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Abstract

The shape and the dynamics of flexible polymers in flow are de-
scribed by bead—spring models taking into account hydrodynamic in-
teractions and excluded volume effects. The Brownian dynamics of
these models with many degrees of freedom and nonlinear interactions
is simulated by algorithms that achieve a high efficiency. We consider
a single tethered polymer in uniform flow as a simple model problem
that has been studied recently both theoretically and experimentally.
Here, we focus especially on hydrodynamic screening effects without
employing commonly used averaging approximations. Potential appli-
cations to situations of biological interest are discussed.

1 Introduction

Flexible polymers are large chainlike molecules that consist of many parts
with statistically independent orientation, the so-called Kuhn segments [1, 2].
They can assume a great variety of different arrangements in space which are
termed conformations. The time scales for conformational changes of flexible
polymers cover a very wide range. There are modes of the polymer dynamics
with relaxation times which are as slow as the macroscopic hydrodynamic
modes. Therefore, the microscopic and macroscopic degrees of freedom do not
decouple in a simple manner as for simple fluids like water. The rich and at
times surprising viscoelastic behavior of polymer solutions is a consequence
of this coupling between individual polymer molecules and the flow field [1-4].

The interplay between the polymer molecules and a flow seems to be
governed by two elementary processes: 1) How does a flow field deform a
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polymer and 2) how does the motion of the polymer perturb the flow field?
In the past, the quantitative analysis of the polymer—flow interaction causing
the deformation of the polymer has been hampered by two difficulties. On
the experimental side, the classic measurement techniques such as rheometry,
birefringence, light scattering, and small angle neutron scattering provide
only volume averaged quantities from which only little can be deduced about
the behavior of the individual polymer molecules, let alone the flow field. On
the theoretical side, the large number of polymer degrees of freedom which are
coupled by various nonlinear interactions makes a treatment of the polymer—
flow interaction on a fundamental level a formidable task.

Only recently a huge step forward in understanding the flow-induced poly-
mer deformation has been achieved by studying single DNA molecules. DNA
is much larger than synthetic polymers and can be manipulated with optical
tweezers. When decorated by fluorescent dyes, the action of flows on the poly-
mer can be followed under an optical microscope [6-9]. Thus DNA provides
an ideal model system to study conformations of deformed polymers.

On the theoretical side, modern high-speed supercomputers allow to at-
tack nonlinear problems with many degrees of freedom by means of numerical
simulation. An advantage of computer simulation is that all observables are
accessible in full detail which facilitates the investigation of features like the
flow around the polymer which have not yet been resolved experimentally.
Furthermore, this approach allows to compare different models in order to
assess the importance of various interactions in different parameter regimes.
This provides guidelines for developing more simplified models like effective
dumbbell [4] or blob models [10-13] which neglect a large number of internal
degrees of freedom of the polymer. Such models may then be used as building
blocks for the description of more complicated systems (see e.g. [15]).

A variety of bead-spring polymer models which give a faithful represen-
tation of chain flexibility and are well suited for computer simulation is pre-
sented in sect. 2. These models include several important interactions: a finite
extensibility of the springs, the excluded volume of the beads (EVI), and hy-
drodynamic interactions between the beads (HI). We put special emphasis
on the latter which is responsible for the perturbation of the flow field. So
far, bead—spring models have been investigated mostly with various averag-
ing approximations for the HI [16, 17, 18]. In contrast to these works we
keep the full conformation dependence of the HI by employing the so-called
Oseen-approximation without any averaging.

A central issue in computer simulation is to devise efficient algorithms
such that problems of interesting size and complexity can be tackled. At first
sight, Brownian dynamics simulations with fluctuating HI require O(N?) op-
erations, but with an approximation due to Fixman [19] the operation count



Figure 1: Sketch of the coarse—graining procedure leading to the bead—spring
model. The small solid circles represent chemical groups in the backbone of
the polymer with the solid lines indicating chemical bonds between them. The
large shaded circles are the beads which are connected by springs reflecting
the entropic elasticity of the subchain.

is reduced to ~ O(N??5) operations. For the EVI, book-keeping techniques
familiar in molecular dynamics can be adapted to Brownian dyamics. These
methods are described in sect. 3.

As an illustrative application we consider in sect. 4 a simple model prob-
lem, namely a single tethered polymer which is subjected to a uniform flow.
This problem has been studied recently both experimentally [6, 7] and theo-
retically [10, 11, 20, 21]. Here, we discuss some advances that have been made
using simulations [12, 13].

2 Bead—-Spring Models for Polymer
Dynamics

To study the long-time dynamics of polymers in dilute solution, coarse—
grained models are used because atomistic models of long polymer chains
are intractable even numerically with present-day computing equipment. A
common class of such models are the so-called bead-spring models [22] where
coarse—graining (cf. fig. 1) is achieved by replacing a subchain of a real poly-
mer by a bead and a spring with a suitable force-elongation law [2, ?]. Friction
and mass of the subchains are lumped into the beads as depicted in fig. 1.
For a flexible chain each subchain corresponds to one or more Kuhn segments
[2]. The solvent acts as a heat bath which causes a stochastic motion of the
polymer.



Usually, one considers the motion on the diffusive timescale only, i.e. bead
inertia are neglected [23]. The equation of motion for the position of the i—th
bead (i = 1...N) is then obtained from a balance between all forces acting
on the beads. These forces comprise viscous drag forces F™! on one side and
spring— and stochastic forces F®, F® on the other:

~F' =F} + F}. (1)

The drag forces are proportional to the difference between the velocity of a
bead V; and the flow velocity at its position u’(R;):

~Fl'=( (V;-u"(R))) . (2)

The single bead friction coefficient ( is given by Stokes law, i.e. ( = 6mna,
where 7 is the solvent viscosity and a is the effective hydrodynamic radius
of a bead. In thermal equilibrium of course u® = 0. The stochastic forces
are related to the dissipative drag by the fluctuation—dissipation theorem in
order to ensure the correct equilibrium distribution. We have

FP = \/2ksT ( &, (3)

where T' is the solvent temperature, kg is the Boltzmann constant and &; is
an uncorrelated Gaussian white noise with zero mean, i.e.

<§(t)> = 07 (4)
(@) ) = s(e—1)1.

Taking velocities and positions of all beads together as single supervectors
for the velocity V and position R, the equations of motion may be written
in the following general form:

= %R =u'(R)+H- (Vg @)+ /2ksTH ¢ . (5)

Here we introduced a potential ® for the spring forces and the mobility H
which is the inverse of the friction coefficient, (7!. In the most general case
to be discussed later on, H will no longer be a simple scalar but a tensor
which couples all beads. Boundary conditions are implemented by introduc-
ing additional beads with indices ¢ = 0, N 4+ 1 which do not participate in the
dynamics. Then for free chain ends we have Ry = Ry viz. Ryy; = Ry while
for fixed ends Rg viz. Ry41 are constant. Choosing kg7 = 1.0 and ¢ = 1.0
basically fixes units for energy and time. The remaining unit for length is the
bondlength b to be discussed below.



The Rouse model [24] is the simplest conceivable polymer model which
embodies only the chain connectivity by assuming harmonic springs, i.e. by
using in eq. (5),

1
@E@szﬁkH IRy — RJ%. (6)

For the force constant ki we use a value of 3.0 such that the root mean square
bond length in equilibrium b becomes unity. The mobility in the Rouse model
is simply a scalar, namely the inverse of the single bead friction coefficient,
i.e. H = (7! 1. All of the above assumptions are tacitly introduced in or-
der to make the equation of motion eq. (5) linear so that it may be solved
analytically.

There are three obvious refinements each of which renders the equation
of motion eq. (5) nonlinear: a finite extensibility of the springs, the excluded
volume of the beads (EVI), which may be chosen such that the chain cannot
cross itself, and hydrodynamic interactions between the beads (HI).

Since chemical bonds have a fixed length, real polymers are inextensible.
This can be modeled by a nonlinear spring law which keeps the stretching of
the springs small even for large forces. Rather common in simulations is the
phenomenological FENE (Finitely Extensible Nonlinear Elastic) spring law
[25] with the potential

1 Ry — RiJ?
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Another approach is to make the chain completely unstretchable by replacing
the springs with rigid rods. In numerical simulations this may be achieved
to a good approximation by augmenting the FENE spring law by a nearest—
neighbor repulsion of the form described in eq. (8) below [26]. The values
kr = 30.0 for the force constant and Rr = 1.5 for the maximum extension of
the spring then result in a bond length of b = 0.961. Obviously the effects of
finite extensibility are most important when the polymer is driven far from
equilibrium where the chain may be strongly stretched.

The excluded volume effect arises because different beads cannot occupy
the same region in space. This is modeled by a repulsive interaction between
any pair of beads as described e.g. by a truncated Lennard—Jones potential

[26]
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Here € and o define energy and length scales of the excluded volume inter-
action and Rp; = 2% is the minimum of the conventional 6-12 Lennard—
Jones potential. This term is included in the potential ® in eq. (5) along
with the spring potential. When combined with harmonic springs the choice
e = 0 = 1.0 gives an effective equilibrium bond length of b = 1.33 as dis-
cussed in appendix A. Together with the FENE potential for the springs the
bead—spring chain becomes self-avoiding like a real polymer for the parame-
ters chosen [26]. The effects of excluded volume are most prominent in or
close to thermal equilibrium where the polymer chain assumes a coil shape.
Far from equilibrium, where the polymer chain is strongly stretched and the
beads are far apart from each other, the excluded volume force tends to zero.

The hydrodynamic interaction (HI) is an effective interaction between
any pair of beads which is mediated by the solvent. It arises in the following
way: If the solvent exerts a drag force on a bead then by virtue of Newton’s
third law there must be a drag reaction force of the same strength but with
reverse direction acting as a driving force for the solvent. According to eq. (1)
the average of this force is given by the potential force —Vg ®. Neglecting
the finite bead diameter — i.e. idealizing the drag reaction force as a point
force — and using the linear equations of Stokes flow for the solvent dynamics,
one can derive a general expression for the perturbation u’ of the imposed
flow field resulting from the drag reaction forces of all beads [2, 27]:

u'(R) =) QR —R;)-(~Vg, ®). (9)
J#

The i—th bead is excluded from the sum on the rhs of eq. (9) in order to
suppress unphysical hydrodynamic self-interactions. The Stokes friction force
on bead 7 as given by eq. (2) now arises from the bead velocity relative to
the perturbed flow field u® +u’. Using this perturbed flow field instead of u®
alone in eq. (5) and collecting all terms containing —Vg ®, one identifies the
components of the mobility, which has now become a conformation dependent
supermatrix, as

1 for 1=
H;; = (10)
Q(RZ — RJ) for 7£ ]
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Here the Oseen tensor [2] is nothing but the Greens function for Stokes flow,
1
(r)

~ S|
It suffers from the deficiency that it becomes non-positive at small bead
separations. Therefore it is necessary to introduce EVI along with HI [12]

(1 +227). (11)



or to use a regularization of the Oseen tensor [28]. So far we considered
deterministic forces only. In order to complete the equation of motion for the
case with HI, we need to specify the stochastic forces. Fortunately, it turns
out that the fluctuation—dissipation theorem for this case has precisely the
same form as before [29].

The choice n = 0.2 for the solvent viscosity, with the bead radius «

determined from 67na = ( = 1.0, results in a value of A* = \/g% ~ 0.25 for

the dimensionless parameter i* measuring the strength of the HI. This value
is compatible with other work [30].

The collective effect of the hydrodynamic interactions is often condensed
in the so-called non—draining assumption, i.e. the assumption that the poly-
mer coil may be replaced by a sphere with some effective radius into which
the external flow does not penetrate. This assumption is inspired by Zimm’s
calculation of the diffusion coefficient of a polymer coil with HI [31] which
is given by an expression similar to that of a hard sphere [2]. Apart from
additional approximations in the calculation (see below) this evidence seems
rather scarce support for the conclusion drawn. Only recently the perturbed
flow field has been calculated directly [13] and this calculation revealed that
the flow is weakened inside the polymer coil but not completely suppressed as
shown in fig. 2. Furthermore, there is a significant penetration depth where
the flow remains strong and a large long range effect that are neglected in
the simple traditional picture.

If any of the three effects discussed above is to be included in the model
without further approximations, one has to rely on numerical simulation
in order to solve the equation of motion. Only if we restrict ourselves to
the Rouse model with HI, an approximate treatment becomes possible by
replacing H(R) with its equilibrium average. This so-called preaveraging
approximation has the effect of linearizing the equation of motion again.
This procedure was proposed by Zimm [31] wherefore it is referred to as the
Zimm model. Far from equilibrium the simple preaveraging approximation
obviously breaks down. Various other approximation schemes have been pro-
posed which avoid the use of the equilibrium distribution but which still lead
to linear equations [16, 17, 18].

3 Efficient Brownian Dynamics Algorithms

The Brownian dynamics method pioneered by Frmack and McCammon [32]
is nothing but the numerical integration of the Langevin equation eq. (5)
with one realization of the stochastic process modeling the thermal noise. It
yields one sample of polymer conformations R(%,,) from which all quantities



of interest can be obtained as averages. Since several textbooks on the finite
difference approximation of stochastic differential equations like eq. (5) are
available [30, 33], we just briefly summarize our scheme and then move on
to describe the efficient calculation of the various forces.

An important but not widely appreciated point in Brownian dynamics
simulation concerns the accurate numerical reproduction of the equilibrium
distribution [34]. Therefore, the usual procedure of trading accuracy for speed
by choosing the time step so large that the algorithm is just stable is ques-
tionable here, because this might violate a fundamental physical principle.
In order to cure this unfavorable situation Hendriks et al [34] suggested to
introduce an artificial inertial term, i.e. to add mR on the lhs of eq. (5).
A stochastic velocity—Verlet scheme is then used to advance the solution in
time. The final form of the numerical integration scheme with time step ¢ is

R(t, +61) = R(t,)+ V(t,) ot + % F(t,),
mV (L, +8t) = mV(t,)+ % (F(t, + 6t) + F(1,)) (12)

F(t,) = g“(\/ZkBTH(R(tn)) =(t,)

Sl
o~
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The random numbers = are drawn from a uniform distribution on the inter-
val [—V/36t,+v/30t] at each time t,. This replacement of gaussian random
numbers approximating the noise in eq. (5) is justified if only moments of the
stochastic process R(%,,) and not individual sample paths are sought [30].

As long as the mass is chosen small enough so the period of oscillations
due to the added degrees of freedom is smaller than the diffusive time scale
of the phenomena of interest, the results remain unaffected by the artificial
inertia. As shown by the results in appendix A this condition is met for a
value of m = 1.0. The time step 0t then can be chosen up to a factor of 10
larger than in conventional BD (where the mass vanishes) if we require an
error of less than 1% in the second moment of the equilibrium distribution for
the positional degrees of freedom which can be calculated from the potentials
given in sect. 2 (cf. appendix A). A value of 6t = 0.02 has been found suitable
for all models.

The numerical algorithm eq. (12) was coded in standard FORTRANO0.
A machine optimized version of the LAPACK library was used for the linear
algebra calculations involved in the treatment of HI (see below). The simu-
lations were performed on a single processor of a Cray T90 vector computer.
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For the 200-bead chain with harmonic springs and both EVI and HI taken
into account (cf. sect. 4), which is the most time-consuming case we con-
sidered, a maximal speed of 900 — 1000 MFLOPS was achieved. For shorter
chains, of course, the vectorization is less efficient. Longer chains could not
be treated for this model because the total requirement of CPU time — which
was already O(100h) for the flow field calculations in sect. 4 — becomes
prohibitively large.

Several tests of the numerical scheme with respect to the equilibrium
distribution of the bond length for the linear and nonlinear springs and the
scaling of the root—-mean—square end-to—end distance as a function of the
number of beads are described in appendix A. The agreement with analytical
solutions for these equilibrium properties is nearly perfect.

3.1 Evaluation of Stochastic Forces in the Presence of
Hydrodynamic Interactions

A key issue for the present study with emphasis on HI is the calculation
of the matrix vH in eq. (5) and eq. (12) which is a function of all bead
positions. To make the whole algorithm practical, an efficient way to evaluate
the square root of the mobility matrix H must be developed. The straight
forward calculation of such an expression [35] involves a diagonalization of
H which numerically requires an effort of O(N?) machine instructions. A
second standard method for the calculation of matrix functions is via series
expansion of the desired function [35]. A Taylor series will contain only powers
of the matrix argument which are easily evaluated numerically. However,
matrix multiplication also requires O(N?) operations. A third method which
again needs O(N?) operations but which offers the most favorable prefactor
becomes possible by noting that the square root is not precisely what is
needed. Instead one can also use the Cholesky decomposition of H. This idea
was exploited in the classic work by Ermak & McCammon [32]. In all cases
the numerical effort of O(N?) makes the computation prohibitive for long
chains. Therefore to our knowledge all previous Brownian dynamics studies
of polymer dynamics which took HI into account were limited to chains with
N < 20 beads with one exception, the work of Fixman [36], where a few
results for a chain of 56 beads are given.

An approximate method which requires only ~ O(N?**) operations was
proposed later by Fixman [19]. The starting point for this method is an
expression of the square root in terms of a complete set of polynomials as in



method two above, i.e.
M
VH =Y P'H). (13)
n=1

A reduction of the computational effort becomes possible by noting that the
knowledge of the matrix v/H is actually much more than what is really needed
since once it is known it could be applied to many different random vectors
€. For the simulation however it needs to be applied to one single realization
only. A scheme which takes advantage of this is obtained by multiplying both
sides of eq. (13) with £. Taking € into the sum on the rhs one obtains a series

expression for vVH ¢
M
VHE =) PHH)E. (14)

This expression contains only matrix—vector products and thus its evaluation
requires an effort of O(N?) only. Furthermore the individual terms in the sum
may be calculated recursively keeping the number of these operations low,
too.

The polynomials P*(x) may be taken from any complete set in function
space. The most economic choice are not simple powers P#(x) = z* but
Chebychev polynomials C*(x) [37, 38]. These can be evaluated by means of
the recursion relation

C**lz) = 22C*"(x) — C*" (a), (15)
with CHz) = =,
and C%z) = 1. (16)

Since the Chebychev polynomials are defined on the interval [—1, 1], which
is not suitable in the present context, one applies a transformation of the
independent variable

2y b+ a
b—a b—a’

x = (17)
which maps the domain of the problem y € [a,b] to the domain = € [—1,1]
of the Chebychev polynomials. The C*(y) appear frequently in numerical
analysis and are referred to as shifted Chebychev polynomials [37, 38].

If, as in the problem under consideration, the argument x is a matrix, not
a simple scalar, then [a,b] is the range of eigenvalues of x. An estimate of
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the range of the eigenvalues of H is furnished by a simple physical argument:
If two nearby beads experience a force in the same direction, the induced
perturbations of the velocity field will have a large degree of coherence and
thus add up to a larger perturbation. If on the other hand the forces are
in opposite directions, the induced perturbations will cancel out to a large
extent. Since beads which are neighbors along the chain are likely to be also
close in space, an estimate for the largest eigenvalue is obtained by using
a force vector with equal forces for all beads as a testvector F to form the
Rayleigh quotient [35] FT HF/FT F. Similarly an estimate for the smallest
eigenvalue is obtained by using a force vector with alternating forces for
all beads as a testvector. In order to compensate for deviations of these
estimates from the true values of largest and smallest eigenvalue of H one
takes a somewhat larger interval for the shifted Chebychev polynomials.

The order of truncation of the series, M, has to be determined empirically
and increases somewhat with N whence the final effort grows with a some-
what higher power than 2. To monitor the accuracy of the approximation
we compute the exact square root of H via the spectral theorem using a QR
algorithm [35] for the diagonalization whenever the conformation is saved.
This happens only every 100 - 10000 time steps of the integration and is thus
acceptable in terms of computer time.

3.2 Calculation of Excluded Volume Interactions

The most obvious way to calculate the excluded volume force on bead 7 is to
loop over all other beads j checking whether they are within the interaction
range Ry ; and if so calculating the force =V ®p ;. This leads to an algorithm
where the total compuational effort for calculating all EVI increases with
the square of the number of beads. The short-range (in real space) nature of
the forces leads to possible improvements since most pairs of beads 7,5 do
not interact. Book-keeping methods that exploit this fact by keeping track of
particles within the range of interaction are well known from the molecular
dynamics literature [39, 40, 41]. One approach is to maintain for each bead ¢
a so-called neighbor list giving the indices of beads j within a distance that
is somewhat larger than the interaction range, i.e. |R; — R;| < Rpj + R..
In the actual force calculation then only the beads in this list have to be
considered. As soon as the first bead has traversed the extra shell of thickness
R, the list must be reconstructed from scratch. This step, which takes a
time of order O(N?), ultimately dominates the force computation such that
an improvement of only a constant factor independent of N can be achieved.
A second possibility is the cell list method where the space occupied by the
beads is partitioned into cubic cells with edge length Ry ;. Having established
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which beads fall in each cell, the calculation of the force on bead i needs
to consider only beads j in the same and adjacent cells. This method has
the desirable property that the effort is only of order O(N). To achive full
vectorization, it is necessary to use a layered datastructure [42]. A comparison
[43] showed that in the context of molecular dynamics a combination of both
approaches, where a neighbor list is built from a cell list, gives the fastest
method.

Some preliminary experimentation indicated that this may be different
in the case of nonequilibrium Brownian dynamics simulation. For a single
stretched polymer the density of beads is extremely inhomogeneous. When
the chain is placed in a quadrilateral box to set up a cell list, many cells will
not contain any bead at all. Therefore, we use a simple neighbor list with
a shell thickness of R, = 0.5Ry s, the value of which has been determined
empirically. To implement a criterion when the list must be updated, we
accumulate the displacement dR each bead has undergone since the last
update. The first bead has traversed the shell when max;(|6R;|) > Rs. Then
an update of the neighbor list is necessary, which turns out to be the case
approximately every 6th time step for the tests described in appendix A. On
a workstation larger values of Ry > 10Rz; turn out to be more advantagous
leading to a list update only every 10th time step.

For N > 1000 the dominating part is the list update. The effort then
continues to grow as ~ O(N?) (actually the power is somewhat less than 2
on the Cray because of gains due to better vectorization for longer chains).
Compared to the force calculation without neighbor list this gives a speed-up
of a constant factor of about 10 in an equilibrium situation. For a stretched
polymer a somewhat larger gain is possible.

4 Results for a Simple Model Problem

In this subsection we describe results obtained in simulations of a bead-
spring chain which is fixed at the origin with one end and subjected to a
uniform flow in the z-direction. The chain has N = 200 beads connected
by harmonic springs and both EVI and HI are taken into account. For an
unperturbed flow velocity u® = (v,0,0) with v = 0.02 we show in fig. 2a) the
temporally averaged segment density p as a measure of the chain localization.
The full flow field u including the perturbation due to the HI between the
beads is shown in fig. 2b). The flow velocity assumes its smallest values near
the z-axis in the interval 0 < = < 40 where the beads are located with the
largest probability. The important result emerging from these simulations is
that the flow at the average location of the polymer coil does not vanish.
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Figure 2: a) Segment density p(x,y,z = 0) and b) time-averaged perturbed
flow field u(x,y,z = 0) (right) for a chain with N = 200 segments which is
fixed at the origin with one end and subjected to a uniform flow in the z-
direction with v = 0.02. Both EVI and HI are included and harmonic springs
are used. The streamlines go around the region where the density of polymer
segments is high, but the flow does not vanish there.

This partial draining is a superposition of two effects: The flow penetrates
the polymer coil at any moment and due to thermal fluctuations the polymer
also does not stay at a fixed location. The y-dependence of u, shown in fig. 4
reveals a magnitude of the flow penetration of approximately one third of
the unperturbed flow velocity. Furthermore there is a smaller decrease in the
flow velocity which has a very long range, i.e. the unperturbed flow velocity
is approached only very far away from the polymer coil.

The partial penetration of the deformed polymer coil also depends on the
imposed flow velocity. Quantitative information about this velocity depen-
dence is furnished by the overall drag force acting on the polymer, which
may be measured in our simulation by the tension 7Ty in the first spring at
the tether point. Even more revealing is the drag coefficient I' = Ty /v for the
whole coil. Its velocity dependence is plotted in fig. 4a). Without HI (upper
curve) where the flow can freely penetrate the polymer coil — the so-called
free draining case — each bead makes the same contribution ¢ to the coil
drag coefficient independent of the flow velocity v, i.e. I' = (N. With HI
(lower curve) there is only partial draining, i.e. the flow velocity inside the
coil is reduced. Thus, the inner beads experience smaller drag forces and the
total drag on the coil becomes smaller than in the free draining case. As the
chain is stretched with increasing flow velocity, the flow penetration becomes
stronger and finally the free draining value of I' is approached.

This effect of the screening of the flow field due to HI and the related
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reduction of the drag coefficient are also observed in the more didactic ex-
ample of a two-bead system sketched in fig. 5a). The force required to keep
the two beads fixed in a flow of velocity v is shown in fig. 5b) as a func-
tion of their distance d. The drag coefficient per bead I' is seen to decrease
with d. This mimics in a simple manner the situation for the polymer, where
the average distance between the beads is smaller in the coiled than in the
stretched state. The dependence of the drag coefficient on the shape of the
polymer coil and therefore also on the flow velocity is in sharp contrast to
the constant drag coefficient of a solid sphere given by Stokes law. In more
complex systems such as polymer-coated colloidal particles similar deviations
from Stokes’ behavior can be caused also by a variety of other effects [44].
The elongation of the polymer is the result of a balance between the vis-
cous drag exerted on the polymer by the flow and the thermal forces acting
on the polymer. The stronger the screening of the flow field, the smaller is
the drag force and also the elongation of the polymer. Hence, complementary
to the overall drag coefficient is the polymer elongation which may be mea-
sured by the root mean square end—to—end distance Rg(v) shown in fig. 4b).
Without HI (upper curve), where each bead experiences the same velocity-
independent viscous drag, we find in the velocity range v = 0.001 — 0.01 a
behavior consistent with a power law Ry o v* with p = 0.5 and a transi-
tion to a linear dependence Rp o< v for v > 0.1. Beyond this crossover, EVI
become negligible because the polymer is uncoiled at large flow velocities.
Including HI (lower curve) the onset of stretching is shifted to larger flow
velocities. Around v = 0.5 we find a maximal exponent of ¢ = 1.5 which
is larger than without HI such that free draining behavior is approached
for very large flow velocity. The shifted onset of chain stretching is another
consequence of the screeening of the flow inside the coil due to strong HI.
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Figure 4: a) Total drag I' experienced by the coil as a function of the imposed
velocity v both with HI (diamonds) and without HI (squares). Otherwise the
same model as in fig. 2 was used. b) Root mean square end-to-end distance
RE for the same two models.

With increasing flow velocity and polymer elongation the average distance
between the beads increases and therefore the strength of the HI is reduced.
This weakening is more pronounced close to the tethered end than near the
free end as long as the chain is not fully stretched. At this stage of defor-
mation the effects of HI vary significantly along the polymer chain. Finally
for chains at very large v which are already strongly stretched the screening
becomes negligible and the free draining behavior is approached.

Rg(v) may be compared with analytical scalings for blob models, where
the chain is described by a sequence of impenetrable [10] or free draining
blobs [12]. For free draining chains with harmonic springs there is reason-
able agreement with results for a blob model [12]. However, for impenetrable
blobs Rg(v) o v* with g = 2 is predicted [10], which is considerably larger
than the maximal exponent 1 ~ 1.5 of the lower curve in fig. 4b). One rea-
son for deviations between simulations and completely free or non—draining
blob models is that when the polymer uncoils with increasing flow velocity,
EVI and HI effects are continuously "switched off” such that the degree of
penetration varies along the chain. This inhomogeneous process, which sets
in at the tether point and with increasing flow velocity extends to the free
chain end is not described by the blob models considered so far. As shown
in Ref. [13, 14] it may be incorporated at least qualitatively in a generalized
blob model where the blobs are composed of a non—draining inner core and
a fully penetrable outer shell (f-shell).
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Figure 5: a) Two beads in a uniform flow are held at fixed positions where the
relative position vector of length d is oriented either perpendicular (top) or
parallel (bottom) to the flow. b) Drag coefficient I' per bead as a function of
the distance d for configurations with orientation perpendicular (solid circles)
and parallel (open circles) to the flow The flow velocity is v = 1.0, all other
parameters have values as given in sect. 2.

The above considerations in principle carry over to the more realistic
model with FENE springs. In that case, however, scaling regimes can be
expected only for extremely long chains. An estimate shows that N ~ 10000
is needed [12] which is not even reached in recent experiments [7, 18] where
the number of Kuhn segments is less than 2000.

5 Conclusion

We have introduced a modified Brownian dynamics scheme, cf. eq.(12), by
adding an artificial inertial term to the usual first order Langevin equation.
This allows the integration time step to be chosen by a factor of 10 larger
as for the usual case corresponding to vanishing mass, while maintaining a
prescribed accuracy of the second moment of the equilibrium distribution
for the positional degrees of freedom even for the steep potentials occurring
in the models with finite extensibility or excluded volume interactions. In
addition, we have implemented efficient algorithms for the treatment of ex-
cluded volume and hydrodynamic interactions that allow to overcome the
chain length limitations of previous Brownian dynamics studies of polymers.

Formally the scheme eq. (12) is quite similar to that used in molecular
dynamics simulations with a Langevin—thermostat, whereas its interpretation
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is different [26, 45]. In molecular dynamics simulations the solvent is modeled
explicitly as a collection of particles. Thus in that case noise and dissipation
are a purely artificial means which is used to simulate a canonical ensemble
while the masses of the particles represent true physical quantities. In our
case in contrast, the masses of the particles are introduced as a computational
device to speed up the simulation, while the stochastic and dissipative forces
represent the solvent degrees of freedom which do not appear explicitly in
the equations of motion.

In either case the length of the integration time which must be covered by
the simulation is determined by the longest time scale of the problem which
increases with the systemsize as N?. The computational effort for the force
calculations at each time step in our scheme is ~ O(N?*%) (cf. sect. 3.1),
i.e. the required CPU time increases as ~ O(N*?%). In comparison, for state
of the art molecular dynamics simulations [43] which take full advantage of
the short-range nature of the interaction potentials, the required CPU time
increases only with the third power of the system size. However, in the case of
molecular dynamics simulations the size of the system is the number of both
solvent particles and polymer beads, which is beyond 10*. For Brownian dy-
namics simulations in contrast only the beads appear explicitly in the model
and the system size is only of the order 10%. Comparing the chain lengths
N < 60 attained in recent nonequilibrium molecular dynamics simulations
[46, 47] to our work, where N < 200, (500 if only EVI are considered) we
find that saving the large overhead of solvent particles still outweighs the un-
favorable scaling with the system size in current applications. Furthermore,
the Brownian dynamics approach we choose allows easy inclusion or removal
of various effects and arbitrary external flows. Both features may be difficult
to realize in molecular dynamics simulations.

Simulation of the Brownian dynamics of bead—spring models for tethered
polymers allows a detailed monitoring of various interactions between chain
segments at different stages of the polymer deformation. Thus a test of the
validity ranges of previous more coarse—grained model approaches becomes
possible as described in more detail in Ref. [12]. Moreover, a thorough study of
the polymer conformations and the flow field provides a starting point for the
generalization and modification of these models such as the f-shell blob model
for tethered polymers as introduced in Refs. [13, 14]. But not only static
properties become amenable to investigation. The spectrum of relaxation
times which characterizes the dynamics of conformational fluctuations about
a stationary average conformation. The complete spectrum together with the
associated modes can be extracted from simulation data as shown in Ref. [48].
This furnishes an important rheological function and gives further insight into
the major motions that have to be accounted for in coarse—grained models.
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When the flow undergoes a sudden change, there is no stationary average
polymer conformation anymore. Instead, average quantities like the end—to—
end distance become time-dependent. This time-dependent behavior is also
investigated in Ref. [48] where single-mode models like the dumbbell have
been challenged. In summary, the study of the behavior of tethered polymers
in uniform flow is a first step in bridging the gap between the microscopic
scale at which the interaction of single polymers and the flow takes place and
the macroscopic continuum dynamics of polymer solutions.

In the context of biology, bead-spring type models similar to the one
studied here, are used to model systems on very diverse levels of descrip-
tion ranging from individual protein molecules to entire tissues (see other
contributions in this volume). Consequently, the techniques developed here
may be of use in a much broader context than just polymer science. Fur-
thermore hydrodynamic interactions are often important for the biological
function of single macromolecules or more complicated aggregates. For ex-
ample, a hydrodynamic steering effect has be found crucial for the reaction
rates of protein-ligand binding [49]. Previously, the protein was considered
as a rigid object while the methods described here allow to include the effects
of its internal motions [50]. As a second interesting example we mention the
computer study of a vesicle in Poiseuille flow using rather similar modelling
approaches [51]. The vesicles were found to migrate towards the center of the
flow which may be a relevant factor to inhibit mechanical degradation of red
blood cells flowing through a blood-vessel. Finally, on a macroscopic level
objects like vesicles or cells also behave much like viscoelastic fluids. Thus a
basic question is again to determine the rheological functions from a more
microscopic approach, a first step towards which was made here for polymer
solutions.

A Program tests

At thermal equilibrium the simulations can be compared with several well-
known analytical results. The equilibrium distribution of the bond lengths
can be calculated via the Boltzmann factor exp(—®/kgT') using the spring
potentials given in sect. 2. These analytically calculated distributions are
compared in fig. 6 with the distributions obtained from simulations using
these potentials for the springs.

For the Rouse model the bond length distribution is of course a
Maxwellian. For the FENE model the distribution is sharply peaked around
its maximum value so that it can be regarded as a good approximation to a
freely jointed chain model. The bond length distribution for the Rouse model
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Figure 6: Probability distribution for the bond length |Q| = |R;+1 — R;| at
thermal equilibrium for models with a) harmonic springs, both with (squares)
and without (triangles) EVI, and b) FENE springs. In the latter case the
addition of EVI has no effect on the bond length distribution since nearest—
neighbor repulsion is included in the spring potential anyways. The solid
lines are obtained by evaluating the Boltzmann factor exp(—®/kgT') with the
potentials given in sect. 2 The symbols give the results of the corresponding
simulations for a chain with N = 100 beads.

with excluded volume interactions reveals that the repulsive potential acts
as a rather hard wall. Hence the distribution is deformed and its mean value
is shifted to larger values. The addition of the excluded volume interactions
to the FENE model of course leaves the bond length distribution unchanged
because nearest neighbor repulsion is included anyway as described in sect. 2.
As the analysis of the scaling of the end—to—end distance with the number of
segments shows (see below), the effective bond length is rather close to the
distance b = 0.961 where the bond length distribution has its maximum.

A second more global test is the comparison of the numerically obtained
end-to-end distance Rp as a function of the number of segments N with the
scaling result due to Flory [1]

Ry = bN". (18)

Here v is the scaling exponent while b gives an effective bond length. For
any model with purely local interactions between the beads, it is well known
that the exponent is v = 1/2 [2]. In fig. 7a) we verify this behavior for the
pure Rouse and FENE models. In these cases of course also the bond lengths
are known so that we can contrast the numerical values with an analytical
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Figure 7: a) Equilibrium scaling of the end-to—end distance Rp with the
number of segments N for the Rouse (open triangles) and FENE models
(open squares). The solid lines are due to the scaling relation Rp = bV/'N,
with the mean bond length b = 1.0 for the Rouse chain and b = 0.961 for
the FENE chain. b) Equilibrium scaling of the end-to—end distance with the
number of segments for the Rouse (solid triangles) and FENE models (solid
squares) including the excluded volume effect. The solid lines are fits with
a power law Ry = bN?. The fit parameters are v = 0.617, b = 1.33 for the
Rouse model and v = 0.610, b = 1.15 for the FENE model.

result without any adjustable parameters. The small difference between both
models comes from the fact that the bond lengths for the Rouse (b = 1.0)
and FENE model (b = 0.961) are slightly different. For both models there is
a very good agreement with the numerical data even for rather short chains.

The excluded volume interactions change the scaling exponent for Rpg
from v = 1/2 to v = 3/5 neglecting a small correction to mean field theory
[1]. In fig. 7b) we verify this behavior for the Rouse and FENE models with
EVI. Since the prefactor is not known we fit a power law of the form of
eq. (18) to the numerical data. The values of the exponents are v ~ 0.6 for
the models with either harmonic or FENE springs, which is in quite good
agreement with the theoretical values. For the model with harmonic springs,
the repulsive potential due to the excluded volume interaction leads to a
considerable shift of the mean bond length to b = 1.33.

For the models with hydrodynamic interactions, a test is possible since
all static properties at equilibrium are determined solely by the potential
® whereas the HI affect only the mobility. So one can simply compare the
numerical values of the above quantities for the models with and without the
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hydrodynamic effects. We find agreement within the statistical errors.
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