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The biopolymers actin and microtubules are often in an ongoing assembling-disassembling state far from
thermal equilibrium. Above a critical density this leads to spatially periodic patterns, as shown by a scaling
argument and in terms of a phenomenological continuum model, which meets also Onsager’s statistical theory
of the nematic-to-isotropic transition in the absence of reaction kinetics. This pattern forming process depends
much on nonlinear effects and a common linear stability analysis of the isotropic distribution of the filaments
is often misleading. The wave number of the pattern decreases with the assembling-disassembling rate and
there is an uncommon discontinuous transition between the nematic and periodic states.
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Ongoing polymerization and depolymerization of actin
and microtubule filaments are prominent examples of dissi-
pative nonequilibrium phenomena in living cells[1], which
are important for many different purposes, such as the cell
motility and division or morphogenesis. Both substances
show also an inherent propensity to pattern formation and
active phenomena[2–8]. Like the famous example for rod-
like particles, the Tobacco Mosaic Virus(TMV ) [9], also
actin and microtubule filaments may undergo with increasing
density a well known transition to an orientational order
[10–12], the so-called nematic order[13,14]. By Onsager’s
seminal work[13–16] this transition has been traced back to
excluded volume interactions between the filaments. This
statistical theory is valid for long filaments of fixed shape
and infinite lifetimet, and it predicts near the transition also
a phase separation into domains of isotropically oriented
rods at low density and nematic domains of higher rod den-
sity, which has also been observed for actin with an almost
vanishing kinetics[11]. For a finite lifetime of actin and mi-
crotubule filaments, Onsager’s statistical theory for the nem-
atic order does not apply. Moreover, a finitet limits the
diffusive transport distance and the coarsening during the
phase separation close to the orientational transition to a
length scale of aboutlD=ÎDrt, with the filament diffusion
constantDr. Therefore we expect a kinetically induced spa-
tially periodic pattern which has according to this estimate a
wavelength of about 10mm for typical parameters of actin.
This is supported by current experiments[8].

The effect of reaction kinetics on a phase separation has
been investigated for a chemical and a biophysical example
in Refs.[17,18]. In both cases the transition to periodic pat-
terns is supercritical and its onset as well as wavelength fol-
lows already from a linear stability analysis of the respective
homogeneous basic state. Instead of these two competing
states, near the orientational transition of filaments one has
three different competing states: the spatially homogeneous
isotropic state, the spatially homogeneous nematic one, and
the spatially inhomogeneous alternation between the isotro-
pic and the nematic order. Here, the growth rate of perturba-
tions of the basic state takes its maximum also at a finite
wave number[19,20], but this is not sufficient for a predic-
tion of spatially inhomogeneous nonlinear states above the
orientational transition. Instead of an inhomogeneous state,
as suggested by the linear perturbation analysis, in the non-

linear regime one has an exchange of stability and the spa-
tially homogeneous nematic state is often preferred, as de-
scribed in this work. Therefore the bifurcation picture has to
be explored by a nonlinear analysis, whereby an uncommon
coarsening behavior at the nonlinear nematic-to-periodic
transition has been found.

The generic scenario near the ordering transition is de-
scribed in terms of a phenomenological model, which is in-
troduced and analyzed at first without the reaction kinetics of
the filaments. It is extended in the second part by the essen-
tial reaction steps as motivated by actin and microtubule po-
lymerization.

Model without reaction kinetics. In lyotropic liquid crys-
tals the nematic order is forced beyond a critical rod density
r̃c by excluded volume interactions[13] and the resulting
local mean orientation of rodlike particles is described by the
so-called directornsr d (with n=−n) [14]. Assuming rods of a
single length and a uniformn Landau–de Gennes theory[14]
tells that the largest eigenvaluel of the nematic order pa-
rameter tensor is sufficient for a description of the strength of
the orientational order.l varies froml=0 in the isotropic
state tol= 2

3 for a uniform rod orientation[14,21]. It is con-
venient to use the dimensionless rod densityr~r̃VE, with
VE=2bL2 the excluded volume for rods of lengthL and di-
ameterb. For a constant orientationn, as we assume in this
work, spatial variations ofr and l also include spatially
alternating isotropic and nematic ranges. Since for long rods
the preferred director orientation is parallel to the isotropic-
nematic interface[22], we assume spatial variations in the
direction perpendicular ton, which we call thex direction.
For this context we choose the phenomenological model for
the conserved densityrsx,td and for the unconserved field
lsx,td:

]tr = Dr]x
2f− lr − dr]x

2r + arr3g, s1ad

]tl = − DrFs1 − rdl −
3

2
rl2 +

9

2
rl3G

+ Dl]x
2fs1 − rdl − dl]x

2l + all3g. s1bd

The terms without spatial derivatives in Eq.(1b) follow by a
moment approximation from a Smoluchowski equation for
rigid rods [21,23] and r in front of the nonlinear terms re-
flects the excluded volume interaction. This part is equiva-
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lent to a Landau–de Gennes expansion[14,24] and it deter-
mines the homogeneous solutions

r = r0 = const, l0 = 0, l± =
1

6
±

1

6
Î9 −

8

r0
. s2d

l0=0 corresponds to the isotropic rod distribution that be-
comes linearly unstable with respect to nematic fluctuations
beyond the critical densityr.rc=1, where they grow up to
the homogeneously stable upper branchl+ of the spatially
uniform nematic order in Fig. 1(b). Since the isotropic-
nematic transition is of first order, both states coexist in a
range8

9 ørø1.
With the current density jrsxd=−Dr]xmsxd and

msxd=−lr−dr]x
2r+arr3, Eq.(1a) takes the form of a conser-

vation law for the rodlike particles and it resembles the
Cahn-Hilliard equation[25]. The first(nonlinear) term in Eq.
(1a)—i.e., −Dr]x

2slrd—destabilizes the spatially homoge-
neous particle density for any finite value ofl (l is always
positive) and mimics therefore Onsager’s prediction[13,16]
that the free energy can be reduced by separating the system
into ranges of low rod densityri (isotropic) and high density
ra (nematic). The second term describes an isotropic-nematic
interface energy and the third term limits the modulation
amplitudes of the density(see also below).

Theories involving the distribution function predict be-
yond the criticalrc=1 an instability of the isotropic distribu-
tion against inhomogeneous order parameter fluctuations
[19,23]. In Eq. (1b) this is taken into account by
]x

2fs1−rdlg and the last two terms limit the wave number
and the amplitude of the nonlinear modulations ofl. For
intermediate values ofr, Eqs.(1) have stationary kink solu-
tions as shown in Fig. 1(c). The densitiesri and ra, in the
isotropic and nematic range, respectively, are determined by
the two coefficientsar andal, as described in the following.
For stationary kinks as in Fig. 1(c) the particle transport van-
ishes,jrsxd=0, andmsxd=mi =ma is constant. Sufficiently far
away from the kinkra and ri are constant too and one ob-
tains the equation

arri
3 = − lara + arra

3, s3d

where la=lsrad=s1+Î9−8/ra d /6. The rotational term in
Eq. (1b) vanishes in the nematic range as well as trivially in
the isotropic range. Definingjlsxd=−Dl]xnsxd, since in the
isotropic rangeli is zero,ni is zero as well. To prevent a
current through the interface, the total current—i.e., justjl in
the nematic region—has to vanish and it follows thatna
=ni =0, leading to

s1 − radla + alla
3 = 0. s4d

As la is known, from this equation the anisotropic densityra
follows as a function ofal (or vice versa) and ri is given
with ra via Eq.(3) as a function ofar (or vice versa). There-
fore, the two densitiesri and ra may also be considered as
input parameters that are obtained from different approaches
as for instance from Refs.[13,26] or possibly from experi-
ments. Sinceri andra do not depend on the system sizeL,
the kink position changes with the mean densityr0 as shown
in Fig. 1, where the nematic volume fractionVn is given in
terms ofr0.

Linear stability analysis. For r.rc a linear stability
analysis of the homogeneous isotropic state(cf. l=0 andr
=r0), with respect to small periodic perturbationsl1,r1
~expsst± iqxd, gives the wave number dependence of the
growth ratessqd as shown for a set of parameters in Fig.
2(a). This shape ofssqd with a positive value atq=0 and a
maximum at a finite value ofq is typical for the unstable
isotropic state and is in agreement with similar results for
microscopic models[19]. A linear stability analysis of the
homogeneous nematic statel± in terms of microscopic mod-
els is rather involved[23]. For our phenomenological model,
however, the determination ofssqd is a straightforward task
and its typical shape at the unstable nematic branch is shown
in Fig. 2(b). Along the dashed part of the curve in Fig. 1(b)
the homogeneous nematic state is linear unstable. Between
our result and the linear stability described in[19] there is a
major difference. In both casesssqd for the isotropic state
takes its maximum at a finite value ofq and has positive
values for anyr.rc. This is somewhat in contradiction to

FIG. 1. Part(b) shows the stable(solid line) and the unstable branch(dashed line) of the nematic order parameterl± as a function of the
rod densityr; cf. Eq. (2). Part(c) shows stable kink solutions of Eqs.(1) interpolating between the nematicsr=rad and the isotropic range
sr=rid. The nematic volume fractionVn as a function ofr is given in (a). Parameters of the model:Dr =0.1, Dr=Dl=0.3, ar=0.25, al

=2.0, anddr=dl=0.1. For this set, the whole system is in the homogeneous nematic state forr0.1.367(i.e., Vn=1).
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Onsager’s statistical theory, where inhomogeneous states
(via phase separation) are only energetically preferred for a
rod density below a maximum valuer,ra. In our model
nonlinear effects stabilize the uniform nematic state for
r.ra and it is unstable only along the dashed line in Fig.
1(b). Simulations of Eqs.(1) confirm that inhomogeneous
solutionslsxd and rsxd only occur for a mean densityr0
smaller thanra.

Reaction kinetics drives pattern. In cells and in vitro actin
and microtubule filaments are usually out of equilibrium and,
due to an ongoing assembly-disassembly reaction, filaments
have a finite lifetimet. This reaction kinetics leads to a sta-
tionary length distribution of the filaments[11] or even to
oscillatory polymerization[2,27,28]. During the phase sepa-
ration at the isotropic-to-nematic transition, filaments are
transported, but only over a lifetime-dependent distance of
aboutlD=ÎDrt. Since the lifetime of filaments is a constant,
much more subunits are released in the nematic range with a
high densityra than in the isotropic range with a low density
ri. However, due to a much larger diffusion constant, the
subunits are redistributed quickly, leading to a nearly homo-
geneous subunit densitymsxd. Thus the number of nucleated
filaments per unit time, which depends onmsxd, is weakly
varying too. By this qualitative reasoning one expects a
steady net transport of subunits from the nematic to the iso-
tropic range and in the opposite direction a transport of fila-
ments, whereby the latter one is limited to distances of the
order of lD or smaller. This length restriction causes, instead
of a large-scale phase separation, a spatially periodic pattern
with a wavelength in the order oflD.

Along this qualitative reasoning the complexity of the
biochemical reaction steps, involved during the assembly-
disassembly of actin or microtubules, is not crucial for this
wavelength limitation. For instance, actin and microtubules
are usually met with a polydisperse length distribution. Since
the slowest kinetic step and the small diffusion constant of
the long filaments will govern the limitation, we discard the
polydispersity and assume for the sake of simplicity that all
filaments are of the same length. With a decayS=t−1 and a
nucleation rates of the filaments and a diffusion constantDm
of the subunits one ends up finally with the three equations

]tr = Dr]x
2f− lr − dr]x

2r + arr3g + sm− Sr, s5ad

]tl = − DrFs1 − rdl −
3

2
rl2 +

9

2
rl3G

+ Dl]x
2fs1 − rdl − dl]x

2l + all3g − Sl, s5bd

]tm= Dm]x
2m− gsm+ gSr. s5cd

The constantg is a measure for the number of subunits per
rodlike particle. In the nematic range oriented filaments are
lost, but new ones are nucleated everywhere with an arbitrary
orientation which have to relax to the local mean orientation
by rotational diffusion. Accordingly, there is only a decay
term in Eq.(5b) which can be justified also microscopically
[23]. This reaction kinetically caused partial loss of the ori-
entational order leads to a higher critical density for the
isotropic-to-nematic transitionrc=1+S /Dr. In the presence
of reactive steps the ratess and S determine the mean rod
density in terms of the monomer densityr=sS−1m. The spa-
tially homogeneous solutions of Eqs.(5) are

r = r0, l0 = 0, l± =
1

6
±

1

6
Î9 −

8

r0
S1 +

S

Dr
D , s6d

wherel±srd are depicted as a function of the mean densityr
in Fig. 3(d). In a certain parameter rangel+ may become
unstable with respect to periodic perturbationsl1,r1
~expsst± iqxd and the wave number dependence of the
growth ratessqd has a typical shape as in Fig. 2(c). Com-
pared to the case without kinetics as in Fig. 2(b), long-
wavelength perturbations are now suppressed and only per-
turbations with a finite wave number grow. The parameter
range of the unstable homogeneousl+ branch is indicated by
the dashed and the stable one by the solid line in Fig. 3(d).
The unstable range of the nematic branch decreases with
increasing coefficientsdr and dl and with increasing and
moderate values of the decay rateS. Periodic states occur-
ring at the unstable nematic branch are shown in Figs. 3(a)
and 3(b) for three different mean densitiesr0. The maxima of
rsxd come close tora (cf. Fig. 1), but the minima ofrsxd are
considerably larger thanri in the case without kinetics. The
solid line in Fig. 3(c) indicates the range where the nonlinear
periodic state is in coexistence with the homogeneous states.
For r.r* , along the dashed line in Fig. 3(c), the periodic
pattern becomes increasingly anharmonic, plateausr,ra
spread out, and the valleys of low filament density in be-
tween become less and narrower by approaching the upper
end of the dashed curve in Fig. 3(c), a behavior that is rather
uncommon[29]. At the left end of this curve the state re-
mains periodic, the wavelength increases, and the valleys
spread out.

Conclusions. A reaction kinetically driven pattern forming
process is predicted near the isotropic-nematic(I-N) transi-

FIG. 2. In part(a) ssqd is shown for periodic perturbations of the isotropic state withr0.rc and in part(b) of the nematic state without
kinetics and at the unstable branch in Fig. 1(b). In part (c) ssqd is given for perturbations of the nematic state in the case with reaction
kinetics and at the unstable branch in Fig. 3(d). In parts (a) and (b) the parameters arer0=1.05 andS=0 and in (c) S=0.003 ands
=0.01S. The other parameters are as in Fig. 1.
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tion, which is supported by recent experiments on actin po-
lymerization [8]. A phenomenological continuum model is
introduced that reproduces the first order I-N transition in
lyotropic liquid crystals, including the phase separation in its
neighborhood and being in agreement with the statistical
theory of Onsager. Periodic solutions arise due to a finite
lifetime t and a nucleation rate of the filaments. However,
the correlation between a finitet and the occurrence of pe-
riodic patterns is independent of the details of the model.
Beyond a critical densityrc the isotropic orientation of the
filaments and below a certainr* the uniform nematic state
becomes unstable against inhomogeneous perturbations.
Hence for r,r* periodic states are favored and for our
model the wave number varies asq~t−0.17. However,rc in-
creases andr* decreases withS=t−1 and it may happen that
r* ,rc holds; i.e., in a certain parameter range kinetics fa-
vors the uniform nematic state. Therefore, inhomogeneous

states as predicted by a linear stability analysis of the isotro-
pic state[19,20] may be irrelevant due to nonlinear effects.
This pattern formation process near the I-N transition is ex-
pected to be generic and may also apply to situations with
different transport and filament accumulation mechanisms
such as in the case of filament bundling[30–32]. Even
though our description is very simplified and restricted to
one spatial dimension, we expect that the basic physical
mechanism also plays a crucial role for situations with poly-
disperse filament distributions[2,11,33], including living
cells. Polydispersity favors periodic patterns and together
with higher spatial dimensions this will give rise to an even
larger variety of phenomena, to which forthcoming works
are devoted.

We thank with great pleasure J. Dhont, B. Gentry, M.
Hammele, J. Käs, and K. Kawasaki for fruitful discussions.
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FIG. 3. Parts(a) and (b) show periodic solutionsrsxd and lsxd of Eqs. (5) for r0=0.8 (dotted line), r0=0.95 (dashed line), and r0

=1.056(solid line), respectively. Part(d) displays the stable homogeneous nematic branch(solid line) and the unstable ones(dashed line).
In part (c) the existence range of the stable(solid line) and unstable(dashed line) periodic patterns with the modulation amplitudeA of lsxd
are given. Parameters are as in Fig. 1 withDm=10, g=100, S=0.003, ands=0.01o.
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