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Resonant spatio-temporal forcing of oscillatory media
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Abstract. – An extension of the complex Ginzburg-Landau equation describing resonant
spatio-temporal forcing of oscillatory media is investigated. Periodic forcing in space and time
leads to spatial structures with two different symmetries: harmonic patterns with the same
and subharmonic patterns with twice the wavelength of the external forcing. A linear stability
analysis of the homogeneous state carried out analytically leads to subharmonic patterns for
intermediate forcing strength, while harmonic modes prevail for very weak and strong forcing
amplitudes. Numerical simulations confirm the analytical predictions for weak forcing and show
coexistence between the two types of patterns beyond threshold. In addition, traveling localized
patterns such as phase flips in subharmonic patterns and traveling patches of subharmonic
patterns in a harmonic background have been discovered. In the parameter range of Benjamin-
Feir turbulence, stable subharmonic patterns occur upon forcing, which undergo a transition
scenario back to irregular dynamics for increasing values of the control parameter.

Introduction. – Resonant spatio-temporal forcing of pattern-forming systems combines
two well-known strategies for the design and “control” of spatio-temporal dynamics: homo-
geneous resonant temporal forcing and spatial heterogeneities in the driving.

Pattern formation in the presence of spatially periodic modulation or randomly distributed
heterogeneities has been investigated recently in hydrodynamical [1–3] and chemical [4–6] sys-
tems. Homogeneous, temporal forcing of oscillatory systems has been realized by variation
of the external control parameter with n times the natural frequency (e.g., n = 1, 2, 3, 4)
[7]. Rich scenarios including phase-locked states and moving interfaces have been described
for these resonantly forced systems theoretically [8–10] and experimentally for the light-
sensitive ruthenium-catalyzed Belousov-Zhabotinsky reaction [11, 12]. Both control strate-
gies are present in stochastic spatio-temporal forcing with random spatial heterogeneities and
temporal forcing amplitudes, which has been studied in experiment [13] and theory [14,15].

Here we combine forcing periodic in time and space applied to a complex Ginzburg-Landau
equation and predict subharmonic patterns as a possible response. The model is a general-
ization of the equation used for 1 : 2 resonant forcing [8], where the homogeneous temporal
forcing is replaced by a forcing with a spatially periodic modulated amplitude. In doing so,
we enforce a typical length scale on the system and put a severe constraint by breaking the
translational invariance of space and time. These broken symmetries are reflected by the
c© EDP Sciences



114 EUROPHYSICS LETTERS

Fig. 1 – Sketch of a temporal forcing experiment with frequency ωc (left) which may also be spatially
modulated by a periodic filter (right).

shape of the critical modes destabilizing the homogeneous oscillation and thus by the spatial
profiles of the resulting patterns. According to the broken symmetries, we find two different
instabilities of the homogeneous state. One is harmonic with respect to external modulation
and the second one is subharmonic, depending on the parameters. The harmonic solution is a
continuous deformation of the homogeneous solution of the unforced system, whereby the new
subharmonic solution occurs only in a finite range of the forcing amplitude. At special param-
eter values both instabilities have the same threshold and one has a so-called codimension-two
bifurcation of a similar type as investigated recently [16]. Since both patterns have a different
symmetry with respect to translations by one wavelength of the modulation, the harmonic
one is symmetric and the subharmonic one antisymmetric, they coexist beyond threshold in a
wide range of parameters. According to this coexistence there are surprising phenomena, such
as stable propagating pulses of subharmonic patterns in a harmonic background or traveling
phase flips connecting the two alternative subharmonic patterns.

Modified amplitude equation. – Oscillating fields u(x, t) near onset may be separated
into a fast oscillation exp[iωct] and the slow dynamics of the amplitude A(x, t) as u(x, t) ∼
A(x, t) exp[iωct] + c.c., where ωc is the natural frequency. The dynamics of the amplitude
A(x, t) near a supercritical Hopf bifurcation is described by the Complex-Ginzburg-Landau
Equation (CGLE). Near-resonant temporal forcing with a frequency ωext = 2(ωc − ν) with a
small detuning ν leads to the following model [8]:

∂tA =
[
ε + iν + (1 + ib)∆ − (1 + ic) | A |2

]
A + γhet(x)A∗ , (1)

where γhet(x) represents the spatially varying forcing amplitude. For an unforced system the
oscillatory instability appears for εc > 0. Linear and nonlinear dispersion of the frequency are
described by b and c. The modulation is chosen as a superposition of a constant offset and a
spatially periodic part:

γhet(x) = γ0 + γ1(x) = γ0 + 2G cos(2kx) . (2)

For this case eq. (1) exhibits two fundamental spatially varying solutions with different sym-
metries: One is symmetric with respect to translations by one wavelength λ = π/k of the
forcing, A(x, t) = A(x + π/k, t) (harmonic with respect to the spatial modulation) and the
other one is antisymmetric, A(x, t) = −A(x + π/k, t) (subharmonic).
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A possible experimental realization of the modulated forcing is sketched in fig. 1: a light
sensitive, oscillatory chemical reaction is forced by shining light with time-periodic variations
of the intensity onto the sample. A spatial modulation of the forcing is achieved by introducing
a filter with spatially varying transmission properties.

Linear stability analysis. – The solution of the linear part of eq. (1) has an exponential
time dependence and for small values of the modulation amplitude G = δḠ, with δ � 1 and
Ḡ ∼ O(1), its amplitude may be expanded with respect to δ:

A = eσt
(
A0 + δA1 + δ2A2 + . . .

)
. (3)

The neutral stability condition, Re(σ) = 0, determines the critical value of the control param-
eter εc which separates the parameter range where the ground state, A = 0, is stable from
the range where A = 0 is unstable. Both εc and ωc depend on the modulation amplitude and
are expanded with respect to small values of δ:

εc = ε(0)
c + δε(1)

c + δ2ε(2)
c + ... , (4)

ωc = ω(0)
c + δω(1)

c + δ2ω(2)
c + ... . (5)

The expansions given in eqs. (2)-(5) together with eq. (1) provide the following hierarchy of
equations defining the neutral stability (Re(σ) = 0) of the ground state:

δ0 : L0A0 + γ0A
∗
0 = −ω(0)

c A0 , (6)

δ1 : L0A1 + γ0A
∗
1 = −[ε(1)

c + iω(1)
c ]A0 − γ1(x)A∗

0 , (7)

δ2 : L0A2 + γ0A
∗
2 = −[ε(1)

c + iω(1)
c ]A1 − γ1(x)A∗

1 − [ε(2)
c + iω(2)

c ]A0 , (8)

with L0 = ε0 + iν + (1 + ib)∆. These equations may be solved by profiles which are either
harmonic (h)

A0 = F0 , A1 = F2e
2ikx + F−2e

−2ikx . . . (9)

or subharmonic (sh)

A0 = F1e
ikx + F−1e

−ikx , A1 = F3e
3ikx + F−3e

−3ikx . . . . (10)

with respect to γhet(x). Equation (6) leaves the amplitudes F0 and F1,−1 undetermined, but
it fixes the corresponding critical values ε

(0)
c and ω

(0)
c . The right-hand sides of eqs. (7) and (8)

contain contributions which belong to the kernel of the operator at the left-hand side. Thus,
they are subject to a solvability condition which determines the next-order corrections ε

(1),(2)
c

and ω
(1),(2)
c . For that purpose A1 has to be calculated from eq. (7), but A2 is not needed.

In order to distinguish the harmonic and subharmonic case, we introduce εh, ωh, respectively
εsh, ωsh, which replace εc, ωc in the corresponding computation. Collecting all terms up to
the power G2, one obtains finally the modulation-induced shift of threshold and frequency for
the harmonic case:

εh + iωh = −γ0 − iν − 2G2 2(γ0 + 2k2) + i(ν − 4bk2)
8γ0k2 + 16k4 + (ν − 4bk2)2

, (11)

and for the subharmonic case

εsh + iωsh = k2 − R − G − G2 γ0 + R + 8k2 + i(9bk2 − ν)
16k2 [k2 (4 + 5b2) − νb + R]

, (12)
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Fig. 2 – In part a) the analytical threshold for harmonic εh (dashed line) and subharmonic εsh (solid
line) patterns are shown as a function of the modulation amplitude G according to eqs. (11), (12) and
for the parameters ν = bk2, k = 1/2, b = 1.8 and γ0. In b) the threshold for the subharmonic (solid
line) and the harmonic (dashed line) patterns are shown as obtained by the full numerical solution
of the linear part of eq. (1) and for the parameters ν = bk2, k = 4π/51, b = 8, γ0 and c = 2. Solely
subharmonic solutions are found in the range s and solely harmonic solutions in the range h. The
upper dotted line marks the upper end of the existence region of subharmonic patterns.

with the abbreviation R =
√

γ2
0 − (ν − bk2)2. The two thresholds εh and εsh according to

these formulas are plotted in fig. 2a). For arbitrary modulation amplitudes the linear stability
analysis of the homogeneous state is performed numerically and the results of that are shown
in fig. 2b). The numerically found thresholds for the harmonic and subharmonic pattern agree
at the two codimension-two points (CTP) at G1 � 0.28 and at G2 � 2.55. In comparison,
G1 � 0.31 and G2 � 1.39 are obtained according to the perturbative calculation. In the
range G1 < G < G2 the subharmonic solution has the lower threshold. For the special choice
ν = bk2 the condition εh = εsh with formulas given in eqs. (12) and (11) leads to a polynomial
quadratic for the modulation amplitude G:

0 = k2 − G − G2

k2

[
1
8

γ0 + 4k2

γ0 + 4k2(1 + b2)
− 4(γ0 + 2k2)

8γ0 + k2(16 + 9b2)

]
. (13)

This has two real solutions G1,2 and there is only a finite range in G where subharmonic
solutions are preferred, namely if the following inequality is fulfilled:

1 +
1
2

γ0 + 4k2

γ0 + 4k2(1 + b2)
− 16 (γ0 + 2k2)

8γ0 + k2(16 + 9b2)
> 0 . (14)

For γ0 = 0 this inequality reduces to |b| >
√(

5 +
√

1177
)
/36 ∼ 1, whereas the full numerics

provides the condition |b| > 2. Regions solely supporting subharmonic patterns are hence
only found if the linear dispersion b in eq. (1) is non-vanishing.

Numerical results. – Harmonic and subharmonic patterns obtained by numerical integra-
tion of eq. (1) beyond threshold are shown in fig. 3. With increasing values of the modulation
amplitude G the homogeneous solution of eq. (1) becomes progressively modulated with the
same wavelength as the external modulation. Simultaneously the oscillation frequency is
shifted. Subharmonic patterns are dominated by the mode with twice the wavelength of the
external forcing and with the choice of ν = bk2 as in fig. 3 these solutions of eq. (1) are
stationary.
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Fig. 3 – Harmonic (G = 0.6, panel a)) and subharmonic (G = 0.4, panel b)) solutions from numerical
simulations at parameters ν = bk2, k = 4π/51, b = 8, c = 2, γ0 = 0, ε = −0.25. the dashed
lines depict the spatially dependent forcing γhet(x) and the full (long-dashed) lines show the real
(imaginary) part of A(x).

The term “coexistence” in fig. 2 indicates that these two solutions coexist, namely in the
range above the two thresholds and below the dotted line. Coexistence means that both
patterns are stable in their respective subspace, i.e. the harmonic pattern is stable in the
subspace of modes symmetric with respect to the forcing and the subharmonic pattern is stable
in the subspace of antisymmetric modes. This property may lead to more complex patterns,
see, for instance, the space-time plot in fig. 4, where the harmonic and subharmonic patterns
are found in neighboring regions. They are separated by two propagating domain boundaries.
Such “drifting domains” have recently been studied extensively near a codimension-2 Turing-
wave bifurcation in a different model [16]. The harmonic pattern at one side of the domain
boundary behaves like a standing wave and the subharmonic part like a stationary structure,
but the domain wall itself propagates and is stable. The temporal behavior as well as the
spatial structure of two fundamental patterns can be recognized clearly from the temporal
evolution of the phase plotted in fig. 4, where one can see again that the subharmonic structure
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Fig. 4 – Space-time plot (left) of a subharmonic pulse in a harmonic background, with propagating
fronts separating both. The right part shows at a fixed time the spatial dependence of Re(A(x, t)),
Im(A(x, t)) (solid lines) and the spatial modulation γhet(x) (dashed line). Parameters are G = 0.8, ε =
0.25, ν = bk2, L = 102.2, b = 8, c = 2, k = 4π/51.
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Fig. 5 – The space-time plot (left) shows traveling phase kinks in the subharmonic state. The right part
shows at a certain time the spatial structure of Re(A(x)), Im(A(x)) (solid lines) and the modulation
γhet(x) (dashed line). Parameters are G = 0.4, ε = −0.25, ν = bk2, L = 102.2, b = 8, c = 2, k =
4π/51.

is stationary, whereas the harmonic pattern behaves like a standing wave. Subharmonic
patterns which differ by a phase φ = π are degenerate. Such equivalent patterns are also
connected by a propagating domain as shown in fig. 5. The results described so far belong
to the parameter range bc > −1, where the unforced system is Benjamin-Feir stable. The
preference for a subharmonic solution at threshold depends only on the linear dispersion b
and not on c (cf. eq. (14)). On the other hand, for large values of the control parameter ε the
modulation γhet(x) becomes less important and again the Benjamin-Feir turbulent solution
regime is expected in the range bc < −1. Such a transition scenario is shown in fig. 6. At
threshold one has (for b = 8 and c = −1) subharmonic patterns. For the special choice
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Fig. 6 – With increasing values of ε and for bc = −8 < −1 (c = −1 and b = 8) a transition from the
subharmonic solution at threshold to a Benjamin turbulent regime far beyond threshold is shown.
For bc = −8 and without a modulation the solutions of eq. (1) belong to the Benjamin-Feir turbulent
regime. With modulation G = 0.35 the subharmonic solution has the lowest threshold and is the
preferred solution. However, with increasing values of ε the effect of the modulation becomes less
and less important and more and more temporal frequencies are excited. The power spectra of a
time series of

∫ |A(x, t)dx for ε = 0.685 and ε = 0.75 are shown in the insets. The transition to the
Benjamin-Feir turbulence has similarities to the Ruelle-Takens scenario.
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ν = bk2 as in fig. 6 the subharmonic pattern is stationary and the averaged quantity A(t) :=∫ |A(x, t)|dx too. Beyond ε = 0.275 the subharmonic solution becomes unstable and A(t)
starts to oscillate. For even larger values of ε, e.g. ε = 0.685, this oscillatory solution becomes
unstable with respect to a second subharmonic frequency as indicated by the power spectrum
shown in the first inset in fig. 6. Increasing ε further the power spectrum of A(t) develops
more and more substructures as shown by the second inset in fig. 6 at ε = 0.75. Finally, for
ε > 0.75 the effect of the modulation γhet becomes weak and the system behaves very similarly
to the unmodulated system in the Benjamin-Feir regime.

Conclusion. – It has been demonstrated that spatio-temporal forcing of oscillatory media
can be employed to design patterns of a prescribed length scale. The system studied in this pa-
per admits two different classes of patterns which are distinguished by their adjustment to the
spatially modulated forcing: symmetric harmonic patterns and anti-symmetric subharmonic
patterns with respect to a shift by one forcing wavelength. The instabilities of the homoge-
neous state giving rise to these two types of patterns have been investigated analytically and
numerically. Good agreement of the two approaches is found for small forcing amplitudes. The
resulting phase diagram for the existence of these patterns illustrates a competition between
the oscillatory dynamics and the modulated forcing. For strong forcing, the system chooses
to respond with a harmonic pattern and is dominated by the external stimulus. For weak
forcing, the system has more freedom to respond —subharmonic patterns, phase slips and
mixed structures are observed in an extended parameter regime. Spatio-temporal forcing can
also be used to suppress spatio-temporal chaos in the CGLE near onset. A Ruelle-Takens–like
scenario leading to irregular patterns is then observed far from onset.
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