) :Here we use an additional bead with index i = 0 whichis �xed at R0 = 0 to implement the boundary conditionat the tethered chain end. The second contribution comesfrom the excluded volume e�ect and acts between any pairof beads. It is described by the repulsive Lennard{Jonespotential of Eq. (70),�excluded = NXi=0j=i+1 �LJ(jRj �Rij) : (81)If excluded volume e�ects are considered together withnonlinear springs the repulsive part in Eq. (79) is dis-carded to avoid double counting. If the case without ex-cluded volume e�ects is under investigation we set �excludedto zero. The potential force F�i can thus be calculated asF�i = �rRi (�bond + �excluded) : (82)The hydrodynamic forces are [99]FHi = �Xj H�1ij ( _Rj � v(Rj)) ; (83)where v is the velocity of the imposed ow and H is themobility matrix. Without hydrodynamic interactions themobility matrix is simply diagonal with Hii = 1=�. Hydro-dynamic interactions are incorporated in the Oseen tensorapproximation [100,32] if desired. This turns the mobilityinto a conformation dependent tensor which is given byHij = 8<: 1� 1 for i = j
(Ri �Rj) for i 6= j ; (84)where 
(r) = 18��jrj (1+ r̂r̂T ) (85)



26 R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform owis the Oseen tensor. Since the Oseen tensor becomes non-positive at small bead separations [33] we always considerthe case with hydrodynamic interactions together with theexcluded volume e�ect.The stochastic forces are related to the dissipative dragby the uctuation dissipation theorem [101] to ensure thecorrect equilibrium distribution. We haveFSi =p2kBT H�1 �i (86)where T is the temperature, kB is the Boltzmann constantand �i is an uncorrelated Gaussian white noise with zeromean: 
�(t) �T (t0)� = �(t� t0) 1 : (87)The square root of the mobility tensor H which is responsi-ble for introducing the correlations required by the uctu-ation dissipation theorem is calculated approximately bythe method of Fixman [102] which is described in detailin appendix F.To bring these equations into a numerically tractableform we take the positions, velocities, and forces for allbeads together as 3N -dimensional super-vectors R, V,etc. . With a few rearrangements we obtainV � _R = v(R) + H � (�rR �) +p2kBT H � : (88)Finally we add an arti�cial inertial term m _Vi wherethe mass is chosen small enough to ensure that momentumequilibration is faster than all the conformational relax-ations of the chain. This guarantees that the equilibriumdistribution is preserved up to leading order in the integra-tion time step h and allows h to be chosen by a factor of 10larger than in conventional Brownian dynamics schemeswhich use the direct discretization of Eq. (88) [77].The resulting equation is discretized by integrationover a small time interval [103] and solved with a velocity{Verlet algorithm [104] as described in more detail in Ref. [77]:R(tn + h) = R(tn) +V(tn)h+ h22m F(tn) (89)mV(tn + h) = mV(tn) + h2m (F(tn + h) + F(tn))F(tn) = �  H(R(tn))�� @�@R(tn)��V(tn)+p2kBT H(R(tn)) �(tn)!The discretized white noise � is now a vector of indepen-dent Gaussian random numbers with zero mean and unitvariance, i.e. 
�(tn) �T (tn0)� = 1h �nn0 1 ; (90)which can be conveniently generated on a computer.Several tests of this simulation procedure have beenperformed under equilibrium conditions as reported in

Ref. [77]. One of the test results that is of special rele-vance to this work is that the e�ective bond length dif-fers somewhat for the various combinations of interac-tions that are considered. For the pure Gaussian chainwith harmonic springs and no other interactions betweenthe beads the mean square bond length hjQj2i at equi-librium is equal to b in Eq. (28) as shown in appendixB.1. The latter is a parameter that can directly be setand we use a value of b = 1:0. If excluded volume interac-tions are added the bond length distribution is distortedand no longer equal to b. An e�ective bond length beffcan be determined from the equilibrium scaling relationRE = beffN3=5. The result is beff = 1:37. If the harmonicsprings are replaced by FENE springs with the parame-ters given following Eqs. (69){(71) the bond length dis-tribution is sharply peaked around the minimum of thepotential and one obtains b = beff = 0:961 no matterwhether excluded volume interactions is included or not.Finally we mention that the FENE model with excludedvolume interactions not only keeps the beads from pass-ing through each other but it also prohibits bond crossings[88,97].F E�cient evaluation of stochastic forces inthe presence of hydrodynamic interactionA key issue for the present study with emphasis on hydro-dynamic interaction is the calculation of the matrix pH inEq. (88) and Eq. (89). To make the whole algorithm prac-tical an e�cient way to evaluate the square root of themobility matrix H must be developed. The straight for-ward calculation of such an expression [105] involves a di-agonalization of H which numerically requires an e�ort ofO(N3) machine instructions. A second standard methodfor the calculation of matrix functions is via a series ex-pansion of the desired function [105]. A Taylor series willcontain only powers of the matrix argument which are eas-ily evaluated numerically. However, matrix multiplicationalso requires O(N3) operations. A third method whichagain needs O(N3) operations but which o�ers the mostfavorable prefactor becomes possible by noting that thesquare root is not precisely what is needed. Instead onecan also use the Cholesky decomposition of H. This ideawas exploited in the classic work by Ermak and McCam-mon [106]. In all cases the numerical e�ort ofO(N3) makesthe computation prohibitive for long chains. Therefore toour knowledge all previous Brownian dynamics studies ofpolymer dynamics which took hydrodynamic interactionsinto account were limited to chains with N � 20 beadswith one exception, the work of Fixman [107], where afew results for a chain of 56 beads are given.An approximate method which requires only� O(N2:25)operations was proposed by Fixman [102]. The startingpoint for this method is a series expansion of the squareroot in terms of a complete set of polynomials as in method



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform ow 27two above, i.e. pH = MX�=1P�(H) : (91)A reduction of the computational e�ort becomes possibleby noting that the knowledge of the matrix pH is actu-ally much more than what is really needed since once itis known it could be applied to many di�erent randomvectors �. For the simulation, however, it needs to be ap-plied to one single realization only. A scheme which takesadvantage of this is obtained by multiplying both sides ofEq. (91) with �. Taking � into the sum on the rhs oneobtains a series expression for pH �pH � = MX�=1P�(H) � : (92)This expression contains only matrix{vector products andthus its evaluation requires an e�ort of O(N2) only. Fur-thermore the individual terms in the sum may be calcu-lated recursively keeping the number of these operationslow, too.The polynomials P�(x) may be taken from any com-plete set in function space. The most economic choice arenot simple powers P�(x) = x� but Chebychev polynomi-als C�(x) [108,109]. These can be evaluated by means ofthe recursion relationC�+1(x) = 2xC�(x)� C��1(x) ; (93)with C1(x) = x ;and C0(x) = 1 : (94)Since the Chebychev polynomials are de�ned on the in-terval [�1; 1], which is not suitable in the present context,one applies a transformation of the independent variablex = 2yb� a � b+ ab� a ; (95)which maps the domain of the problem y 2 [a; b] to thedomain x 2 [�1; 1] of the Chebychev polynomials. TheC�(y) appear frequently in numerical analysis and are re-ferred to as shifted Chebychev polynomials [108,109].If, as in the problem under consideration, the argu-ment x is a matrix, not a simple scalar, then [a; b] is therange of eigenvalues of x. An estimate of the range of theeigenvalues of H is furnished by a simple physical argu-ment: If two nearby beads experience a force in the samedirection the induced perturbations of the velocity �eldwill have a large degree of coherence and thus add up toa larger perturbation. If on the other hand the forces arein opposite directions the induced perturbations will can-cel out to a large extent. Since beads which are neighborsalong the chain are likely to be also close in space an esti-mate for the largest eigenvalue is obtained by using a forcevector with equal forces for all beads as a test-vector F toform the Rayleigh quotient [105] FT HF=FT F. Similarly
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