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Spiral-defect chaos: Swift-Hohenberg model versus Boussinesq equations
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Spiral-defect chaos~SDC! in Rayleigh-Bénard convection is a well-established spatio-temporal complex
pattern, which competes with stationary rolls near the onset of convection. The characteristic properties of SDC
are accurately described on the basis of the standard three-dimensional Boussinesq equations. As a much
simpler and attractive two-dimensional model for SDC generalized Swift-Hohenberg~SH! equations have been
extensively used in the literature from the early beginning. Here, we show that the description of SDC by SH
models has to be considered with care, especially regarding its long-time dynamics. For parameters used in
previous SH simulations, SDC occurs only as a transient in contrast to the experiments and the rigorous
solutions of the Boussinesq equations. The small-scale structure of the vorticity field at the spiral cores, which
might be crucial for persistent SDC, is presumably not perfectly captured in the SH model.
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Convection in a horizontal fluid layer heated from belo
known as Rayleigh-Be´nard convection, is one of the bes
studied examples of pattern forming systems@1–3#. At
threshold, convection rolls bifurcate and remain stable i
fairly wide parameter range, coined as the Busse-Ball
@1,2#. Thus, the recent observation of spiral-defect ch
~SDC! in a parameter regime where it competes with ro
was rather surprising@4,5#. The complex spatio-temporal dy
namics of SDC involves rotating spirals, targets, dislo
tions, etc. Most of the characteristic properties of SDC
well reproduced in high-precisionab initio solutions of the
standard Boussinesq equations@6–8# in three spatial dimen-
sions. According to the experiments and the numerical s
tions, SDC is a robust generic state of thermal convec
observed in rectangular, square, and circular cells, as
~see, e.g.,@3–10#!.

Our general understanding of the universal aspects of
tern formation has been significantly promoted by the ana
sis of two-dimensional models such as the various type
Ginzburg-Landau and Swift-Hohenberg equations@1,11,12#.
This applies also to the generalized Swift-Hohenberg~SH!
equations@13,14# which include mean-flow effects importan
at low Prandtl numbers in thermal convection. The numer
simulation of SH models has provided important insight in
the underlying mechanism of SDC@15–18#. Nevertheless,
model equations imply approximations and their possi
limitations have to be examined carefully. Here, we sh
that the long-time dynamics of SDC in terms of the gene
ized SH equations might be problematic.

In the following, we discuss simulations of SDC in a s
of widely used generalized SH equations, which couple t
real fieldsc(r ,t) andz(r ,t) ~see, e.g.,@15,16#!

@] t1gmU•“#c5@«2~11D!2#c2c3, ~1a!

*Present address: AGFA Gaevaert AG, P.O. Box 1001
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c(r ,t) describes the planar spatial variations of convect
patterns~e.g., the temperature field!, which consist locally of
convection-roll patches.z(r ,t) is a velocity potential deter-
mining the mean flowU5(]yz,2]xz). The control param-
eter «52.78 (DT2DTc)/DTc serves as a dimensionles
measure for the applied temperature differenceDT across the
fluid layer @19#. The time is scaled in such a way that a tim
lapse oft55 in Eqs.~1! corresponds to the common vertic
diffusion time tv , which is about a few seconds in exper
ments.

Any curvature of the rolls produces a vertical vortici
field 2Dz(r ,t) which increases with decreasing Pran
numberP according to Eq.~1b!. In contrast to the claims
expressed in several papers by Xi and Gunton~see, e.g.,
@20#!, only the dominant term;c2 on the left-hand side of
Eq. ~1b! may be directly traced back to the Boussinesq eq
tions. The two other terms}tz ,h, respectively, are in prin-
ciple phenomenological, as discussed in some detail in R
@17#. In Eq. ~1a!, the relevance ofz(r ,t) is controlled by the
coupling constantgm . The value ofgm may be found to be
gm512.2 for c252 and P51 by comparison with the
known zigzag stability boundary of convection rolls@21#.

The coupling to the mean flow, which becomes more i
portant either at smallP or largegm is crucial for persistent
SDC. In the limit of large Prandtl numbersP, wherez is
hardly excited, the dynamics ofc becomes purely relax
ational and approaches a low dimensional stationary stat
the corresponding Lyapunov functional@1,12#. Note, how-
ever, that any strongly disordered pattern before it equ
brates generates virtually instantaneously a strong, lo
range mean-flowU according to Eq.~1b! and may thus
easily lead to a transient SDC-like dynamics.

In our numerical solutions of Eqs.~1!, we have chosen the
same set of parameters as in the previous works@15,16,20#,
namely, c252, gm550, tz5h5P51, «50.7. Mostly, we
,
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consider an aspect ratio ofG5L/2d532, whereL denotes
the lateral extension of the cell andd its thickness. At first,
we have performed simulations in a square domain with
riodic boundary conditions in order to avoid an artificial bi
from the sides. Starting from random initial conditions yiel
a typical snapshot as shown in Fig. 1~a! at 800tv . This pat-
tern compares well with planforms already shown in Re
@15,16# at the same time lapse. It resembles also the cha
teristic SDC snapshots observed persistently in experim
@4,5# or during numerical solutions of the fundamen
Boussinesq equations@6#.

However, when continuing the runs beyond 8000tv the
scenario changes qualitatively and the pattern coarsen
wards a ‘‘big spiral’’ as shown in Figs. 1~c! and 1~d!, which
rotates about a slowly migrating center. Only at the bou
aries of the big spiral one finds remnants of the previo
persistent generation and annihilation of small spirals.
P'1, the coarsening to big spirals is neither observed
experiments nor during simulations of the Boussinesq eq
tions.

The transient behavior of SDC followed by a coarsen
to a big spiral reminds us of recent experiments atP54 @24#.
After a sudden quench, strongly disordered pattern de
oped, which due to the strong vorticity field, led to the SD
transient. Afterwards, SDC coarsened to a big spiral as w
which eventually disintegrated after a long time towards
stationary pattern. Apparently forP54, the vorticity field is
too weak to sustain SDC.

Unlike the experiments and the solutions of the Bou
inesq equations, the SDC attractor in the SH simulati
shows a remarkable sensitivity to the boundary conditio
This feature becomes evident when Eqs.~1! are simulated on
a circular domain as in the previous work in Ref.@15#. Ini-
tially, we observe a similar coarsening process as in the c
of the square domain leading to a big spiral about the
center that is rather long living~on the average 500–1000tv).
Possibly because of the focus instability@25,26# the spiral

FIG. 1. The fieldc(r ,t) ~1! is plotted at increasing timest after
starting with random initial conditions att50. The parameters ar
G532 ~aspect ratio!, «50.7, gm550, c252, h51, P51, and
tz51.
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core moves off center and the spiral arms may be co
pressed and react in a sudden process by the generatio
dislocation pairs, inevitably associated with a strong vortic
field. The dislocation tips wind up in a dynamics, which h
been loosely described as ‘‘invasive chaos’’ by Cross and
@16,17#. During that period, one observes SDC that coars
again to a quite big spiral, which becomes again unstable
so on. The periodic dynamics due to the generation of dis
cations in compressed roll patches is typical for circular ce
and has been described in other comparable situation
well ~see, e.g.,@27#!.

The difference between the latter scenario of ‘‘intermitte
SDC’’ and persistent generic SDC is obvious from Fig.
Here, we compare in a circular geometry the normalized c
vective heat currentj n(t) obtained from simulations of Eqs
~1! with the same quantity in the full Boussinesq equatio
@6#. For the SH model,j n(t) is given as

j n~ t !5
j ~ t !

^ j ~ t !&
, ~2!

with the heat current

j ~ t !5
1

SES
d2rc2~r ,t !. ~3!

^ . . . & denotes the time average andS the area of the cell. In
both cases, the heat current is only shown for a small re
sentative time window taken out of a very long runs th
lasted up totv540 000. In the upper panel, we see rather r
but strong events, when the coarsened big spirals break
at the downward spike and cell-filling SDC appears for
short time. In contrast, the heat current in the Boussin
case~lower panel! shows only moderate fluctuations corr
sponding to the typical small scale dynamics of SDC.

We have convinced ourselves that also for largerG564
while the other parameters are chosen as in Fig. 1, the do
nant coarsening to big spirals cannot be effectively s
pressed. However, they become unstable from time to t
and in analogy to Fig. 2, intermediate SDC appears.

With respect to some deficiencies of the SH model
luded to above, we have several speculations. Already w

FIG. 2. The normalized convective heat fluxj n(t) @see Eq.~2!#
is shown for the SH model~upper part! with the same parameters a
in Fig. 1 and for the Boussinesq equations~see, e.g.,@6#! ~lower
part!.
2-2
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Manneville introduced the generalized SH equations in R
@13#, he discussed in detail the intricate roll of the mean fl
and some very long transients before his simulations se
down to a steady attractor. The fact that the Busse balloo
not correctly reproduced by the generalized SH mo
@6,23,20# and that even transient SDC requires a four tim
largergm value than the theoretical one~see above and@20#!
might be of minor importance. From a more general point
view, the generalized SH equations are based on a
wave-length approximation forz(r ,t). Therefore, the pro-
nounced short-scale structures in the vorticity field, wh
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exist, for instance, at a spiral core~see, e.g., Fig. 18 in@3#!,
are not systematically captured by construction. They mi
be responsible for a permanent ‘‘stirring’’ of the real syste
and for keeping a persistent weak turbulence alive.

In conclusion, for many purposes, generalized SH mod
are certainly very valuable tools to study the SDC scena
even if it would exist only as a long transient. However, o
investigations shed some light on the general problem
understanding the long-time behavior of hydrodynamic s
tems by using SH models. Accordingly, their application
coarsening studies@28# or to the analysis of statistical prop
erties of SDC@20# might be questionable.
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