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Abstract. Static properties of a single polymer fixed at one end and subjected to a uniform flow field
are investigated for several polymer models: the Gaussian chain, the freely jointed chain and the FENE
(Finite Extensible Nonlinear Elastic) chain. By taking into account first the excluded volume interaction
and subsequently also the hydrodynamic interaction the polymer models are gradually completed and the
relevance of each effect for the polymer deformation can be identified. Results from computer simulations
of these bead spring chains are compared with analytical calculations using either the conformational
distribution—function or blob models. To this end in contrast to the blob model with non—draining blobs
introduced for a tethered polymer by Brochard-Wyart we here develop also a model with free-draining
blobs. It turns out that a limited extensibility of the polymer — described by nonlinear spring forces in
the model — leads to a flow velocity dependence of the end-to—end distance, segment density etc. which
agrees with the power law predictions of the blob model only for very long chains and in a narrow range of
flow velocities. This result is important for comparison with recent experiments on DNA molecules which
turn out to be still rather short in this respect. The relative importance of finite extensibility, the excluded
volume effect and hydrodynamic interactions for polymers in flow is not fully understood at present. The
simulation of reasonably long chains becomes possible even when fluctuating hydrodynamic interactions are
taken into account without employing averaging procedures by introducing efficient approximation schemes.
At medium velocity of the uniform flow the polymer is partially uncoiled and simulations show that the
effects of excluded volume and hydrodynamic interactions are position dependent. Both are stronger near
the free end than near the tethered end of the polymer. A crossover from a nearly non—draining polymer at
small flow velocities to a free—draining almost uncoiled chain at large velocities is found in the simulations.
Accordingly, models assuming the polymer to be composed of either free- or non—draining subunits, like
the two blob models, cannot correctly describe the extension and shape of a tethered polymer in flow and
simple power laws for the polymer extension etc. cannot be expected.

PACS. 83.10.Nn Polymer Dynamics — 83.20.Di Microscopic Theories — 83.20.Jp Computer Simulation —
36.20.Ey Conformation

1 Introduction

The deformation of flexible polymers in flow causes the
non—Newtonian fluid behavior of dilute polymer solutions
which has been of both theoretical and practical interest
already for a long time [1-7]. Non-Newtonian flow phe-
nomena [8] are often puzzling like rod climbing and the
secondary flows occurring in various geometries. Some-
times they are outrightly spectacular like the effect of tur-
bulent drag reduction [9-13]. They are at the heart of
important technological processes such as fiber spinning
and film blowing and they are successfully applied e.g. for
viscosity enhancement in secondary oil recovery. However,
a generally accepted theoretical basis for the description
of the large scale motion of non-Newtonian fluids similar

to the Navier—Stokes equation for simple fluids like water
is not available yet.

As for the description of simple fluids [14-16] also for
polymeric liquids, the basis of a macroscopic theory are
conservation laws and the laws of thermodynamics [1,3,
17,18]. But it is generally agreed upon that the deforma-
tion of the polymer molecules by the surrounding flow is
crucial for the rheology of dilute polymer solutions [19-22].
Hence for polymer solutions the usual equations for the
solvent have to be coupled with additional equations de-
scribing the deformation and the dynamics of the dissolved
polymers. However, at present this has been achieved only
for special cases.

A quantitative analysis of the polymer—flow interaction
causing the deformation of the polymer has been ham-
pered by two difficulties. On the experimental side the
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classic measurement techniques such as light scattering
[23], birefringence [24,25], rheometry [26,27] and small an-
gle neutron scattering [28] provide only volume averaged
quantities from which only little can be deduced about the
interplay between the flow field and the individual poly-
mers. On the theoretical side the large number of polymer
degrees of freedom which are coupled by various nonlin-
ear interactions makes a treatment of the polymer—flow
interaction on a fundamental level a formidable task.

To facilitate a calculation of the polymer deformation
simplified approaches have been proposed. The Rouse—
Zimm model [29-32] uses a description of the polymer dy-
namics which is linearized about the equilibrium state and
thus is questionable in strong flows. It provides the basis
of the upper convected Maxwell model [33]. In the case of
two beads only, i.e. for the dumbbell, this is also known
as the Oldroyd-B-model which gives a good description
only of a restricted class of substances, the so-called Boger
fluids [17]. The restricted applicability of this constitu-
tive model must be attributed to the approximations of
the Rouse-Zimm model. The upper convected Maxwell
model reduces to the ”linear viscoelastic model” (Maxwell
model) for incompressible viscoelastic fluids when the to-
tal strain is small [1,3,17,32]. Under this restriction on the
flow the ”linear viscoelastic model” is generally accepted
as a valid description for arbitrary substances. In this lin-
ear regime there are also standard rheological techniques
available for determining the frequency dependent viscos-
ity appearing in the model. When linear disturbances are
sufficient, this approach is able to predict e.g. pattern for-
mation in vertically vibrated layers of viscoelastic fluids
(Faraday instability) [34].

Beyond the linear regime only rather qualitative ideas
about the polymer—flow interaction exist. For instance it
has been shown that only flows where the elongational
component dominates vorticity possess the ability to in-
duce strong deformations of polymers [35]. It is then im-
portant to capture the nonlinear elasticity of the polymer
which leads to a saturation of the polymer deformation
at large elongation rates. Whether the polymer is actually
deformed depends on the ratio of its longest relaxation
time to the time scale set by the velocity gradient of the
flow [36]. Due to conformation dependent hydrodynamic
interactions the relaxation time is expected to be larger
in the stretched state resulting in hysteretic behavior [19].
These ideas have been used to argue for a truncation of
the turbulent cascade as a qualitative explanation of the
drag reduction phenomenon [37]. To obtain quantitative
rheological predictions in simpler flows a phenomenologi-
cal dumbbell model has been proposed as a kind of min-
imal model for an extensible object [17,22,33,38]. How-
ever, these qualitative ideas are not undisputed let alone
their quantitative expression. Furthermore the neglect of
the many degrees of freedom of the polymer has not been
justified and its consequences are unknown.

A precise experimental observation of the deformation
of a single polymer by flows has become possible only very
recently. For instance, the experimental work on single
tethered DNA molecules in uniform flow [39,40] gives de-

tailed data about the global extension as well as the shape
of the polymer. This new approach for measurements on
the statics and dynamics of polymers in flow has become
possible because of the development of modern experi-
mental techniques such as fluorescence microscopy [41,
42] and laser tweezers [43,44]. Molecular biology provides
samples of model polymers like DNA [45,46] which are
large enough to be observed directly when they are dec-
orated with a fluorescent dye. These experimental tech-
niques have since been applied to various forces [47] and
flow fields [48-52] and to many other systems, e.g. DNA
in concentrated solution [53,54]. Especially the investiga-
tion of polymers in extensional flow exhibited a great and
unexpected variety of conformations [49,50,55].

This experimental progress with single polymers has
stimulated theoretical investigations on the response of
polymers to external fields [56-58]. Two approaches have
been applied specifically to the case of a tethered polymer
in a uniform flow as considered in this work: the blob
model [59-61] and the dumbbell model [62].

The blob model has been widely used for the descrip-
tion of the static and dynamic properties of polymers
pulled at the end [2,63,64]. From the theoretical point of
view this model is very attractive because scaling laws for
both global and local properties characterizing the exten-
sion and shape of the polymer can be derived analytically
even in the presence of excluded volume and hydrody-
namic interactions. Applied to a tethered polymer in flow
[59-61], the blob model allowed the identification of dis-
tinct flow regimes corresponding to different shapes of the
polymer. This shape is determined by the balance between
thermal agitation and tension along the polymer. One can
distinguish three regimes depending on the magnitude of
the flow field. The local tension along the polymer in-
creases from the free towards the fixed end of the chain.
As long as the external forces are small the equilibrium
structure of the polymers is only slightly distorted. This
may be termed the near—equilibrium regime. For moderate
forces the polymer still coils up at the free end due to ther-
mal agitation, but towards the fixed end it becomes more
and more unwound. This eventually leads to a polymer
shape resembling a trumpet [59] (cf. Fig. 1) whence this
is called the trumpet regime. For even larger values of the
flow velocity there is a finite fraction of the polymer close
to the fixed end which is already completely straightened
whereas the free end is still coiled up. This has become
known as the stem and flower regime [61]. The price for
this insight, however, are the not immediately obvious as-
sumptions and approximations used in the model. Their
validity is well worth to be tested by polymer models like
bead spring models (cf. Fig. 2) which resolve the many
degrees of freedom of real polymers more faithfully.

On the other hand the more detailed bead spring model
becomes very difficult to treat even numerically when ex-
cluded volume and hydrodynamic interactions are taken
into account [33,65,66]. To facilitate calculations excluded
volume effects are often neglected and an averaging ap-
proximation for the hydrodynamic interactions is intro-
duced [30,67,68]. This procedure, however, is not com-
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Fig. 1. Sketch of a polymer which is tethered at one end
(zr = 0) and subjected to a uniform flow of velocity v in the
positive z—direction. For intermediate flow velocities it was sug-
gested to describe the polymer by a string of blobs (large dot-
ted circles) [59] with radius R; containing N; beads, cf. Fig. 2.
It was predicted that in this regime the shape of the polymer
resembles the form of a trumpet.

pletely controlled. In fact, it removes the nonlinearity from
the equations of motion and therefore necessarily leads to
a Gaussian conformational distribution function [69]. An
approach along these lines was also used to investigate a
tethered polymer in uniform flow [62]. It was argued that
the hydrodynamic interaction acts to keep the coil at the
free end of the polymer tightly together so that it may be
modelled as the one bead of a half~dumbbell model. The
results from this half-dumbbell model were found to be in
qualitative agreement with the experimental data.

It is difficult, however, to generalize these results to
other conditions. According to its small number of degrees
of freedom the dumbbell model cannot describe something
like the transition between a coiled and a stretched state
of the polymer [19,20]. It can also not describe a crossover
between non—draining and free—draining polymer behav-
ior as analyzed in this work. Finally it does not allow to
calculate the perturbation of the imposed flow caused by
the polymer. This latter step in our view, however, con-
stitutes a second crucial part of the nonlinear interaction
between the polymer molecules and the macroscopic flow
of the solution next to the deformation of the polymer
by the flow. An analytical description of this nonlinear
interaction seems impossible at present.

The purpose of the present paper is to address some of
the general questions raised above: the validity of the blob
model, the relative importance of various interactions for
the bead spring model and the number of beads which is
necessary to faithfully describe the conformations of the
polymer. As a specific case we consider these questions for
a single polymer which is fixed at one end and subjected
to a uniform flow in the z—direction. Here we concentrate
on the deformation of the polymer at steady state. The ex-
plicit determination of the perturbation of the flow field
and the relaxation dynamics of the polymer will be ad-
dressed elsewhere [70-72].

With respect to generality in the interactions only com-
puter simulations of a long bead spring chain are promis-

z

Fig. 2. Sketch of a bead spring model for a polymer [29-32]
which is fixed at one end (bead index ¢ = 0). The springs
connecting the beads are either harmonic springs described by
the quadratic potential in Eq. (28) or anharmonic springs with
the nonlinear potential given in Eq. (71). The former gives a
Gaussian distribution of the bond length |Q| while thermal
equilibrium and the bonds are strongly stretched in the pres-
ence of flow. In the latter case the bond lengths remain almost
unchanged unless the flow becomes very strong (cf. Sec.3). In
appendix C we consider a chain where the springs are replaced
by rigid rods of length b. This gives the freely jointed chain
model.

ing in order to make progress on these issues. To avoid
uncontrolled approximations in the hydrodynamic interac-
tions two methods are applicable. In molecular dynamics
calculations [73,74] the solvent is taken into account as a
collection of individual particles and a canonical ensemble
is realized by means of a thermostat. A problem arising
in non-equilibrium systems is the realization of bound-
ary conditions for which a standard scheme exists only
for the case of simple shear flow [75,76]. Closer to the
theory and as it turns out also favorably in terms of com-
puter time are Brownian dynamics simulations [33] where
the solvent degrees of freedom are integrated out of the
equation of motion. This induces conformation dependent
correlations in the stochastic forces which must be prop-
erly accounted for. We avoid averaging procedures [30,62,
67,68] and simulate the Brownian dynamics of the poly-
mer including the full fluctuating hydrodynamics. For do-
ing so the straight forward discretization scheme for the
Langevin equation is modified to achieve large enough in-
tegration steps while still preserving the Boltzmann dis-
tribution at equilibrium [77,78]. In contrast to previous
Brownian dynamics studies of polymers with fluctuating
hydrodynamics [79-84] this allows simulations of reason-
ably long chains on present day high-speed supercomput-
ers and a partial qualification of various model approaches
becomes possible.

In section 2 the global and local properties of inter-
est, i.e. measures for the extension of the polymer in the
flow direction and perpendicular to it as well as the den-
sity of polymer segments, are defined and the quantities
used within the blob models are related to those suitable
for bead spring models. Results for these quantities are ob-
tained for the Gaussian chain, i.e. a bead spring chain with
harmonic springs and with no other interactions taken into
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account. The methods we use are an analytical calculation
based on the Gaussian conformational distribution func-
tion (cf. appendix B) and numerical simulations of the
Langevin equation (cf. appendix E). The results for the
Gaussian chain are compared to the predictions of a blob
model making the same assumptions which is presented
in appendix A. The scaling behavior of the blob model in
this case agrees well with both the analytical calculation
and the numerical simulations.

The unrestricted extensibility of polymer models with
a Gaussian distribution of the bond lengths obviously con-
flicts with the fact that the chemical bonds ultimately
impose a fixed contour length on the polymer. This con-
straint becomes an essential ingredient at larger flow ve-
locities. In section 3 we investigate the global and local
properties of a polymer in flow for the freely jointed chain
and the FENE (Finite Extensible Nonlinear Elastic )
chain. For both models several analytical results on the
scaling behavior of the end-to—end distance and the seg-
ment density are derived in appendices C and D respec-
tively. The scaling of the blob model is now approached
only for very long chains and it holds only in a rather
narrow range of velocities.

In section 4 we make the previous models more com-
plete by taking into account the excluded volume effect
for both the Gaussian chain and the FENE chain. It will
be shown that the excluded volume effects vary along the
deformed polymer. Finally in section 5 we add the effects
of hydrodynamic interactions between the beads to both
models by employing the Oseen tensor. A crossover be-
tween non—draining and free—draining polymer behavior
will be demonstrated and the quantitative results of the
simulations suggest that for real polymers one cannot ex-
pect the simple scaling behavior predicted by blob models
with either non—draining or free—draining blobs.

We close this work with a discussion of the applica-
bility of the different models and the relative importance
of the various interactions. While the qualitative behavior
of the polymer is described in sections 2—5 most of the
details of the analytical calculations are given in appen-
dices A for the blob model and appendices B through D
for the Gaussian, freely jointed and FENE chains respec-
tively. The main analytical scaling results are summarized
in table 1. The details of the numerical simulations are de-
scribed in appendix E and appendix F.

2 Tethered Gaussian chain in the
free—draining limit

In this section we consider the simplest bead spring model
(cf. Fig. 2) where the springs are harmonic and no other
interactions between the beads are taken into account, the
so—called Gaussian chain. For this model the polymer de-
formation can be calculated both by numerical simulation
and by analytical methods which confirms the accuracy
of the numerical scheme. However, analytical scaling laws
for the extension of a tethered polymer in uniform flow
as a function of the flow velocity and the number of poly-
mer segments have first been derived for a blob model (cf.

Fig. 3. Various measures for the chain extension as functions
of the flow velocity v for a Gaussian chain with N = 100
beads: end—to—end distance Rr (upper curve), square root of
the zx—component of the end—to—end tensor vV E** (middle
solid curve), mean value of the z—coordinate of the end—to—end
vector Xg (lower curve) and maximum z-coordinate among
all beads X,nq. (dotted line as guide to the eye). The symbols
are values obtained from numerical simulation; the analytical
results are due to Egs. (1 -3).

Fig. 1) for the non-draining limit [59], i.e. for the case
with strong hydrodynamic interactions. In appendix A we
therefore introduce a modified blob model for a polymer
for the free-draining limit where the hydrodynamic inter-
actions are neglected and we derive the scaling behavior of
the extension L(v) and the segment density along the flow
direction p(z) as well as the lateral extension 7'(z) of the
polymer. These results are now compared with the analyt-
ical and numerical results for the more detailed Gaussian
chain.

For the bead spring model there are several possible
measures of the in—flow extension of the polymer [32] as
shown in Fig. 3: the end—to—end distance Rg (upper solid
curve), the square root of the end-to-end tensor v/E*Z
(middle solid curve), the mean z—component of the end—
to—end vector Xg (lower solid curve) and the mean value
of the maximum z-coordinate among all beads X4 =
(max;(R? —R})) (dotted line). X4, cannot be calculated
analytically (the dotted line in Fig. 3 is only a guide to
the eye) but the other quantities are easily obtained ana-
lytically from the conformational distribution function as
detailed in appendix B.2. The corresponding solid lines in



R. Rzehak, W. Kromen, T. Kawakatsu and W. Zimmermann: Deformation of a tethered polymer in uniform flow 5

Fig. 3 are calculated according to the relations
Rp = V/(IRy — Ry [?)
1/2
v2(v N(N+1)Y
= [ b’N 1
(b + 3kgT 2 ’ (1)
VET =\ [(Rs - Re)?)
1/2
_ (P (P NV +DV) )
S\ 3 3kpT 2 ’
Xp = (RY — Rg)

_ b’(v N(N+1) 3)

~ 3ksT 2 ‘
Here b is the root mean square bond length at equilib-
rium, N is the number of beads used in the model, ( is
the single bead friction coefficient, and v is the velocity
of the flow in the z—direction. ( is related to the solvent
viscosity n and the effective hydrodynamic bead radius a
by Stokes law { = 6mna. The values obtained from numer-
ical simulation for all four quantities, Rg, VE**, Xg and
Xomaz, are given by the symbols in Fig. 3. They are found

in perfect agreement with the available analytical results.
When the polymer is sufficiently elongated, that is at

large enough flow velocities, e.g. v % 0.05 for N = 100 as
used in Fig. 3, then all quantities exhibit the same scal-
ing. For small values of the flow velocity X g tends to zero
while the other quantities remain finite. At v = 0 the size
of the polymer coil is determined solely by thermal fluctu-
ations. Therefore we may say that X g measures only the
elongation caused by the external flow acting against the
entropic elasticity of the polymer while the other quan-
tities include some contribution that is due to thermal
fluctuations directly. At some flow velocity the latter con-
tribution becomes negligible and all quantities agree with
each other.

For vanishing flow velocity, v = 0, Eq. (1) reduces to
the well-known Flory law for the end—to—end distance as a
function of the number of beads N [2,31,32,85]. The two
experimentally accessible lengths Ry = N'/2b and Nb
then fix the model parameters N and b. These are inter-
preted as the number and size of statistically independent
parts of the chain, the so-called Kuhn segments [86].

If our main focus is on the regime at larger flow ve-
locities where the drag forces exerted by the external flow
dominate the thermal forces, there is more freedom in the
choice of the model parameters. In this case only the con-
tour length of the polymer is relevant which fixes only the
product Nb. Furthermore in the free—draining case consid-
ered here each bead experiences a drag force (v, i.e. the
total drag force experienced by the whole chain is N(v. If
we take b and ( as units for length and force chains with a
different number of beads N may be compared by looking
at the fractional extension Xp/(Nb) as a function of the
total drag N(v. Rewriting Eq. (3) as

XE b

~Nb = kT Cv(N +1) (4)

one finds that the functional relation between the two
quantities is indeed independent of N provided N is large
compared to 1. If we use Rg in place of Xg the curves
for different N will not collapse for small values of v be-
cause in this case the velocity independent contribution
in Eq. (1) cannot be neglected. This may also be used as
an indicator that the direct contribution of the thermal
fluctuations to the polymer extension is important.

The polymer extension L as calculated within the free—
draining blob model in appendix A is

na 2
L (kBT)v(Nb) . (5)
Both the linear scaling with the flow velocity v and the
quadratic scaling with the number of beads N agree with
that for the various quantities in Eqs. (1)—(3) for large
enough values of v, where the velocity independent, contri-
butions can be neglected. Hence a tethered polymer may
be described as a string of blobs as indicated in Fig. 1 if
the chain is sufficiently elongated. For small elongation or
equivalently for small flow velocity the blob picture is no
longer valid as also discussed in appendix A. A quantita-
tive estimate of the range of validity of the blob model
is furnished by comparing the scaling of the length of a
string of blobs L « v given by Eq. (5) with the different
measures of chain elongation for the more detailed bead
spring model shown in Fig. 3. The mean xz—component of
the end—to—end vector X scales linearly with v and thus
has the same scaling as the chain extension L in the blob
model while the other quantities deviate from this scaling
behavior at small flow velocities. Based on the interpreta-
tion of X g given before, this suggests that the blob model
describes only that part of the polymer extension which
is due to the action of the flow. Since the other quantities
like the end-to—end distance Rg also contain the direct
contribution of the thermal fluctuations, a vanishing dif-
ference Ry — Xg might be a reasonable measure for the
range of validity of the blob model. This is also confirmed
by looking at the exponent p for the segment density at
different flow velocities (see below).

Egs. (1)—(3) indicate that the whole contour of a teth-
ered Gaussian chain is considerably stretched with increas-
ing values of the flow velocity because the end—to—end
distance can grow without bounds, i.e. for N = 100, Rg

exceeds the contour length at equilibrium Nb for v 2 0.05.
This feature can be traced down to a stretching of the in-
dividual springs, the mean square length (|Qy|?) of which
is given by Eq. (38). Since the blob model uses a constant
value (|Qg|?) = b% in each blob it is not obvious why the
blob model predicts the correct scaling behavior for the
Gaussian chain. This question will be discussed in more
detail later on.

Local information about the polymer shape is provided
by the density of polymer segments along the flow direc-
tion p(x). The blob model yields an analytical expression
for the density p(zo —x) measured from the free chain end
o which shows an inverse power law behavior

L (kT

plao ) o 3 (70

)v*1/2(:c0 — x)*1/2 , (6)
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Fig. 4. Distribution p(z) of polymer segments along the flow
(z—) direction as obtained from simulation of a chain with N =
500 beads connected by harmonic springs at a flow velocity
of v = 0.01. The solid line is a fit according to the formula
p(x) o< a(ro —x) ™" with the fitted values pu = 0.48, zo = 409.6
and a = 10.86. The z-range for the fit (here z € [5.6,396.6])
has been chosen such as to maximize the number of data points
in agreement with the fit. Close to the tetherpoint at z = 0 the
segment density may be smaller than 1 because the segments
of the Gaussian chain are stretched beyond their equilibrium
length b.

as shown in in appendix A. Here again b is the Kuhn length
and a the hydrodynamic bead radius. This expression di-
verges at the position xg of the free end of the polymer.

In numerical simulations of a chain with N = 500
beads connected by harmonic springs we obtain a segment
density as shown in Fig. 4 at medium values of the flow
velocity (v = 0.01). Here p(z) is normalized to give the
number of beads N. The solid curve is a fit to the power
law p ox a(zg — )™ where the fitted exponent u = 0.48
is rather close to the exponent 1/2 in Eq. (6), the ana-
lytical expression obtained from the blob model. For the
additional fit parameters we find values of g = 409.6 and
a = 10.86. Since z is only slightly beyond the location
of the maximum of p(z) it is tempting to identify zo with
the position of the free chain end in the blob model.

The velocity v = 0.01 for which the data in Fig. 4
have been obtained is just at the onset of the validity
range of the blob model (trumpet regime) as determined
from the difference Rg — X g for N = 500. For smaller flow
velocities we find a decreasing exponent p thus confirming
the agreement of Ry and Xpg as a quantitative measure
for the validity range of the trumpet regime.

The segment density p(r) as derived from the confor-
mational distribution function in appendix B.4 is given

N
Zér—Rk> (7)

<k
0(r—Ry)

+; (ﬁ) exp(—% (r— <Rk>>2) -

This is a sum of Gaussian distributions centered about the
mean position of the k—th bead (Ry). Evaluating Eq. (7)
numerically for a large number of beads (N = 5000) the
functional dependence of p(z), which is obtained from p(r)
by integrating over y and z, is seen to follow nearly exactly
the power law p o (zo — 2)~'/? when a small fraction of
beads close to the free end is discarded.

In appendix B.5 we introduce an alternative measure
for the local density of polymer segments along the z—axis
by the inverse mean distance in the z—direction between
neighboring beads. This so—called quasi—segment density
takes the form

=]

3ksT

2¢v(zo—2)’ ®

plwo —x) =7

which again shows the scaling behavior p o (2o — 2) /2.

Note that the quasi—segment density has the same scaling
as the segment density in the blob model for any number
of beads and over the whole range of x—positions. In con-
trast the true segment density, obtained either from sim-
ulation or from the conformational distribution function,
shows the scaling predicted by the blob model only for
long chains and away from the free chain end. The quasi—
segment density which is based only on the mean bead-
positions can be considered as a mean—field type approxi-
mation to the true segment density. The true segment den-
sity also accounts for the fluctuations of the beads around
these mean positions which is obvious from the result in
Eq. (7) which is a sum of Gaussian distributions each lo-
cated at the mean position of one of the beads. This is the
reason for the deviations between the true and the quasi—
segment density for short chains and at the free end. The
complete agreement between the quasi—segment density
and the blob model again suggests to view the latter as a
mean—field type theory.

Another quantity that has been used to characterize
the polymer shape within the blob model is the polymer
extension perpendicular to the flow direction 7'(x). One
obtains for the blob model in the free-draining limit, cf.
appendix A, the formula

kpT\1/2
b() e P ) 2, (9)

Y(z) x "

which describes a trumpet shape of the envelope of the
polymer coil. This quantity has no direct correspondence
within the bead spring model. We attempt to relate 7°(x)
to the 2—dimensional segment density p(z,y) in the follow-
ing way: For each value of the z—coordinate we distribute
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the total weight p(z) in the y-direction according to a dis-
tribution P(y(x)). A particular choice for P(y(z)) could
be a Gaussian with variance Y7'(z). Then we can calcu-
late the yy-component of the gyration tensor which is the
second moment of the segment density [31] as

G = [depo) [y Plo(a) = [ deple) 1) (10)

For the second equality we used the fact that the y-integral
is precisely the variance of P(y(z)) which is 7'(z) by our
construction. If we insert the relations for 7'(x) and p(z)
from Eq. (9) and Eq. (6) we can put the velocity depen-
dent prefactors in front of the integral and thus obtain
a prediction of the scaling behavior of the yy-component
of the gyration tensor with the flow velocity v, namely
GYY & v~!. Note that this power law does not depend on
the precise form of P; the only property of P that really
matters is its second moment.

The power law for G¥Y is readily compared to the cor-
responding result for a bead spring model. Here the gyra-
tion tensor is defined as

> . (11)

N N
1
“=3w <Z > (R —Ry)(Ri —Ry)”
i=1 j=1
Due to symmetry we can use the transverse component of
the gyration tensor
1
G+ = (@ +G™) (12)

in place of GYY which gives a better statistics when eval-
uated from numerical data.
The result for the Gaussian chain derived in appendix

B.3is
1 (1 ., 2 b?
W(§N +§N>§’

which is independent of the flow velocity. Therefore we
conclude that the blob model is not able to make predic-
tions about the transverse extension of a Gaussian chain
in flow.

Gt = (13)

3 Chains of finite extensibility

The tethered Gaussian chain discussed in the previous sec-
tion may be stretched by a flow unrealistically strong be-
yond its equilibrium contour length. For this reason we
investigate in this section more realistic polymer models
where the contour length is fixed or only slightly stretched
by a flow.

A suitable model for numerical simulations is a bead
spring chain with a nonlinear (FENE) spring potential
as given by Eq. (69) (see e.g. [87-89]). We calculate the
unwinding of a tethered FENE chain in a uniform flow
field both numerically and semi—analytically in a similar
manner as in the previous section for the Gaussian chain.

Fig. 5. End—to—end distance Rr for a tethered FENE chain
in the free-draining limit as a function of the flow velocity v
for different chain lengths N = 50 (bottom), = 100 (middle),
N =300 (top). The symbols are data obtained from numerical
simulation while the solid lines are obtained from evaluation
of the integrals in Eq. (77). The dashed line is the result for
the freely jointed chain for N = 300 as given by Eq. (64).

The semi—analytical part, i.e. the derivation of the for-
mula for the end—to—end distance, is described in detail in
appendix D. We then compare the results for the FENE
model to those for a freely jointed chain which prohibits
any stretching of the bonds at all. This model can also
be treated analytically to some extent as described in ap-
pendix C.

The flow velocity dependence of the end—to—end dis-
tance Rg of a FENE chain is shown in Fig. 5 for differ-
ent chain lengths Nb where b = 0.961 (cf. appendix D).
The solid lines are obtained by evaluating the integrals
in Eq. (77) and the symbols are the results of numerical
simulations of a FENE chain with NV = 100 beads.

Three different regimes can be recognized in Fig. 5.
For very large velocities the end—to—end distance is still
growing slowly with some power law Rp oc v°3. This
nonzero but small exponent indicates a residual stretch-
ing of FENE chains in very strong flow fields. For com-
parison the end—to—end distance of a freely jointed chain
with N = 300 beads is calculated according to Eq. (64)
and shown by the dashed line in Fig. 5. Beyond v ~ 0.1
the freely jointed chain is almost completely uncoiled as
indicated by the plateau of the dashed curve. Comparing
the upper solid line in Fig. 5 with this dashed line gives an
estimate of the stretchability of the FENE chain which is

only noteworthy for v % 0.1 at N = 300. Hence for smaller
flow velocities there is no significant difference between
the FENE and the freely jointed chain. An examination
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Fig. 6. End—to—end distance R for a tethered FENE chain
in the free-draining limit as a function of the number of beads
N for different flow velocities v = 0.0005 (bottom), v = 0.005
(middle), v = 0.05 (top). The symbols are data obtained from
numerical simulation while the solid lines are obtained from
evaluation of the integrals in Eq. (77). The dashed line is the re-
sult for a freely jointed chain for v = 0.05 as given by Eq. (64).

of the distribution of bond lengths at different flow ve-
locities shows that the onset of the residual stretchability
is roughly inversely proportional to N. In an intermedi-
ate velocity regime the end—to—end distance for the FENE
chain behaves as Rg o v*®* for N = 300. The exponent
increases with IV until it is expected to reach a fixed value
of 1 for very long chains which is the value obtained for the
freely jointed chain with N = 5000 in a tiny range of flow
velocities (cf. Fig. 8). Finally for very small velocities the
polymer coil is almost undisturbed and the end—to—end
distance is close to its value in thermal equilibrium.

The N-dependence of the end—to—end distance is shown
in Fig. 6 for different flow velocities. At small velocities
Rp increases with N'/2 which is the same as the N—
dependence at thermal equilibrium. Again the influence
of the residual extensibility of the FENE chain can be
assessed by comparing in Fig. 6 the solid line for v =
0.05 with the dashed line, where the latter belongs to the
end—to—end distance for the freely jointed chain given by
Eq. (64). Here even for the largest number of beads the
deviations are still very small indicating that at such ve-
locities the FENE chain is stretched by a tiny amount
only.

The segment density p(z) for a FENE chain with N =
500 beads is shown in Fig. 7 and for three different flow
velocities v = 0.002, v = 0.005 and v = 0.01. The shape of
p(x) is qualitatively similar to that for a Gaussian chain,
(cf. Fig. 4), and this trumpet shaped distribution can
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Fig. 7. Distribution p(z) of polymer segments along the flow
(z—) direction as obtained from simulation of a chain with N =
500 beads connected by FENE springs and for three different
flow velocities v = 0.002 (left), v = 0.005 (middle) and v = 0.01
(right). The solid lines are a fit of the curves with the formula
p(x) oc a(wo — ). The values of the fit-parameters are p =
0.37, zo = 61.09, « = 16.05 for v = 0.002, p = 0.35, zo =
155.2, @ = 9.87 for v = 0.005 and u = 0.28, xp = 245.4, a =
5.76 for v = 0.01. The z-ranges for the fit ([1.6,49.9],[1.6,147.9]
and [142.5,140.5]) have been chosen such as to maximize the
number of data points in agreement with the fit. In contrast
to the Gaussian chain (cf. Fig. 4) the segment density is now
always greater than one.

again be fitted by an inverse power law p & a(zg — ) H.
The precise values of all fit parameters are given in the
caption of Fig. 7. For the exponent u one obtains values
between p = 0.37 and p = 0.28. These exponents are
significantly smaller than the value p = 0.5 obtained for
the Gaussian chain which is a consequence of the limited
stretchability of the chain segments.

To investigate the validity of the scaling predictions of
the blob model we show in Fig. 8 the z-coordinate of the
end-to—end vector Xg and the end-to—end distance Rg
as functions of the flow velocity for freely jointed chains
with N = 500 and N = 5000 beads. This compares to
Fig. 3 for the Gaussian chain. Again the validity of the
blob model may be expected only in the range where the
curves for Xg and Rg in Fig. 8 coincide. In contrast to the
Gaussian chain, here the scaling of the blob model, L « v,
applies only in some small transition regime, roughly be-
tween the two velocities v.; ~ 6x 107° and ves ~ 4x 104
for N = 5000. For N = 500 no scaling regime is visible in
Fig. 8. That there is now also an upper limit for the scal-
ing regime is obvious since the finite extensibility requires
the extension to have a plateau at large velocities. The N—
dependence of the size of the validity range of the trumpet
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Fig. 8. Flow velocity dependence of the end—to—end distance
Rpg according to Eq. (64) (upper curves) and the z—coordinate
of the end-to—end vector Xg according to Eq. (62) (lower
curves) for freely jointed chains with NV = 500 (dotted curves)
and N = 5000 (dashed curves) beads. The axes are scaled such
that curves with different N collapse for sufficiently large v as
explained in the previous section. The agreement between the
curves for Xg is so perfect that they can hardly be distin-
guished.

regime is given in Eq. (26) for the free—draining and in
Eq. (27) for the non—draining blob model (cf. Ref. [61]).
This N—dependence is rather weak whence it is already
clear form these formulae that very long chains are needed
to exhibit a clear scaling regime. According to the estimate
given above N = 5000 is barely sufficient since it gives
only a tiny scaling regime. Therefore, for non-stretchable
chains of only up to N ~ 3000 Kuhn segments like the
DNA used in experiments [39,49,62] one can hardly ex-
pect a trumpet regime for the polymer deformation even
in the free—draining limit. As we show in the next sections
excluded volume and hydrodynamic interactions require
even longer chains to reach a scaling regime.

Beyond the validity range of the trumpet regime a so—
called stem and flower regime was suggested [61]. In this
regime the polymer is divided into two parts. The stem
is the completely straightened part close to the fixed end
where p(z) = 1 and the flower is the part close to the free
end where the usual trumpet scaling holds, i.e. p(z)
x1/2,

This scaling of the segment density is an additional,
local measure for the validity of the blob model. To check
the behavior in the long—chain limit for the freely jointed
chain we have to rely on the quasi-segment density p'(z)
(cf. appendix B and C) because there is no simple analytic
result for the true segment density. The quasi—segment
density has been shown to give the same scaling as the true
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Fig. 9. Quasi-segment density p’(z) according to Eqs. (66)-
(67) for a freely jointed chain with N = 5000 beads and for
flow velocities v =1 x 10™* (top) and v = 4 x 10™* (middle).
The lower solid line gives the blob scaling p’ o (2o — )~ /2.
The ordinate here is zo — x instead of x which is different in
Fig. 4 and Fig. 7.

segment density for the Gaussian chain in the previous
section. We emphasize, however, that both quantities are
not equivalent.

For a freely jointed chain with N = 5000 we indeed
find a power law behavior p' o (zo — 2)~'/? as for the
blob model in a small range of flow velocities around v =
1 x 10~* as shown by the upper curve in Fig. 9. For both
smaller and larger flow velocities there is a deviation from
the scaling close to the free end which may be attributed to
a break-down of the mean—field type approximation used
in the definition of p' (cf. section 2). For larger flow veloc-
ity (middle curve in Fig. 9) there is an additional deviation
close to the fixed end which indicates the development of
a stem.

The estimate just made for the range of flow velocities
where the trumpet regime may be observed agrees with
that obtained from the analysis of the global chain exten-
sion in Fig. 8. It also seems to indicate that the densities
for FENE chains with N = 500 shown in Fig. 7 correspond
already to the stem and flower regime. However, the fit-
ted scaling exponents differ strongly from the value of 1/2
even when the fit range was restricted to some portion of
the chain near the free end. In order to understand this
we note that the appearance of the blob scaling for p'(x)
depends crucially on a precise knowledge of the location
of the free chain end. This allows to make a logarithmic
plot of p'(z) from which a local (z—dependent) exponent
can be read off and to see for which xz—positions it has a
value of 1/2. For the true segment density p(x), however,
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Fig. 10. Flow velocity (v—) dependence of the transverse com-
ponent of the gyration tensor G+ for a FENE chain (triangles)
and a freely jointed chain (dashed line) with N = 100 beads.
The data for the FENE chain are calculated from numerical
simulations; the curve for the freely jointed chain is obtained
by evaluating the sum in Eq. (65).

the location of the free chain end is not even well-defined
and one has to use a fit procedure with a prescribed range
of z—positions to obtain a single global exponent. Fitting
the data for the quasi—segment density in a manner sim-
ilar to those for the true segment density in Fig. 7 with
an additional fit parameter xo, one finds that the largest
portion of the chain (located close to the fixed end and
thus heavily squeezed in Fig. 9) is well fitted with expo-
nents similar to those obtained for the true segment den-
sity for all flow velocities. The difference in these fitted
values is already negligible for chains with N = 500 beads
indicating that the asymptotic regime is reached even for
N = 500. We conclude that the segment density is maybe
not a good observable to discriminate between the trum-
pet and the stem and flower regime because fluctuations
tend to smear out the different scaling p < z# in the stem
(1 = 0) and in the flower (u = 1/2). In addition at small
flow velocities the exponent p is reduced gradually as the
blob model ceases to be valid which was observed already
for the Gaussian chain.

In Fig. 10 we compare the transverse component of
the gyration tensor G as defined in Eq. (12) for a FENE
and a freely jointed chain with N = 100 beads. At small
flow velocities the values of G* for both models agree
with each other and also with the value for a Gaussian
chain which is G+ = 5.13 for N = 100 and b = 0.961
(cf. Eq. (44)). At large flow velocities G obeys a power
law for both models. The exponent, however, is different
in both cases. For the FENE chain G+ o v~%8% while

for the freely jointed chain G oc v=0%. The transverse

extension seems to be far more sensitive to the residual
stretchability of the FENE springs than the elongation
of the chain in the flow direction. Appreciable differences
between the FENE and the freely jointed chain are already
present at a flow velocity of v = 0.02 for G+ while the
values of Rg for both models agree with each other up to
v = 0.3 for N = 100.

A power law behavior for the transverse extension is
also predicted by the blob model when G¥ is calculated
from 7'(z) as discussed in the previous section (cf. Eq. (10)).
The predicted value of —1 for the exponent is in good
agreement with the value obtained for the freely jointed
chain. However, the range where the scaling regime for G
appears is at larger flow velocities than the range of the
scaling regime for Rg. Extrapolating the estimate drawn
from Fig. 8 the scaling range for Rg extends only up to
v0.02 for N = 100 while the scaling range for G+ in Fig. 10
begins only at v ~ 0.1. Therefore some doubt remains as
to whether the blob model faithfully describes the trans-
verse extension of a freely jointed chain. Anticipating some
results from section 5 we find that for the bead spring
model the scaling exponent for G+ does not depend on
whether hydrodynamic interactions are included in the
model or not. The non—draining blob model, however, pre-
dicts G¥¥  v~'/¥ which is different from the prediction
GYY x v~! for the free-draining case discussed above and
in section 2.

4 Excluded volume effects

For strongly elongated polymers the excluded volume in-
teraction (EVI) can be neglected and the assumptions
made in the previous two sections are justified. EVI only
becomes important for smaller values of the flow velocity,
where the equilibrium conformation is only moderately
distorted. Only in this regime scaling exponents can be ex-
pected which are typical for EVI. Within the blob model
the effects of EVI are easily covered by choosing the ex-
ponent of the Flory scaling v = 3/5 instead of v = 1/2 in
Eq. (15). For the bead spring model with EVI one has to
rely on numerical simulation since semi-analytical meth-
ods as used in the previous two sections are not tractable.

In Fig. 11 the end—to—end distance Rpg is plotted for
chains with N = 100 beads connected either by harmonic
springs or by FENE springs and both with and without
EVI. For large flow velocities corresponding to strong de-
formations the EVI becomes less important and therefore
the curves with and without EVI approach each other for
the Gaussian as well as for the FENE chains. With de-
creasing flow velocity in contrast, the differences between
chains with and without EVI increase and for vanishing
flow velocity Rg approaches its equilibrium value which is
larger with EVT [2,31,32]. In thermal equilibrium, i.e. at
v = 0, the end—to—end distance is basically the same for
both the Gaussian and the FENE chains.

For the Gaussian chain at intermediate flow velocities,
and therefore at medium deformations, the extension of
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Fig. 11. End-to—end distance Rg as a function of the flow
velocity for Gaussian (open symbols) and FENE (solid sym-
bols) chains with N = 100 beads. The squares give data with
excluded volume interactions (EVI) taken into account, the
triangles give data without excluded volume interactions. The
solid lines with slopes 0.5 and 1.0 correspond to the scaling
exponents extracted from the data for the Gaussian chain. For
vanishing flow velocity (thermal equilibrium) the curves for the
FENE and Gaussian chains approach each other as expected
in both cases with and without EVI. The small differences in
the case with EVI are due to the slightly different effective
bond lengths (cf. appendix E): for the Gaussian chain we have
b = 1.0 without EVI and b = 1.37 with EVI while for the
FENE chain b = 0.961 both with and without EVI.

polymer chains with and without EVI has a different scal-
ing with velocity. In the uppermost curve of Fig. 11 we
observe a scaling for the end-to—end distance Rg oc v°°.
Increasing NV to 200 does not change the exponent by any
significant amount (cf. Fig. 12). Between v = 0.05 and
v = 0.1 there is a crossover to the scaling Rg o v which is
the same power law as for a Gaussian chain without EVI
considered in section 2. This crossover takes place at a
flow velocity where the extension of the polymer approxi-
mately equals the contour length of the polymer in ther-
mal equilibrium. The scaling in the intermediate range,
Rr o v%%, must be compared with the scaling of the
extension L o v2/? for a blob model with EVT in the free—
draining limit as described in appendix A.

In Fig. 12 the Rg(v) curves are compared for two chain
lengths N = 100 and 200. As explained in section 2 the
curves for different N are expected to collapse for suffi-
ciently large v when the fractional extension Rg/(Nb) is
plotted versus the total drag force which is N (v since the
chain is free—draining. The two curves in Fig. 12 indeed
agree so perfectly that we consider it as significant even
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Fig. 12. Normalized end-to—end distance Rg/(NNb) for chains
of different lengths Nb (small and large squares) as a function
of the total drag force exerted on the chain. The model assumes
harmonic springs and only the excluded volume interaction
(EVI) is taken into account. The numbers of beads for the
two cases were N = 100 and N = 200 while the effective bond
length is b = 1.37 for the Gaussian chain with EVI as explained
in appendix E. The total drag force is just v/N( in the free—
draining case considered here.

though the values of N we considered differ only by a
factor of two.

For the exponent y for the segment density p o (zo —
x)~H as calculated from numerical simulations of a chain
with harmonic springs and EVI we find values between 0.3
and 0.4 in the intermediate velocity range v = 0.005 ... 0.05.
For the blob model with ¥ = 3/5 one has u = 2/5 as de-
scribed in appendix A. These values are quite different
from p = 0.5 for the case without EVI (cf. section 2).

In contrast to the good agreement between the scaling
laws for the blob model and the Gaussian chain without
EVT found in section 2, the agreement is less perfect when
EVTIis included. A possible explanation is simply that our
chains even with N = 200 are too short. However, there
is a more serious inherent problem in the blob model with
EVI. Blob models can only be applied beyond some crit-
ical velocity where the polymer is sufficiently deformed.
Then the deformation is stronger close to the tether point
than near the free end. Therefore the EVI is less important
near the tether—point than near the free end, i.e. the EVI
becomes effectively z—dependent. But in the blob model
one and the same exponent v characteristic for EVI is as-
sumed in each blob independent of its location close to
the free or close to the tethered chain end. Therefore one
can hardly expect a precise agreement between the scal-
ing predicted by blob models with EVI and bead spring
chains with EVI. Whether the position dependence of the
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Fig. 13. Tension along the chain as a function of the bond
index N — j counted from the free chain end for different val-
ues of the flow velocity v = 0.1, 0.2, 0.5, 1.0, 2.0 from bottom
to top. The data have been obtained from numerical simula-
tions of a chain with N = 100 beads connected by harmonic
springs including the excluded volume interaction (EVI). For
the largest velocity (uppermost curve) the tension is propor-
tional to the bond index indicating that EVI is unimportant
for the uncoiled polymer.

EVI becomes unimportant in some velocity range for very
long chains is unclear and it is not possible to attack this
question seriously with present day computers.

The inhomogeneity of the EVI along the chain can
clearly be seen directly from the tension within different
parts of the chain. In Fig. 13 the tension T_; is shown
as a function of the bond index N — j for several val-
ues of the flow velocity v. Without EVI the tension in-
creases linearly from the free (N — j = 1) towards the
fixed (N — j = N) chain end because the same drag force
is exerted on each bead. This is the case for the largest
velocity (uppermost curve) in Fig. 13 indicating that as
expected EVI doesn’t play a role anymore at large v when
the polymer is strongly elongated. At smaller flow veloci-
ties the EVI, which couples even beads that are far apart
along the chain, provides a mechanism to redistribute ten-
sion within the chain. As a consequence the tension within
the first spring at the free chain end is larger than (v which
can clearly be seen in Fig. 13. Furthermore the slope of
the Ty_; curve is reduced below 1 near the free chain
end, e.g. to ~ 0.77 for v = 0.1. Near the fixed chain end
where the chain is stretched stronger the EVI is already
unimportant and Tv_; increases linearly with N — j. Al-
together the tension within the very last spring near the
fixed chain end again contains the total tension N({v ex-
pected in the free—draining limit. In the coiled portion of
the chain where EVI is important contains only 10 — 20

% of all beads at the smallest value of v shown in Fig. 13
but its trend to grow with decreasing flow velocity can be
expected to continue also at smaller v where the statistical
errors in the data become large.

For the FENE chain we cannot expect a scaling regime
for N = 100 beads even without EVI as discussed in the
previous section. As shown in Fig. 8 only for N = 5000
there is a small transition regime where the scaling pre-
dicted by the blob model applies for a freely jointed chain.
With EVI there is the additional complication that at
equilibrium the end-to—end distance with EVI is larger
than without EVI but the deformation for large flow ve-
locities is the same in both cases. Therefore the difference
between the end—to—end distance at equilibrium and in the
fully stretched state is smaller with than without EVI. and
the slope of the Rg(v) curves becomes smaller than with-
out EVI. Thus it is expected that even longer chains are
necessary to exhibit the blob scaling in the case with EVI
if this is possible at all.

The discussion of the transverse extension of the poly-
mer will be continued in the next section where we inves-
tigate the influence of both EVI and hydrodynamic inter-
action for a FENE chain.

5 Hydrodynamic Interaction

Throughout the previous three sections we have focused
on polymer models where the hydrodynamic interaction
(HI) between the beads has been neglected. The HI is
more involved than the other interactions considered in
this work and crucial for an understanding of the defor-
mation of polymers in flow [19,20]. Furthermore it makes
the coupling between polymers and solvent two—ways be-
cause it induces a perturbation of the imposed flow field
due to the motion of the polymer. In this section we con-
sider both Gaussian and FENE chains but we always take
into account the EVI discussed in the previous section.
For both models we then compare results without and
with HI. In previous publications HI effects for tethered
polymers have been considered either for blob models [59,
61] or for bead spring models but in the latter case only
with averaged HI and discarding the EVI [62].

Fig. 14 shows the end—to—end distance as obtained
from simulations of a bead spring chain with N = 100 har-
monic springs. The upper curve is the same as the upper
curve in Fig. 11 while the lower curve has been calculated
with the HI between the segments taken into account as
well.

The two curves are expected to approach each other
both for vanishing and for very large flow velocities. At
v = 0 both curves must coalesce because the HI change
only the kinetic coefficient in the equation of motion and
thus do not affect the static properties of polymers in ther-
mal equilibrium [2,32]. For large velocities the polymer
becomes uncoiled. Therefore the mean distance between
beads that are far apart along the chain increases and
the effects of HI are reduced. In addition each harmonic
spring of the Gaussian chain is strongly stretched — ap-
proximately by a factor of 10 at v = 1.0 — and the dis-
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Fig. 14. End-to—end distance Rg as a function of the flow
velocity v obtained from numerical simulations of a chain with
N = 100 beads connected by harmonic springs with (lower
curve) and without (upper curve) hydrodynamic interactions.
In both cases the excluded volume interaction has been taken
into account. The curve for the case without HI agrees with
the uppermost curve in Fig. 11.

tance between neighboring beads in the chain increases,
too. This effect reduces the HI further so that in the limit
of very large flow velocities all beads are far apart from
each other and the HI becomes completely negligible. In
other words for large velocities the model with HI ap-
proaches the free—draining limit.

Between the limits of vanishing and very large flow
velocities the elongation of the polymer is smaller with
than without HI. In the velocity range 0.01 < v < 0.2 (for
N = 100) the end-to—end distance for the model with
HI (lower curve in Fig. 14) has the same scaling as in
the free—draining limit (upper curve). For larger velocities
the slope of the curve with HI has to become larger than
that without HI to approach the curve without HI in the
limit of very large velocities. But even its maximum slope
around v ~ 0.2 corresponding to a power law Rp o< v'®
is still considerably smaller than the exponent of 2 as pre-
dicted by the blob model with HI and EVI [59]. For a
chain with V = 200 the maximum slope does not increase
significantly (cf. Fig. 17 and Ref. [70]).

In order to understand this deviation it is illuminating
to first discuss another aspect of HI. Fig. 15 shows the
velocity dependence of the drag force exerted on the whole
polymer chain which can be measured by the tension in
the first spring. In the free—draining limit the total drag
force is just the sum of the Stokes forces acting on each
bead which are all proportional to the flow velocity v.
Therefore the tension in the first spring grows linearly
with the flow velocity as shown by the upper curve of
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Fig. 15. Total drag force exerted on the polymer by the ex-
ternal flow, measured by the tension in the first spring Tp, as
a function of the flow velocity v. The data have been obtained
from numerical simulations of a chain with N = 100 beads
connected by harmonic springs with (lower curve) and with-
out (upper curve) hydrodynamic interactions. In both cases
the excluded volume interaction has been taken into account.
The upper curve is a linear function Ty o v.

Fig. 15. For a polymer with HI the total drag force Tp(v)
depends on the shape of the polymer and is therefore a
nonlinear function of v as shown by the lower curve in
Fig. 15. The quotient Tp/v defines a drag coefficient for
the chain as a whole. In the free—draining case we simply
have Tp/v = N(¢ while with HI the drag coefficient Tp/v
is no longer independent of v.

It is noteworthy that the drag force for the model with
HI is always smaller than that in the free—draining case.
This can be understood qualitatively as a consequence of
the so-called non—draining effect, i.e. the screening of the
flow field inside the polymer coil. As a result only the
beads on the ”surface” of the coil experience a Stokes drag.
Since this is only a fraction of all beads the total drag force
on the polymer is reduced compared to the free—draining
case. With increasing flow velocity the polymer becomes
more and more unwound which means that more beads
are exposed to the flow. Alternatively we may say that the
density of polymer segments is reduced which also reduces
the strength of the HI or the screening of the flow field
respectively. This weakening of the HI begins to become
important at the flow velocity where the curves with and
without HI in Fig. 14 cease to be approximately parallel,
i.e. at v ~ 0.2 for N = 100. It occurs first at the fixed
chain end where the stretching of the chain is strongest.
Then it increases and spreads out towards the free chain
end. Since for a chain with harmonic springs the mean
distance even between neighboring beads increases the HI
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Fig. 16. Tension within the chain as a function of the bond
index N — j counted from the free chain end for different values
of the flow velocity v = 0.2, 0.5, 1.0, 2.0, 5.0 from bottom to
top. The data have been obtained from numerical simulations
of a chain with N = 100 beads connected by harmonic springs
with excluded volume and hydrodynamic interactions. For the
largest velocity (uppermost curve) the tension is almost pro-
portional to the bond index indicating that only the harmonic
spring forces are effective.

between them finally becomes negligible as explained in
the discussion of the chain elongation. Therefore also the
drag forces with and without HI converge for large flow
velocities.

The scaling behavior predicted for the total drag force
by the blob model with EVI and HI is Ty oc v* according to
the formulae given in Ref. [59]. Simulation data for a bead
spring model with N = 100 shown in Fig. 15 give a maxi-
mum slope of 1.5 for the Ty(v) curve around v ~ 0.2. This
exponent increases slightly to to oc v!¢ for N = 200 (cf.
Ref. [70]). It is very unlikely that the large discrepancies
between both models with respect to the total drag force
T, are solely due to finite size effects. We suspect that the
conditions assumed in the blob model are not fulfilled for
the bead spring chain with HI. The blob model assumes
impenetrable blobs all along the string of blobs [59]. How-
ever, according to our simulations it is more likely that
the polymer is neither free—draining nor non—draining as
assumed previously but that a partial draining occurs in-
stead as shown by directly calculating the perturbed ve-
locity field in Ref. [70]. Furthermore similarly to the EVI
also the strength of HI varies along the chain. This spatial
variation of both effects is not represented in the free— and
non—draining blob models (cf. appendix A and [59]). The
variation of the effective HI may be taken into account
qualitatively by a modification of the blob model that in-

terpolates between both limits as described in Refs. [70,
90].

A clue to the inhomogeneous effects of HI is given by
the local tension along the polymer. In Fig. 16 we show
the tension Tv_; in bond N — j for different flow veloci-
ties for a chain with N = 100 beads. In the free—draining
case without EVI Tv_; is a linear function of j because
each bead experiences the same drag force (v and the
forces on all beads starting from the free chain end add
up to the tension in the j—th bond. Therefore a power
law Ty_; o« N — j in the curves in Fig. 16 indicates that
the corresponding part of the chain is free—draining. For
v = 5.0 (uppermost curve in Fig. 16) this is roughly the
case for the whole chain. For smaller flow velocities the
tension increases with a slope larger than 1 close to the
fixed end where the polymer becomes more and more un-
coiled. Because of the uncoiling the HI becomes weaker
and the effective drag on each bead increases when the
fixed end is approached resulting in an increase of the
tension with a slope larger than one. Near the free end
the slope of the Tn_; curves is reduced due to EVI effects
as discussed in section 4 but the actual value of the slope,
0.63 for v = 0.02 (lowest curve in Fig. 16), is now modified
by HI.

In order to compare chains of different lengths Nb we
plot the fractional extension versus the total drag force Tj
in Fig. 17. In the free—draining limit considered in the pre-
vious sections the total drag force was simply proportional
to the flow velocity v. When HI is included the drag force
depends on the polymer conformation. As Fig. 15 shows it
does not obey a simple power law dependence on v. Using
the numerical data for Ty we again find that the curves
for different IV collapse on a single master curve as shown
in Fig. 17. Note that the range of drag forces in Fig. 17
does not extend to values as small as in Fig. 12 and Fig. 8
because data for Ty corresponding to smaller flow veloc-
ities have a rather large statistical error. Therefore the
near—equilibrium regime where the curves fall apart is not
visible in Fig. 17.

Finally we turn to the transverse extension of the Gaus-
sian chain with EVI and HI. At the same flow velocity
polymers with HI are less elongated in flow direction than
free—draining polymers (cf. Fig. 14). Assuming that the
bead spring chain occupies roughly the same volume with
and without HI one may expect that the extension of a
polymer perpendicular to the flow direction is larger for a
chain with HI than without. The mean transverse compo-
nent of the gyration tensor defined in Eq. (12) is a reason-
able measure to test this conjecture. In Fig. 18 we show
these data calculated from simulations of a Gaussian chain
with EVI and both with and without HI. A large part of
the curves at small to medium flow velocities confirms this
expectation. However, the regime at large velocities where
the chain with HI is contracted transversely compared to
that without HI shows that the effects of HI are not al-
ways obvious. Hence situations where HI is potentially
important should be considered with care. At very large
flow velocities both curves converge towards the value for
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Fig. 17. Normalized end-to—end distance Rg/(Nb) for chains
of different lengths N = 50, 100, 200 (small, medium and large
diamonds) as functions of the total drag force acting on the
chain. The model considered here assumes harmonic springs
and both excluded volume and hydrodynamic interactions are
taken into account. Because of the presence of the excluded
volume interactions the effective bond length is b = 1.37 (cf.
appendix E). The total drag force is measured by the tension in
the first spring (cf. Fig. 15). In the free—draining case the total
drag force is just N times the single bead friction coefficient
¢, while in the case with HI considered here it is not known
analytically. The relation between Ty and v is shown in Fig. 15
for N = 100.

the Gaussian chain which is G+ = 5.56 independent of v
according to Eq. (13).

The flow velocity dependence of the end—to—end dis-
tance for a FENE chain with EVI and a FENE chain with
both EVI and HI is compared in Fig. 19. As in the case of
harmonic springs the elongation of the chain is shifted to-
wards larger flow velocities when HI is included. Because
of the limited attainable chain lengths we do not expect to
observe a power law behavior at moderate flow velocities.
Both curves do not end in a plateau with R = Nb = 100
at large flow velocities but continue to grow according
to a power law with some small exponent because of the
residual stretchability of the FENE springs discussed in
section 3.

Ag far as the drag force is concerned chains with fi-
nite extensibility show a major difference compared to the
Gaussian chain when HI is included. For a Gaussian chain
the HI between the beads is reduced with increasing flow
velocity for two reasons: Unwinding of the chain increases
the distance between beads that are far apart along the
chain and stretching of each spring also increases the dis-
tance between neighboring beads as discussed before. For
a freely jointed chain the segment length is fixed and the
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Fig. 18. Transverse component of the gyration tensor G* as
a function of the flow velocity » for a chain with N = 100
beads connected by linear springs with (diamonds) and with-
out (squares) hydrodynamic interactions. Excluded volume in-
teractions are taken into account in both cases. For a Gaussian
chain with N = 100 beads is G+ = 5.56 independent of the
flow velocity, cf. Eq. (13).
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Fig. 19. End-to—end distance Rg as a function of the flow ve-
locity v obtained from numerical simulations of a FENE chain
with N = 100 beads with (lower curve) and without (upper
curve) hydrodynamic interactions. In both cases the excluded
volume interaction has been taken into account.
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Fig. 20. Transverse component of the gyration tensor G* for
a chain with NV = 100 beads connected by FENE springs as
a function of the flow velocity v without further effects (tri-
angles), with excluded volume interactions only (squares) and
with both excluded volume and hydrodynamic interactions (di-
amonds).

second mechanism is absent. Therefore neighboring beads
stay rather close at any flow velocity and hence the effects
of HI between neighboring beads are present even in the
fully uncoiled state where the chain resembles a straight
line. For this model the curves for the tension Ty(v) in
the free—draining limit and with HI become parallel but
they never merge. Therefore the variation of the total drag
force with the flow velocity that one can expect for the
freely jointed chain is smaller than that for the chain with
harmonic springs. For FENE chains this behavior may be
slightly softened due to the residual extensibility of the
FENE springs.

The comparison of the results for the total drag force
obtained from simulation of a FENE chain with EVI only
and with both EVI and HI showed that at small flow ve-
locities, i.e. v = 0.1 for N = 100, HI reduces the drag by
an amount which is twice as large as for the chain with
harmonic springs. However, in contrast to the chain with
harmonic springs (cf. Fig. 15) this difference remained con-
stant over the whole range of flow velocities considered.
Probably much longer chains than N = 100 are needed to
exhibit that variation in the drag force which is solely due
to the unwinding of the polymer.

The values of the transverse component of the gyration
tensor G+ for the FENE chain with only EVI and with
both EVI and HI are shown by the two upper curves of
Fig. 20. In contrast to the chain with harmonic springs
Gt is now larger with HI than without for all values of
the flow velocity. Comparing these two cases to the case

with neither EVI nor HI (lower curve in Fig. 20) we find a
power law behavior with the same exponent G+ o v~
in all three cases when the flow velocity v is large enough.

In comparison to the predictions of the blob model we
find agreement in so far as the exponent is independent
of the EVI when HI are neglected. The different value of
G+ o« v~' for the blob model may be ascribed to the
residual stretchability of the FENE chain as discussed in
section 3. However, the blob model predicts a behavior as
v~"" in the non—draining case while the simulation data
give a value which is still independent of the presence of
EVI even when HI are included, too. This confirms the
doubts already expressed in section 3 about the validity
of the blob model as far as the transverse extension of the
polymer is concerned.

6 Discussion and conclusions

We have investigated bead spring models and blob models
for a single polymer which is fixed at one end and exposed
to a uniform flow. The bead spring model is a standard
model for the investigation of the long-time dynamics of
polymers, while the blob model is a more coarse grained
model which is appealing because of its simplicity. Both
types of models are analyzed for different interactions be-
tween the polymer segments. Their scaling properties are
compared to each other and to recent experiments on the
same problem.

For the simplest case of the bead spring model the
beads are connected by either linear or nonlinear springs
— where the latter restrict the extensibility of the chain —
and all other effects are neglected. This model is gradu-
ally completed by taking into account further effects such
as the excluded volume interaction (EVT) and finally the
hydrodynamic interaction (HI). The HI results in a per-
turbation of the external flow which modifies the drag
experienced by the individual beads relative to the free—
draining case where each bead experiences the same Stokes
drag caused directly by the unperturbed external flow. For
the simpler cases without EVI and HI analytical results
have been obtained which allow to draw conclusions about
arbitrarily long chains. Furthermore they provide a test of
the numerical simulations which are the only possibility to
treat the more complicated cases.

Since the predictions of the blob model are scaling laws
they are expected to hold only for very long chains. Pre-
vious blob models for a tethered polymer in uniform flow
have considered only the non—draining limit [59], attempt-
ing to model a situation with strong HI. The possible
chain length in simulations of bead spring models, how-
ever is most severely restricted by the HI. In order to make
a comparison between scaling predictions of blob models
and simulations of bead spring chains we have therefore
derived a blob model for a free—draining polymer in ap-
pendix A. The scaling laws for this model are rather differ-
ent from those for the non—draining blob model as shown
in table 1 which summarizes the results for the various
blob models together with the analytical results for the
Gaussian chain.
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model L, Rg p(Z) Y(z)

Gaussian v N? i2

Blob (fd) v = & v N2 iz | @2

Blob (fd) v =2 viN3 is | 2%
2

Blob (nd) v = 3 exp(vli\}[;g: ) e g1 &t

Blob (nd) v = 2 v2N3 is | &t

Table 1. Scaling relations for various quantities describing
the extension and shape of a tethered polymer in a uniform
flow field. L, p(Z) and (%) are extension and segment density
in the flow direction and the envelope perpendicular to the
flow direction where # measures the distance from the free
end of the polymer. These quantities are calculated for the
free—draining (fd) blob model in appendix A and for the non—
draining (nd) blob model in Ref. [59]. The end-to—end distance
R and the segment density p(Z) for the Gaussian chain are
calculated in appendix B.

In thermal equilibrium the scaling relation between the
end—to—end distance and the number of Kuhn segments,
Rp « NV with v = 1/2 or 3/5, is independent of the
force law of the springs connecting consecutive segments.
If the chain is exposed to a flow field, however, the end—to—
end distance at a certain flow velocity are rather different
for Gaussian chains and chains with finite extensibility.
The reason is that the harmonic springs of a Gaussian
chain are strongly stretched (cf. section 2 and appendix B)
while for a FENE chain there is only a weak stretching of
individual springs at very large flow velocities as discussed
in section 3 and for the freely jointed chain there is no
stretching at all. Since the blob model is based on the
equilibrium scaling (cf. appendix A) it does not distinguish
between these cases. The use of a fixed bond length b in
all blobs suggests, however, that it is more in the spirit of
the model to compare it to a freely jointed chain. In fact,
real polymers are best modelled as freely jointed chains
for a wide range of parameters since the chemical bonds
possess a definite length. This is also the case for DNA [91,
92]. However, even though the Gaussian chain is not a very
realistic model for polymers in external fields, due to its
simplicity, it nevertheless provides a convenient test case
for the blob model which formally uses the same premises.

The analytical scaling laws for blob models as sum-
marized in table 1 are obtained by an approximate solu-
tion (cf. appendix A) of the model equations. An exact
numerical solution of the latter reveals a behavior of the
polymer extension which is more complex than a simple
power law as shown in Fig. 22 for the free—draining blob
model. Only for very long chains does the scaling of the
polymer extension L(v) come close to a power law in a
small velocity range. For the non—draining blob model the
deviations between the power law derived from the ana-
lytical approximation and the behavior obtained from the
exact numerical solution are even larger [90]. Accordingly
a perfect power law behavior of the end-to—end distance
Rg(v) for beads spring models may not be expected in
general.

In section 2 we compared the Gaussian chain, i.e. a
bead spring chain with harmonic springs and no other
interactions between the beads, to the free—draining blob
model without EVI, i.e. with Flory exponent v = 1/2. As
shown in Fig. 3 there is perfect agreement between the
scaling of the end—to—end distance for the bead spring—
model and the in-flow extension as calculated for the free—
draining blob model, L ~ Rg o v, when the flow velocity
is larger than some threshold which marks the onset of
the so-called trumpet regime [61]. Also the power law for
the segment density p o (zo — )~'/? predicted by the
blob model is in good agreement with results for the bead
spring model (cf. Fig. 4). However, in the case of harmonic
springs there is no upper limit for the validity range of
the trumpet regime because the elongation of the chain is
caused by a stretching of the individual bonds which can
grow without bounds.

For the freely jointed chain in contrast any stretching
of individual bonds is forbidden and the mechanism by
which the elongation occurs is solely an unwinding of the
chain. It was verified in section 3 that the freely jointed
chain is well approximated by a FENE chain provided
the flow velocity is not extraordinarily large. The depen-
dence of Rg on the flow velocity v is not a simple power
law for these models. A certain scaling regime exists but
it is confined to a small range of flow velocities and the
exponent, of the blob model is approached only for very

long chains (V R 5000) as shown in Fig. 8. The segment
density turned out to be a bad discriminator between the
trumpet and the stem and flower regimes.

EVT reduces the slope of the Rg(v) curves. In sec-
tion 4 (cf. Fig. 11) we found a slope of 0.5 for the bead
spring model with harmonic springs at medium values of
the flow velocity, where EVI are expected to be impor-
tant. At larger flow velocities the EVI becomes unimpor-
tant and a crossover to a slope of 1.0 characteristic of the
case without EVI occurs. The slope of 2/3 predicted by the
free—draining blob model with the Flory exponent v = 3/5
characteristic for EVI is somewhat larger than that ob-
tained in the simulations. One reason for this discrepancy
might be that the chains with N < 200 used in our sim-
ulations are too short. However, for the Gaussian chain
good agreement was obtained in the case without EVI for
a chain length of only N = 100. A probably more impor-
tant cause of the discrepancy between the blob and bead
spring models with EVT is a fundamental deficiency of the
blob model in this case. Because the polymer is stretched
stronger close to the tether point than near the free end
for the bead spring model and also for real polymers the
effects of EVI are not homogeneous over the whole chain
(cf. Fig. 13). In the blob model, however, EVI enters only
via the Flory exponent v = 3/5 which is the same in all
blobs.

Finally in section 5 the effects of HI between the beads
are taken into account in addition to the EVI. The HI
shifts the elongation of the polymer to larger flow veloc-
ities as indicated in Fig. 14 and Fig. 19. In other words
the drag force for a given velocity of the uniform flow is
smaller in the case with HI between polymer segments
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than without (cf. Fig. 15). For moderate flow velocities
v the slopes of the Rg(v) curves with and without HI
in Fig. 14 agree in the case with harmonic springs which
means that the deformation is dominated by EVI for the
model parameters as given in Appendix E. For very large
flow velocities in the case with harmonic springs all beads
are separated due to the stretching of the chain and the
HI become completely negligible. For a FENE chain in
contrast the springs are at most slightly stretched and
therefore HI between next—nearest neighbors remains un-
changed when the flow velocity is increased. Therefore the
drag force obtained for a free—draining chain is not ap-
proached in this case.

In both cases, with harmonic or FENE springs, there
is an intermediate velocity regime where the slope of the
Rpg(v) curves is larger with HI than without. However, this
slope is always smaller than predicted for blob models with
impenetrable blobs [59]. This has two reasons. Similar as
the EVI also the effects of the HI depend on the local shape
of the polymer. The crossover to free—draining behavior
occurs already at smaller v near the tether point where the
polymer is more unwound than close to the free end where
it is still coiled up. This spatial dependence of HI effects
is not taken into account in blob models. A second reason
for the disagreement is discovered when the perturbation
of the flow field caused by the polymer is calculated. From
the perturbed flow field it can be seen that flow partially
penetrates the polymer in contrast to the assumption of
impenetrable blobs in the blob model [70].

These effects can be taken into account within a blob
model as described in [70,90], where the so-called F-shell
blob model has been introduced. For the F-shell blob model
each blob consists of a free—draining outer shell (F-shell)
and an impenetrable inner core. The thickness of the F-
shell is assumed constant for all blobs but relative to the
blob size it is deeper for the small ones which eventu-
ally become completely free—draining. This model there-
fore describes the transition between a nearly impenetra-
ble polymer coil at small flow velocities and an almost
free—draining stretched polymer at large flow velocities as
observed in the numerical simulations presented in this
work. The exponents predicted by the F-shell blob model
are in good agreement, with those obtained from the nu-
merical simulations. The predictions of the blob model
with impenetrable blobs may be considered as upper lim-
its for the true ones.

In recent experiments with DNA the chains contained
up to N = 1600 [39] and N = 3000 [62] Kuhn segments.
As we have shown such chains are still too short to ex-
pect a scaling behavior as predicted by the blob model
in the free—draining case and even less in reality when HI
are important. Furthermore the analytic scaling relation
for the polymer extension L is obtained by an approx-
imate solution to the blob model which approaches the
exact numerical solution only close to v.2, the upper limit
of the scaling regime, even for long chains (cf. Fig. 22).
But in this velocity regime the polymer is already con-
siderably elongated and it has been shown that at large
elongations the semi-flexibility leads to a significant devi-
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Fig. 21. Normalized end—to—end distance Rg/(INb) for chains
of different lengths N = 50, 100, 200 as function of the reduced
flow velocity vN3/%b. The model considered here assumes har-
monic springs and both excluded volume and hydrodynamic
interactions are taken into account. Because of the presence of
the excluded volume interactions the effective bond length is
b = 1.37 (cf. appendix E).

ation from the behavior of a freely jointed chain [93,57].
Since this interaction is not included in the blob model
the predicted scaling laws are of limited use for the quan-
titative understanding of the experiments on DNA. For
use in a micro-rheological theory of polymers where only
qualitative effects are important in a first step, the effect
of semi-flexibility may be neglected and the blob model
may be employed to obtain useful estimates.

The measured polymer elongation Rg(v) [62] has a
similar shape as shown in Fig. 19. For fitting this curve
a half-dumbbell model has been used [62] with a phe-
nomenological spring—force that was found to be in fairly
good agreement with experiments on DNA molecules which
are pulled at both ends [56,57,93] . With such a model one
might fit the measured data but it gives only limited in-
sight about the different mechanisms at work. For instance
a model with only one bead and one spring cannot give
much insight about the increasing penetration of flow into
the polymer or about the spatial variation of the effects
of EVI and HI along a deformed polymer.

A main focus of the experimental work [39,62] was to
determine the extent to which HI is important depending
on the flow velocity v. The criterion on which the judge-
ment was based was the deviation from the data collapse
which is expected for the free—draining limit when the
fractional extension Rg/(Nb) is plotted versus the total
drag force N (v for different chain lengths Nb (cf. Eq. (4)).
In Fig. ?? of Ref. [39] it was found that a data collapse
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occurs when Rg/(Nb) is plotted versus vN b. This find-
ing was explained by the non—draining picture, i.e. the
idea that strong HI makes the polymer coil behave like
a solid object. This picture suggests that up to a loga-
rithmic correction [94] the total drag force should scale
as the largest linear extension of the coil. Instead of the
true elongation Rg (v, N) the equilibrium extension of the
coil Rg(0,N) o< N¥b has been used in Ref. [39] to ap-
proximate the total drag force. A similar plot is shown
in Fig. 21 where the fractional chain extension is plotted
over v(N 3/5 b). The curves do approximately superimpose
in the reduced velocity regime vN3/5b = 0.5 ... 3.0. This
corresponds to v ~ 0.03...0.2 for N = 100, i.e. the
range in Fig. 14 where the curves with and without HI
are approximately parallel. This is quite surprising since
the chain is already significantly stretched in this veloc-
ity range and Rg(0, N) is a quite bad approximation to
the true linear dimension of the coil. In fact, our results
in Fig. 17 show that when the true drag force is used
the curves collapse over the whole range of flow veloci-
ties larger than some threshold. To explain the behavior
observed in Fig. 21 there must be a compensating effect
which just cancels the underestimation of the linear ex-
tension of the coil implied by the use of the equilibrium
scaling for Rg. This maybe the neglect of the logarithmic
correction which accounts for the ellipsoidal shape of the
deformed polymer coil similar as the argument in [62].

The purpose of this work was an analysis of how the
different interactions, the type of spring law, EVI, and
HI play together at various stages of the polymer defor-
mation. Here we have chosen for this purpose one special
set of parameters in the bead spring models as given in
appendix E. For comparison with results of specific exper-
iments other parameters may be required which put more
or less emphasize on the EVI or HI than in this work. For
example for DNA molecules the EVI-effects are expected
to be weaker than assumed in our simulations due to the
large persistence length of DNA.

In this work we only considered the static deformation
of a tethered polymer due to the presence of a uniform
flow. Equally important is the perturbation of the imposed
flow caused by the motion of the polymer. Taking into ac-
count the full fluctuating hydrodynamics (cf. appendices
E and F) allowed for the first time to calculate this flow
perturbation explicitly which has been presented in two
preliminary notes [77,70]. The dynamics of the polymer
will be described elsewhere. Since the equation of motion is
strongly nonlinear one has to distinguish the relaxation of
fluctuations at steady state [72] and the dynamics of mean
values when the flow is suddenly turned on or off [71]. In
the former case the complete relaxation spectrum can be
obtained by applying the Karhunen—Loeve method. The
Brownian dynamics algorithm is presently generalized to
shear flows which cannot be described by a velocity poten-
tial. In Poiseuille flow for instance an interesting migration
effect has been found recently [95].

The case of a tethered polymer in uniform flow pro-

vides an especially simple model problem which facilitates
the investigation of both the polymer deformation and

the flow perturbation. It may serve as a starting point
for developing improved coarse grained descriptions for
polymers in flow similar to other fields in polymer physics
[96]. Thus the comprehensive study of this model prob-
lem is one of the very first steps towards a well founded
fluid dynamics of dilute polymer solutions. For a deeper
understanding of the rheology of dilute polymer solutions
it is important to also consider freely floating polymers in
more realistic flow fields such as simple shear, Poiseuille
and even turbulent flows. This task will be pursued further
in the future.

It is a great pleasure to thank D. Kienle, S. Chu, H. Miiller—
Krumbhaar and V. Steinberg for useful discussions.

A Blob model for the free—draining limit

Blob models have been used to describe scaling proper-
ties of polymers in non—equilibrium situations [2] such as
a single polymer pulled at both ends [63,64] and the case
under consideration here, namely a single tethered poly-
mer in a uniform external flow [59-61]. In the latter works
impenetrable blobs were assumed modelling the effect of
hydrodynamic interaction between the polymer segments.
In this appendix we describe a similar scaling model for
the free—draining limit where the external flow completely
penetrates the polymer coil. We derive the expressions for
the segment density, the integral extension of the polymer
in the flow direction, and the lateral extension of the poly-
mer. The results obtained here together with the relations
derived in Refs. [59-61] for the non—draining blob model
are summarized in table 1 and compared with results from
different approaches in sections 2 through 4.

The blob model relies on two assumptions in order
to describe a polymer in an external force field. The first
assumption is that under the influence of the external force
the equilibrium coil breaks up into a string of blobs as
sketched in Fig. 1. The portion of the polymer chain within
the k-th blob acts as an entropic spring that contains some
tension T}, in the direction of the external force. The size
of the k-th blob Ry is determined by a balance between
the elastic energy of that spring R;T} and the thermal
energy for one degree of freedom. This is expressed by the
Pincus rule [63,64]

kT ~1
RiTy.

(14)

Then within each blob the effects of the external force
are small and it is justified to assume that the equilibrium
scaling relations ( see e.g. Refs. [2,31,32] ) are still valid,
i.€.

R, =bNY, (15)
where N}, is the number of segments within the k—th blob
and b is the Kuhn length. Taking the same value for b
in each blob amounts to considering a freely jointed chain
here. For a Gaussian chain in flow the individual segments
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would be stretched as discussed in the following appendix
and section 2 requiring an z—dependent segment length.
The exponent v depends on the solvent quality, i.e. v =
3/5 for a good solvent and v = 1/2 for a #-solvent [2,31,
32,85].

Finally one needs to specify the tension T}, within each
blob. This tension is given by the sum of the Stokes friction
forces acting on all blobs starting from the free end (k =
1). In the free—draining limit the friction force on each
blob is given by the sum of the friction forces nav acting
on each of the segments within the blob. Here 1, a and v
are the viscosity of the solvent, the effective hydrodynamic
radius of a segment and the magnitude of the flow velocity,
respectively. We thus obtain for the tension

k
Ty, ocnchNj.

=1

(16)

Combining Egs. (14)—(16), one finds the following recur-
rence relation for the tension in each blob:

1
kT \ ¥
Ty — Tk—1 < nav <bBTk> .

(17)
This has to be supplemented by a boundary condition for
the first blob which is obtained by noting that Eq. (16)
gives Ty = 0. Inserting this in Eq. (17) and solving for T
yields T1 (nav)#ﬂ(kBT/b)v%rl. Eq. (17) together with
this boundary condition is now a closed equation for the
tension within the blobs.

Rewriting Eq. (17) in differential form by approximat-
ing T, — Tr—1 ~ dT/dk one obtains a solution which is
valid in the limit of large k:

Ty x (nav k) o (kBTT)%“ .

(18)

The position of the k-th blob Z#; is found from Z, =
Zle R;. Here 7 is the z—coordinate measured from the
free end of the chain zg, i.e. T = xg — .

Using Eq. (14) and replacing the sum by an integral,
which is consistent with the approximation that lead to
Eq. (18), one arrives at

o (E2) 7 ()

Eliminating the blob index k between Eq. (18) and Eq. (19)
yields the law for the tension in the free—draining case,

(19)

T() « % (ks T)' " (navi)” . (20)

The corresponding relation for the non—draining case is
[59],
T (%) o< nui, (21)

which is derived in a similar manner by using the relation
Ty x nu 2?21 R; in place of Eq. (16).

v

Fig. 22. In—flow extension L as obtained by numerically solv-
ing the recursion relation Eq. (17) and summing up all blob
radii Ry according to Eq. (14) for a free—draining blob model
N = 2000 beads (solid curve) and v = 3/5 corresponding to
the case with exluded volume interaction. The dashed line is
the power law obtained by the approximate analytical solution
Eq. (23).

An expression for the segment density projected onto
the x-axis p(Z) follows from p ~ Nj /Ry, by using Eqgs. (14)—
(15) and replacing T}y, by T'(%):

() e e

p(Z) ox 3

The integral extension L of the chain in z—direction fol-
lows from the normalization requirement fOL dz p(Z) = N,
where N is the total number of segments in the whole
polymer chain. The result is

)FTV(Nb)% .

nav
kT

From Eq. (23) together with Eq. (20) one obtains T'(L) as
a measure of the total drag force exerted on the polymer.
For the free—draining case the result is T'(L) = navN as
expected (cf. section 2). The extension 7'(Z) of the chain
perpendicular to the flow direction is obtained from 71" &
Ry, as

Lo ( (23)

ﬂ):ﬁ : (24)

nav

T(#) b(

There are obvious restrictions on the validity of the
blob model. First of all the polymer chain may be modelled
as a string of blobs only in a certain range of velocities
Vo1 < U < U, the so-called trumpet regime [61]. The
reason is simply that the radius of the blob close to the free
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end as determined by the Pincus rule must not be larger
than the Flory radius for the whole chain Rr. On the other
hand the smallest blob at the fixed end cannot be smaller
than the segment length b. The first situation may occur
in very weak flows and the second in very strong flows.
The limiting velocities v.; and vy for the free—draining
case are

kT
nabNv+1

kT

d 2 = T a7
an Ve2 nabN

Vel =

(25)

where the ratio between both velocities depends on N as

Ve2 = NY Vel - (26)
For the non—draining case one has [61]
Ve2 = N% Vel - (27)

The rather weak N—dependence of the ratio v./v.1 shows
that very long chains will be needed to obtain a significant
range for the scaling laws derived in Eqgs. (22)—(24).

Furthermore Eq. (18) is derived for large values of the
blob index k and therefore the derived scaling behavior
may not hold close to the free end of the polymer where
k is small. To achieve both large values of k and a consid-
erable number of segments N} within the k-th blob one
needs very long chains. Only then the scaling behavior as
calculated above can be expected for some range of flow
velocities. To get an estimate on the required chain length
we compare in Fig. 22 the chain extension L as a function
of flow velocity v for the free—draining blob model with
v = 3/5 and N = 2000 beads as obtained by numerical
evaluation of the exact recursion relation Eq. (17) to the
scaling law obtained by the approximation Eq. (18). It
is clear that even at this chain length the scaling regime
is not yet visible. The comparison between the analytical
scaling result and the numerical solution of the recursion
relation is even less fortunate for non—draining blob mod-
els as described elsewhere [90]. Accordingly scaling results
may be considered as upper limits for the slope of L(v)
only.

B Gaussian chain

Static properties of flexible polymers in thermal equilib-
rium can be calculated from the conformational distribu-
tion function [31,32]. In this appendix we consider a bead
spring model as sketched in Fig. 2 where we assume har-
monic springs and the binding between consecutive beads
is the only interaction that is taken into account. For this
model we calculate several static properties of a tethered
polymer in uniform flow.
A potential for the harmonic springs is given by

1 3kgT
Q) =5

where Q; = R;11 — R; is the j-th bond vector and R;
is the position vector of bead j. The Boltzmann factor for

|Qj|27 (28)

the potential in Eq. (28) exp(—®" /kpT) gives a Gaussian
distribution for the bond lengths with a mean square bond
length of b in thermal equilibrium (see e.g. Ref. [31,32]).
The uniform flow field is taken in the z—direction
vV=0v%X, (29)
with x the unit vector and v the magnitude of the flow
velocity. The drag force acting on each of the beads is (v
where the friction coefficient ( is given by Stokes formula
( = 6mna with 1 the solvent viscosity and a the effec-
tive hydrodynamic radius of a bead. For the flow given by
Eq. (29) the drag force can be derived from a potential
U(r) = —(vr-x. (30)
Keeping the first bead of the polymer chain fixed at
the origin, the conformational distribution function reads

P((R;)) = (Ro) (%)N

H
X exp k/'BT]2¢ (Q;) + U(R;)

(31)

With the relation 3" o 720 Q; = Y5, (N—k) Qi the
distribution function can be simplified to

3 \#V
P(Ro, {Q;}) = 5(Ro) (ﬁ) (52)
X exp _ﬁ Z 1Q,; —S; 1>,
where
2
sjzﬁgb (N—j)%x  and ﬁsziT. (33)

We call Q; — S; the stretched bond vector. It is now a
straight forward task to determine all quantities of interest
from this distribution function.

B.1 Mean bond vectors and mean square bond lengths
The calculation is most efficiently organized by first deter-
mining the first and second moments of the distribution of

the bond vectors P(Qy). For the components of the mean
bond vector (Qy) we obtain

N
(QF) = (%) /d3Q0 L dPQyo1 Q- %

3 N—1
_2_1)2 Z |Q]_S ?
7j=0

X exp
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while the other components must vanish for symmetry
reasons, i.e.

(@) = (@) =0.

Similarly we find for the diagonal components of the
covariance (Qng>

(35)

=5+ (5 w-n) e
(@) = (@) =%, a7)

while the off-diagonal components again must vanish due
to symmetry.

From these expressions all other quantities of interest
are easily found, e.g. the mean square length of the k—th
bond

(1Qef?) = ((@)°) + (@) +{(@D)7)
=0+ <%(N—k)> :

This expression shows that for the Gaussian chain the

(38)

bonds close to the fixed chain end are considerably stretched

under the action of a flow. On the other hand the mean
square length of the bonds close to the free end has the
same value b as in thermal equilibrium.

B.2 Mean bead positions, end-to—end distance and
end—to—end tensor

The mean z—position of the k-th bead (X} is simply the
sum over the z—components of the first £ bond vectors (cf.
Eq. (34)), i.e.

g b2 ON —k+1
(=Y (@p =2 AN Ly

i=0

(39)

whereas the y— and z—components of the mean bead po-
sitions again must vanish.

For k = N we obtain the mean end-to—end vector
(Ry — Ry) = (Xp,Yg, Zg)T. Tts second moment is the
end-to—end tensor E for the components of which we find

E*? = {(Rx — Ro)(Rn — Ro)7)

b Bub? N (N +1)
—5“0%’*( I —

2
) Sz 032 - (40)

The trace of the end—to—end tensor is the square of the
familiar end—to—end distance

Ry = (|Ry — Ro|?)

Bub> N(N+1)Y
;)

=b’N + < (41)

B.3 Gyration tensor

A further quantity that is often used to characterize the
shape and size of a polymer is the gyration tensor. The
latter is the second moment of the distribution of bead
position vectors relative to the center—of-mass Ry =

1/N Y, (Ri):

N
G= % j;o (Rj —Rem) (R —Ren)")
_ 15 R, - R)) (R; - R;)T 42
_W“Z:o« i —Ri) (R; —Ry)") . (42)

Expressing (R; — R;) = Zf;i Qy; in terms of bond vec-
tors and counting the number of occurrences of each bond
vector Qy in the triple sum we find

N-—1
G= g S (N k- DN -k (QuQf) . (43)
k=0

Since (Qng> is diagonal so is G.

When the polymer is stretched under the action of
a flow the behavior of G** as a measure for the in—flow
extension of the polymer is not quite intuitive because G**
is taken relative to the z—position of the center—of-mass
which itself depends on the strength of the stretching flow.
The transverse components, however, are good measures
for the extension of the polymer transverse to the flow.
For the Gaussian chain we obtain

1 1 2 b?
W=G%=—— |-N4+ZN| —. 44
¢ ¢ 2N? (3 + 3 > 3 (44)
B.4 Segment density
The segment density p(r) is defined as
N
p(r):<26<r—Rk)>. (45)
k=0
Using the Fourier representation of the §-function
d(r) = L /d3 exp(iq-r) (46)
- (27T)3 q Xp q )
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Eq. (45) becomes
p(r) = §(r - Ry)
(3 BN
27h? ) (2m)3
N
> [dadan ... d Qv
k=1
k—1

X exp| iq - r—ZQ]-

i=0

3 N-1
X exp _2_b2 Z |QJ —S]|2
=0

:(S(I'—Ro)

N 1 k—1
k=1 j=0

k=1 4o

b
X €xp —Z 6 |al?

=0

The final g-integration provides the expression for the
segment density of a Gaussian chain in a uniform flow
field

p(r) = 5(1‘N— Ro) .
+kz:; <sz2>2 exr>(—% (r— <Rk>)2> -

This is a sum of Gaussian distributions centered about the
mean position of the k—th segment (Ry) with components
given by Eq. (39). The explicit shape of p(x) is obtained
by numerically evaluating the sum in Eq. (48). It can be
approximated by the simple power law as discussed in
section 2.

(48)

B.5 Quasi—segment density

Another measure for the local density of polymer segments
along the z—axis is given by the inverse mean distance be-
tween neighboring beads in the z—direction. The latter is
expressed in terms of the z—projection of the bond vector
as 1/(Q7) which is finite for non-vanishing flow velocities.
Since 1/(Q7) measures roughly the density between beads
k and k£ + 1 we assign this value to the midpoint between
the mean positions of the beads k and k£ + 1. We call the
density defined this way the quasi-segment density. Ac-
cording to the above the quasi-segment density p'(z) is
expressed in a form parametrized by the bead index k as

;1
= o
r = (Xpy1/2) = % (Xpgr + X)) -

This definition ensures that p’ is correctly normalized to
N. For comparison with the expression given in Eq. (22)
the bead index & must be eliminated from Eq. (49) which
can be done explicitly for the Gaussian chain. For this
purpose we count the beads starting from the free chain
end k = N, i.e. we transform the bead—index as

I=N-j (50)
in Eq. (34) and we put the coordinate origin at the free
chain end zg, i.e. we use

T=z0—x (51)
as position variable. Then we find from Eq. (39)
Ry = 2 liz L (52)
=0 6
and
i= 1()”(1+1 + X)) = pu? 2. (53)

2 6

Solving for [ and inserting in Eq. (34) finally yields the p’
as a function of %

e [ 3
p(E) = 28002 %

Thus the quasi—segment density has the same scaling be-
havior predicted by the blob model as discussed in sec-
tion 2.

(54)

C Freely jointed chain

In thermal equilibrium Gaussian chains and freely jointed
chains show a qualitatively similar behavior [32,31]. How-
ever as one can see from Eq. (38) Gaussian chains can be
stretched enormously in external fields. Hence we calculate
some static properties for the freely jointed chain where
the bond length is fixed, too. In equilibrium no orientation
is preferred therefore we have

1

Peq(Qj)zm

o(1Q;[ =) (55)

The flow is taken into account via the Boltzmann factor
with the potential in Eq. (30). The conformational distri-
bution function is then given by

1
4mh?
Pub (N — j)
jl;[() sinh( Bvb (N — 7))
x 0(]Q;| = b) exp(Bv (N — j) Q; - %)

where 8 = (/kpT as in the preceding section. The first
term in this product results from evaluating the partition
function and ensures the proper normalization of P.

P(Ro,{Q;}) = d(Ro)

N-1

(56)
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As for the Gaussian chain we first calculate the first
and second moments of the bond vector distribution P(Qy,)
in the presence of flow. We find for the only non-vanishing
component of the mean k—th bond vector

@) = [(#RadQy .. Q-1 Qi x

xP(Ro,{Q;})
1 Bub (N — k)
47b? sinh( Bvb (N — k) )
« [ EQusQul - Q-
x exp(fv (N — k) Qp - X) .

The remaining integral is easily evaluated in spherical co-
ordinates around the x—axis and one obtains

(57)

Qi) =bL(Bv(N —Fk)), (58)
where
1
L(z) = coth(z) — - (59)

is the Langevin function. Similarly the only non-vanishing
components of the k—th bond covariance are

(@) =1 (1 - 2M) (60)

BN =B
(@) = @p = SEE=EL o

As in the previous section all other quantities of inter-
est are easily calculated from these results. In the expres-
sion for the mean z—coordinate of the k—th bead

k—1
(Xxy=b > L(Bv(N—34)), (62)

i=0

we can replace the sum by an integral and obtain an ex-
pression in closed form:

! N —k  sinh(BvbN)
(Xi) = Bv ln( N sinh(,@vb(N—k))> @

The expressions for the end—to—end distance

N-1

PN -5 3 (L(Bu(N — j)))?

J=0

(IRy - Rof?) =

2

N—-1
+b? Z L(Bv(N —j)) (64)

and the transverse components of the gyration tensor

vy e b2 N—1
GW =@ _sz:o(N—k—l)(N—k) (65)
L(Bv (N —k))

Buv (N — k)

cannot be simplified any further. The results of their nu-
merical evaluation are presented in section 3.

The segment density for the freely jointed chain cannot
be brought into an equally simple form as for the Gaussian
chain in appendix B.4. However the quasi-segment density
introduced in section B.5 is amenable to a semi-analytical
treatment. For comparison we again introduce & = xg — x
and [ = N — j to find

1 1 sinh(Bv bl)
— N\ ———— .
Bu Bovbl

To be consistent with the approximation leading to Eq. (63)

for (X;) we use (QF) = Xj41 — X instead of the exact re-
sult Eq. (58) to obtain

(66)

T =

sinh(Bv bl)
sinh(Bvb (I — 1))) - (67)
For small velocities we have z; = Bub?l?/6 and (QF) =

Bub®l/6 which is the same as for the Gaussian chain (cf.
Eq. (52)).

o1 (1—1
@) = 55

D Semi-analytical calculations for the FENE
spring potential

Instead of using a constraint on the bond lengths like in
the previous section a polymer model with a limited ex-
tensibility is also obtained if the forces between the seg-
ments are described by a potential composed of a repulsive
Lennard-Jones potential and an attractive FENE poten-
tial [88,97]. Such a potential is also used in the numerical
simulations described in appendix E. Here we derive an ex-
pression for the end-to—end distance of this model which
can be compared with both the results from numerical
simulations for this model and with analytical results for
the freely jointed chain with a strictly fixed bond length
derived in appendix C.

Again the calculation is based on the conformational
distribution function like in the previous two appendices;
only a different binding potential is used. If the polymer
is fixed at one end at Ry the distribution function reads

1

P(Ro,{Q;}) = 6(Ro) ~

7 (68)

2

1
x exp| —f3 ?(Q;) + U(R))

J

Il
<)

Here the flow potential U is given by Eq. (30) and Z is
the partition function. The bond potential & is

B(r) = 8 (r) + SNE(r) (69)
12 6
b —ae[((2) (o) 4L
) =4 ((|r|> () +4>
x @ (|r| — Ry3) , (70)
kR v/’
FFENe(y) = o 1n< - R_%> . (71)
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The cut—off radius Rry = 265 is chosen at the minimum
of the Lennard—Jones potential and ©(z) is the Heaviside
function. The other parameters are £ = 30.0, Rp = 1.50
and ¢ = € = 1.0. This results in a minimum of the bond
potential at |r| = 0.961.

For the calculation it is useful to introduce spherical
coordinates about the z—axis, i.e. to let

Q,; = gj (cosf;,cosp;sinb;,sinp; sinf;) . (72)

The following integrals appear repeatedly in the calcula-
tions

w _ PN =)
Pj o 4T

/d3Qj Q} exp(—f (®; — VX(N - j)Q;))

(73)

=/0 dq; ¢’V exp(—p8;) sinh (Bu(N — j)g;) -

Here 8 = (/kpT and p will assume the values p =0, 1, 2.
The partition function then takes the form

N-1

47 (0)
7 = —— P 74
].1;[1 fo(N —j) "’ )
For the bond vectors one finds
7)(2)
Q) = @ (75)
and
(1)
This gives for the end-to—end distance
N-1 N-1
(Rp) = Y (@@ + > (Q)
=
N-1 (1) 1
_ P P 1
j,i=0 73](-0) ﬂU(N_J) 732(0) ﬂU(N_Z)
i
N—-1 p(2)
Pl
+ —’(0) (77)
=0 Pj

The results of the numerical evaluation of Eq. (77) are
discussed in section 3.

E Bead - spring model for numerical
simulations

For the numerical simulations we use the bead spring
model as sketched in Fig. 2. Usually one considers the

motion on the diffusive time scale only, i.e. bead inertia
are neglected [98]. The equation of motion for the posi-
tion of the i—th bead (i = 1...N) is then obtained from
a balance between all forces acting on the beads. These
forces comprise viscous drag forces F? on one side and
potential- and stochastic forces F®, FS on the other:

~FI =F? + FJ. (78)
The potential force F¥ describes the direct interaction be-
tween the beads which consists of two contributions: The
binding between next—nearest neighbors along the chain
is described by one of the two potentials given in Eq. (28)
and Egs. (69)—(71) for the case of harmonic (linear) or
anharmonic (nonlinear) springs, respectively:
N-1
P = N " (R — Ry|) or
i=0
N-1
Ghond _ Z ¢FENE(|Ri+1 _ Rz|)
i=0

= +8" (|R;i41 — Ry)).-

(79)

(80)

Here we use an additional bead with index 7 = 0 which
is fixed at Rg = 0 to implement the boundary condition
at the tethered chain end. The second contribution comes
from the excluded volume effect and acts between any pair
of beads. It is described by the repulsive Lennard—Jones
potential of Eq. (70),

N
dsexcluded — Z ¢LJ(|R] _ R7,|) .

i=0
j=it1

(81)

If excluded volume effects are considered together with
nonlinear springs the repulsive part in Eq. (79) is dis-
carded to avoid double counting. If the case without ex-
cluded volume effects is under investigation we set gexcluded
to zero. The potential force F? can thus be calculated as

FZ@ — _VR,Z' (dsbond + d;excluded) . (82)

The hydrodynamic forces are [99]

Fi' = - H;'(R; - v(R))), (83)

where v is the velocity of the imposed flow and H is the
mobility matrix. Without hydrodynamic interactions the
mobility matrix is simply diagonal with H;; = 1/¢. Hydro-
dynamic interactions are incorporated in the Oseen tensor
approximation [100,32] if desired. This turns the mobility
into a conformation dependent tensor which is given by

% 1 for i=j
Hij = : (84)
Q(Rl - RJ) for 75.]
where
1
2) = —— (1 + 7
(r) S (1+#8") (85)
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is the Oseen tensor. Since the Oseen tensor becomes non-
positive at small bead separations [33] we always consider
the case with hydrodynamic interactions together with the
excluded volume effect.

The stochastic forces are related to the dissipative drag
by the fluctuation dissipation theorem [101] to ensure the
correct equilibrium distribution. We have

F? = /2kpT H-1 &

where T is the temperature, kg is the Boltzmann constant
and &; is an uncorrelated Gaussian white noise with zero
mean:

(86)

(€(t) €T(H)) =d(t — 1) 1.

The square root of the mobility tensor H which is responsi-
ble for introducing the correlations required by the fluctu-
ation dissipation theorem is calculated approximately by
the method of Fixman [102] which is described in detail
in appendix F.

To bring these equations into a numerically tractable
form we take the positions, velocities, and forces for all
beads together as 3N-dimensional super-vectors R, V,
etc. . With a few rearrangements we obtain

V=R=v(R)+H-(~Vr &)+ 2kgTH E¢.

(87)

(88)

Finally we add an artificial inertial term mV; where
the mass is chosen small enough to ensure that momentum
equilibration is faster than all the conformational relax-
ations of the chain. This guarantees that the equilibrium
distribution is preserved up to leading order in the integra-
tion time step h and allows h to be chosen by a factor of 10
larger than in conventional Brownian dynamics schemes
which use the direct discretization of Eq. (88) [77].

The resulting equation is discretized by integration
over a small time interval [103] and solved with a velocity—

Verlet algorithm [104] as described in more detail in Ref. [77]:

2

R(tn + h) = R(tn) + V(t,) h + Qh—m F(t.,)  (89)

MVt 4 B) = MV (1) + 2 (Bt 4 1) + B(t,)

F(t) = ¢ (H(R(tn» (-3

+/2ksT H(R(t,,)) E(tn)>

— V(tn)

The discretized white noise = is now a vector of indepen-
dent Gaussian random numbers with zero mean and unit
variance, ¢.e.

<E(tn) ET(tn’)> = 1 6nn’ 1,

. (90)

which can be conveniently generated on a computer.
Several tests of this simulation procedure have been
performed under equilibrium conditions as reported in

Ref. [77]. One of the test results that is of special rele-
vance to this work is that the effective bond length dif-
fers somewhat for the various combinations of interac-
tions that are considered. For the pure Gaussian chain
with harmonic springs and no other interactions between
the beads the mean square bond length (|Q|?) at equi-
librium is equal to b in Eq. (28) as shown in appendix
B.1. The latter is a parameter that can directly be set
and we use a value of b = 1.0. If excluded volume interac-
tions are added the bond length distribution is distorted
and no longer equal to b. An effective bond length b. ¢y
can be determined from the equilibrium scaling relation
Rp = by N3/5. The result is by = 1.37. If the harmonic
springs are replaced by FENE springs with the parame-
ters given following Eqs. (69)—(71) the bond length dis-
tribution is sharply peaked around the minimum of the
potential and one obtains b = b,y = 0.961 no matter
whether excluded volume interactions is included or not.
Finally we mention that the FENE model with excluded
volume interactions not only keeps the beads from pass-
ing through each other but it also prohibits bond crossings
[88,97].

F Efficient evaluation of stochastic forces in
the presence of hydrodynamic interaction

A key issue for the present study with emphasis on hydro-
dynamic interaction is the calculation of the matrix vHin
Eq. (88) and Eq. (89). To make the whole algorithm prac-
tical an efficient way to evaluate the square root of the
mobility matrix H must be developed. The straight for-
ward calculation of such an expression [105] involves a di-
agonalization of H which numerically requires an effort of
O(N3?) machine instructions. A second standard method
for the calculation of matrix functions is via a series ex-
pansion of the desired function [105]. A Taylor series will
contain only powers of the matrix argument which are eas-
ily evaluated numerically. However, matrix multiplication
also requires O(N?3) operations. A third method which
again needs O(N?) operations but which offers the most
favorable prefactor becomes possible by noting that the
square root is not precisely what is needed. Instead one
can also use the Cholesky decomposition of H. This idea
was exploited in the classic work by Ermak and McCam-
mon [106]. In all cases the numerical effort of O(N?) makes
the computation prohibitive for long chains. Therefore to
our knowledge all previous Brownian dynamics studies of
polymer dynamics which took hydrodynamic interactions
into account were limited to chains with N < 20 beads
with one exception, the work of Fixman [107], where a
few results for a chain of 56 beads are given.

An approximate method which requires only ~ O(N?22%)
operations was proposed by Fixman [102]. The starting
point for this method is a series expansion of the square
root in terms of a complete set of polynomials as in method
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two above, i.e.

M
VH =Y "Pr(H). (91)

p=1

A reduction of the computational effort becomes possible
by noting that the knowledge of the matrix v/H is actu-
ally much more than what is really needed since once it
is known it could be applied to many different random
vectors . For the simulation, however, it needs to be ap-
plied to one single realization only. A scheme which takes
advantage of this is obtained by multiplying both sides of
Eq. (91) with £. Taking ¢ into the sum on the rhs one

obtains a series expression for vH ¢

M
VHE=D PrH)E.

p=1

(92)

This expression contains only matrix—vector products and
thus its evaluation requires an effort of O(N?) only. Fur-
thermore the individual terms in the sum may be calcu-
lated recursively keeping the number of these operations
low, too.

The polynomials P*(z) may be taken from any com-
plete set in function space. The most economic choice are
not simple powers P#(x) = z* but Chebychev polynomi-
als C*(x) [108,109]. These can be evaluated by means of
the recursion relation

CH Y (z) =22 C*(x) — C* (), (93)
with Cl(z) ==,
and C%z) =1. (94)

Since the Chebychev polynomials are defined on the in-
terval [—1, 1], which is not suitable in the present context,
one applies a transformation of the independent variable

_ 2y b+a
T b—a b—a’

(95)

which maps the domain of the problem y € [a,b] to the
domain z € [—1,1] of the Chebychev polynomials. The
C*(y) appear frequently in numerical analysis and are re-
ferred to as shifted Chebychev polynomials [108,109].

If, as in the problem under consideration, the argu-
ment x is a matrix, not a simple scalar, then [a, b] is the
range of eigenvalues of z. An estimate of the range of the
eigenvalues of H is furnished by a simple physical argu-
ment: If two nearby beads experience a force in the same
direction the induced perturbations of the velocity field
will have a large degree of coherence and thus add up to
a larger perturbation. If on the other hand the forces are
in opposite directions the induced perturbations will can-
cel out to a large extent. Since beads which are neighbors
along the chain are likely to be also close in space an esti-
mate for the largest eigenvalue is obtained by using a force
vector with equal forces for all beads as a test-vector F to
form the Rayleigh quotient [105] FT HF/FT F. Similarly

an estimate for the smallest eigenvalue is obtained by us-
ing a force vector with alternating forces for the beads as
a test-vector. To compensate for deviations of these es-
timates from the true values of the largest and smallest
eigenvalues of H one takes a somewhat larger interval for
the shifted Chebychev polynomials.

The order of truncation of the series M has to be deter-
mined empirically and increases somewhat with N whence
the final effort grows with N with a somewhat higher
power than 2. To monitor the accuracy of the approxima-
tion we compute the exact square root of H via diagonal-
ization using a QR algorithm [105] whenever the confor-
mation is saved. This happens only every 100 - 10000 time
steps of the integration and is thus acceptable in terms of
computer time.
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