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Spiral-defect chaos: Swift-Hohenberg model versus Boussinesq equations
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Spiral-defect chao$SDC) in Rayleigh-Beard convection is a well-established spatio-temporal complex
pattern, which competes with stationary rolls near the onset of convection. The characteristic properties of SDC
are accurately described on the basis of the standard three-dimensional Boussinesq equations. As a much
simpler and attractive two-dimensional model for SDC generalized Swift-Hohe(®BEjgquations have been
extensively used in the literature from the early beginning. Here, we show that the description of SDC by SH
models has to be considered with care, especially regarding its long-time dynamics. For parameters used in
previous SH simulations, SDC occurs only as a transient in contrast to the experiments and the rigorous
solutions of the Boussinesq equations. The small-scale structure of the vorticity field at the spiral cores, which
might be crucial for persistent SDC, is presumably not perfectly captured in the SH model.
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Convection in_a horizontal fluid I_ayer_heated from below, [7,0,—P( nVZ—CZ)]Ag”:[(ayzp)&x—(ax¢)ﬁy]A .
known as Rayleigh-Beard convection, is one of the best- (1b)
studied examples of pattern forming systefiis-3]. At
threshold, convection rolls bifurcate and remain stable in a/(r,t) describes the planar spatial variations of convection
fairly wide parameter range, coined as the Busse-Balloopatternse.g., the temperature figldvhich consist locally of
[1,2]. Thus, the recent observation of spiral-defect chaosonvection-roll patches(r,t) is a velocity potential deter-
(SDO) in a parameter regime where it competes with rollsmining the mean flowJ=(d,{,— d4{). The control param-
was rather surprisingt,5]. The complex spatio-temporal dy- eter e=2.78 AT—AT.)/AT, serves as a dimensionless
namics of SDC involves rotating spirals, targets, dislocaimeasure for the applied temperature differeAdeacross the
tions, etc. Most of the characteristic properties of SDC ardluid layer[19]. The time is scaled in such a way that a time
well reproduced in high-precisioab initio solutions of the lapse oft=>5 in Egs.(1) corresponds to the common vertical
standard Boussinesq equatidiés-8| in three spatial dimen- diffusion timet,, which is about a few seconds in experi-
sions. According to the experiments and the numerical soluments.
tions, SDC is a robust generic state of thermal convection Any curvature of the rolls produces a vertical vorticity
observed in rectangular, square, and circular cells, as wefleld —A¢{(r,t) which increases with decreasing Prandtl
(see, e.g.[3-10)]). numberP according to Eq(1b). In contrast to the claims

Our general understanding of the universal aspects of paexpressed in several papers by Xi and Guntsee, e.g.,
tern formation has been significantly promoted by the analyf20]), only the dominant term-c? on the left-hand side of
sis of two-dimensional models such as the various types oEq.(1b) may be directly traced back to the Boussinesq equa-
Ginzburg-Landau and Swift-Hohenberg equatifhd1,13.  tions. The two other terms 7, 7, respectively, are in prin-
This applies also to the generalized Swift-Hohenb€3#)  ciple phenomenological, as discussed in some detail in Ref.
equationg13,14] which include mean-flow effects important [17]. In Eq. (1a), the relevance of(r,t) is controlled by the
at low Prandtl numbers in thermal convection. The numericatoupling constang,,. The value ofg,, may be found to be
simulation of SH models has provided important insight intog,,.=12.2 for c2=2 and P=1 by comparison with the
the underlying mechanism of SD[15-18. Nevertheless, known zigzag stability boundary of convection rolil].
model equations imply approximations and their possible The coupling to the mean flow, which becomes more im-
limitations have to be examined carefully. Here, we ShOWportant either at smalP or largeg,, is crucial for persistent
that the long-time dynamics of SDC in terms of the general-SDC. In the limit of large Prandtl numbefB, where ¢ is
ized SH equations might be problematic. hardly excited, the dynamics af becomes purely relax-

In the following, we discuss simulations of SDC in a setational and approaches a low dimensional stationary state of
of widely used generalized SH equations, which couple twahe corresponding Lyapunov functioni,12]. Note, how-

real fieldsy(r,t) and{(r,t) (see, e.g.[15,16) ever, that any strongly disordered pattern before it equili-
brates generates virtually instantaneously a strong, long-
[+ 0gmU-V]g=[e—(1+A)?]p— 43, (1a  range mean-flowU according to Eq.(1b) and may thus

easily lead to a transient SDC-like dynamics.
In our numerical solutions of Eqél), we have chosen the
*Present address: AGFA Gaevaert AG, P.O. Box 100160same set of parameters as in the previous wptksl6,20Q,
D-51301 Leverkusen, Germany. namely, c?=2, g,,=50, 7,= n=P=1, e=0.7. Mostly, we
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: FIG. 2. The normalized convective heat flit) [see Eq(2)]
{ ( is shown for the SH modélpper part with the same parameters as
@ A @ ﬁ in Fig. 1 and for the Boussinesq equatiaisee, e.g.[6]) (lower

t = 54000 t = 64000 par.

FIG. 1. The fieldy(r,t) (1) is plotted at increasing timesafter
starting with random initial conditions &at=0. The parameters are
I'=32 (aspect ratiy £=0.7, g,,=50, c?=2, =1, P=1, and
T=1.

core moves off center and the spiral arms may be com-
pressed and react in a sudden process by the generation of
dislocation pairs, inevitably associated with a strong vorticity
field. The dislocation tips wind up in a dynamics, which has
been loosely described as “invasive chaos” by Cross and Tu
consider an aspect ratio éf=L/2d=32, whereL denotes [16,17. During that period, one observes SDC that coarsens
the lateral extension of the cell anbits thickness. At first, again to a quite big spiral, which becomes again unstable and
we have performed simulations in a square domain with peso on. The periodic dynamics due to the generation of dislo-
riodic boundary conditions in order to avoid an artificial bias cations in compressed roll patches is typical for circular cells
from the sides. Starting from random initial conditions yieldsand has been described in other comparable situations as
a typical snapshot as shown in Figalat 80Q,. This pat-  well (see, e.g.[27]).
tern compares well with planforms already shown in Refs. The difference between the latter scenario of “intermittent
[15,16 at the same time lapse. It resembles also the chara&DC” and persistent generic SDC is obvious from Fig. 2.
teristic SDC snapshots observed persistently in experimentdere, we compare in a circular geometry the normalized con-
[4,5] or during numerical solutions of the fundamental vective heat curren,(t) obtained from simulations of Egs.
Boussinesq equationi§]. (1) with the same quantity in the full Boussinesq equations
However, when continuing the runs beyond 8Q0the  [6]. For the SH modelj(t) is given as
scenario changes qualitatively and the pattern coarsens to-
wards a “big spiral” as shown in Figs.(@) and Xd), which i) )
rotates about a slowly migrating center. Only at the bound- in(t)= Gy v
aries of the big spiral one finds remnants of the previous
persistent generation and annihilation of small spirals. Fowith the heat current
P~1, the coarsening to big spirals is neither observed in 1
teiz)q:;:nments nor during simulations of the Boussinesq equa i(t)= _f d2r (1 t). )
The transient behavior of SDC followed by a coarsening
to a big spiral reminds us of recent experiment®at4 [24]. (...) denotes the time average aBdhe area of the cell. In
After a sudden quench, strongly disordered pattern deveboth cases, the heat current is only shown for a small repre-
oped, which due to the strong vorticity field, led to the SDCsentative time window taken out of a very long runs that
transient. Afterwards, SDC coarsened to a big spiral as wellasted up td, =40 000. In the upper panel, we see rather rare
which eventually disintegrated after a long time towards &but strong events, when the coarsened big spirals breaks up
stationary pattern. Apparently f@=4, the vorticity field is at the downward spike and cell-filling SDC appears for a
too weak to sustain SDC. short time. In contrast, the heat current in the Boussinesq
Unlike the experiments and the solutions of the Bouss<case(lower panel shows only moderate fluctuations corre-
inesq equations, the SDC attractor in the SH simulationsponding to the typical small scale dynamics of SDC.
shows a remarkable sensitivity to the boundary conditions. We have convinced ourselves that also for larfer64
This feature becomes evident when Eds.are simulated on  while the other parameters are chosen as in Fig. 1, the domi-
a circular domain as in the previous work in REE5]. Ini- nant coarsening to big spirals cannot be effectively sup-
tially, we observe a similar coarsening process as in the caggessed. However, they become unstable from time to time
of the square domain leading to a big spiral about the celand in analogy to Fig. 2, intermediate SDC appears.
center that is rather long livingn the average 500—100Q0. With respect to some deficiencies of the SH model al-
Possibly because of the focus instabili85,26 the spiral luded to above, we have several speculations. Already when
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Manneville introduced the generalized SH equations in Refexist, for instance, at a spiral co(see, e.g., Fig. 18 ifi3]),
[13], he discussed in detail the intricate roll of the mean floware not systematically captured by construction. They might
and some very long transients before his simulations settleie responsible for a permanent “stirring” of the real system
down to a steady attractor. The fact that the Busse balloon i@nd for keeping a persistent weak turbulence alive.

not correctly reproduced by the generalized SH model In conclusion, for many purposes, generalized SH models

[6,23,20 and that even transient SDC requires a four time<e Certainly very valuable tools to study the SDC scenario,
largerg,, value than the theoretical origee above anf20)) even if it would exist only as a long transient. However, our
m

. S . investigations shed some light on the general problem of
might be of minor importance. From a more general point ofygerstanding the long-time behavior of hydrodynamic sys-

view, the generalizgd SH equations are based on a longms py using SH models. Accordingly, their application to
wave-length approximation fof(r,t). Therefore, the pro- coarsening studig®8] or to the analysis of statistical prop-
nounced short-scale structures in the vorticity field, whicherties of SDC[20] might be questionable.
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