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Pattern formation driven by nematic ordering of assembling biopolymers
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The biopolymers actin and microtubules are often in an ongoing assembling-disassembling state far from
thermal equilibrium. Above a critical density this leads to spatially periodic patterns, as shown by a scaling
argument and in terms of a phenomenological continuum model, which meets also Onsager’s statistical theory
of the nematic-to-isotropic transition in the absence of reaction kinetics. This pattern forming process depends
much on nonlinear effects and a common linear stability analysis of the isotropic distribution of the filaments
is often misleading. The wave number of the pattern decreases with the assembling-disassembling rate and
there is an uncommon discontinuous transition between the nematic and periodic states.
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Ongoing polymerization and depolymerization of actinlinear regime one has an exchange of stability and the spa-
and microtubule filaments are prominent examples of dissitially homogeneous nematic state is often preferred, as de-
pative nonequilibrium phenomena in living ce[ts], which  scribed in this work. Therefore the bifurcation picture has to
are important for many different purposes, such as the celhe explored by a nonlinear analysis, whereby an uncommon
motility and division or morphogenesis. Both substancesoarsening behavior at the nonlinear nematic-to-periodic
show also an inherent propensity to pattern formation angransition has been found.
active phenomeng2-8]. Like the famous example for rod-  The generic scenario near the ordering transition is de-
like particles, the Tobacco Mosaic ViIru"dMV) [9], also  geriped in terms of a phenomenological model, which is in-
actin and microtubule filaments may undergo with increasing,,qy,ced and analyzed at first without the reaction kinetics of

dle(?sity ?hwe“ anCIJV\:JIn trans;pon éolgnl ongntagonal Order ihe filaments. It is extended in the second part by the essen-
[10-13, the so-called nematic ord¢L3,14. By Onsagers .. oaction steps as motivated by actin and microtubule po-
seminal work[13-1§ this transition has been traced back to &Vm erization

excluded volume interactions between the filaments. Thi Model without reaction kineticsn lyotropic liquid crys-

istical theory is valid for long filamen f fix h . . i .
statistical theory is valid for long filaments of fixed s apetals the nematic order is forced beyond a critical rod density

and infinite lifetimer, and it predicts near the transition also .~ . ) .
a phase separation into domains of isotropically orientede Py €xcluded volume interactionfd3] and the resulting

rods at low density and nematic domains of higher rod denlocal mean'orientation qf rodlike particles is d_escribed by the
sity, which has also been observed for actin with an almos#0-called directon(r) (with n=-n) [14]. Assuming rods of a
vanishing kinetic§11]. For a finite lifetime of actin and mi- single length and a uniform Landau—de Gennes thedr/]
crotubule filaments, Onsager’s statistical theory for the nemtells that the largest eigenvalueof the nematic order pa-
atic order does not apply. Moreover, a finitelimits the ~ rameter tensor is sufficient for a description of the strength of
diffusive transport distance and the coarsening during théne orientational orden varies fromA=0 in the isotropic
phase separation close to the orientational transition to &tate toA=3 for a uniform rod orientatiofi14,21. It is con-
length scale of about,=\D,7, with the filament diffusion ~ venient to use the dimensionless rod dengitypVe, with
constantD,,. Therefore we expect a kinetically induced spa-Ve=2bL? the excluded volume for rods of lengthand di-
tially periodic pattern which has according to this estimate édmeterb. For a constant orientatiom, as we assume in this
wavelength of about 1@m for typical parameters of actin. Work, spatial variations op and A also include spatially
This is supported by current experimen8s. alternating isotropic and nematic ranges. Since for long rods

The effect of reaction kinetics on a phase separation halkie preferred director orientation is parallel to the isotropic-
been investigated for a chemical and a biophysical examplgematic interfacg22], we assume spatial variations in the
in Refs.[17,18. In both cases the transition to periodic pat- direction perpendicular ta, which we call thex direction.
terns is supercritical and its onset as well as wavelength folFor this context we choose the phenomenological model for
lows already from a linear stability analysis of the respectivethe conserved density(x,t) and for the unconserved field
homogeneous basic state. Instead of these two competingX,t):

states, near the orientational transition of filaments one has dp =D, [~ Np = 8,%p +a,p°], (1a)
three different competing states: the spatially homogeneous 3 9

isotropic state, the spatially homogeneous nematic one, and GN==D,| (L =p)A = =pAZ+ =pA3

the spatially inhomogeneous alternation between the isotro- 2 2

pic and the nematic order. Here, the growth rate of perturba- +DyPL(1 = p)\ = 8,2\ +a,\°]. (1b)

tions of the basic state takes its maximum also at a finite

wave numbef19,20, but this is not sufficient for a predic- The terms without spatial derivatives in E4b) follow by a
tion of spatially inhomogeneous nonlinear states above thenoment approximation from a Smoluchowski equation for
orientational transition. Instead of an inhomogeneous stateigid rods [21,23 and p in front of the nonlinear terms re-
as suggested by the linear perturbation analysis, in the nofflects the excluded volume interaction. This part is equiva-
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FIG. 1. Part(b) shows the stablésolid line) and the unstable bran¢dashed lingof the nematic order parameter as a function of the
rod densityp; cf. Eq.(2). Part(c) shows stable kink solutions of Egd.) interpolating between the nematie=p,) and the isotropic range
(p=pi). The nematic volume fractiol, as a function ofp is given in(a). Parameters of the moddD, =0.1, D,=D,=0.3, a,=0.25, a,
=2.0, andg,=4,=0.1. For this set, the whole system is in the homogeneous nematic staig>far367(i.e., V,=1).

lent to a Landau—de Gennes expandidh,24 and it deter- appf*: —Napat a,,pi, (3)
mines the homogeneous solutions I
where \;=\(p,)=(1+y9-8/p, )/6. The rotational term in
o B 1.1 8 Eqg. (1b) vanishes in the nematic range as well as trivially in
p=po=const, No=0, A= 656 9- o0 @ the isotropic range. Defining, (x)=-D,d,¥(x), since in the
isotropic range\; is zero, v; is zero as well. To prevent a

. . o current through the interface, the total current—i.e., jysh
Mo=0 corresponds to the isotropic rod distribution that be—the nematic gregion—has to vanish and it foIIows”'Elh@t
comes linearly unstable with respect to nematic fluctuations. 1,=0, leading to
beyond the critical density> p.=1, where they grow up to b (1-pIhy+an3=0 (4)
a a— Y-

the homogeneously stable upper bramghof the spatially
As \, is known, from this equation the anisotropic dengity

uniform nematic order in Fig. (b). Since the isotropic-
nematic transition is of first order, both states coexist in &ollows as a function ofa, (or vice versa and p; is given

rangeg <p=<1. with p, via Eq.(3) as a function of,, (or vice versa There-
With  the current density j,(x)=-D,du(x) and fore, the two densitiep; and p, may also be considered as
/J,(X):—)\p—5p(9>2<p+app3, Eq.(1a) takes the form of a conser- input parameters that are obtained from different approaches
vation law for the rodlike particles and it resembles theas for instance from Ref§13,2g or possibly from experi-
Cahn-Hilliard equatiori25]. The first(nonlineaj term in Eq.  ments. Sincegy; and p, do not depend on the system size
(la—i.e., —Dpazx()\p)—destabilizes the spatially homoge- the kink position changes with the mean dengigyas shown
neous particle density for any finite value ©f(\ is always in Fig. 1, where the nematic volume fractidf is given in
positive) and mimics therefore Onsager’s predictidrB,16 terms ofp,.
that the free energy can be reduced by separating the systemLinear stability analysis For p>p. a linear stability
into ranges of low rod density; (isotropig and high density ~analysis of the homogeneous isotropic state A=0 andp
pa (nematig. The second term describes an isotropic-nematic=po), With respect to small periodic perturbations, p;
interface energy and the third term limits the modulation>exp(ottigx), gives the wave number dependence of the
amplitudes of the densitgsee also beloy growth rateo(q) as shown for a set of parameters in Fig.
Theories involving the distribution function predict be- 2(a). This shape otr(q) with a positive value atj=0 and a
yond the criticalp,=1 an instability of the isotropic distribu- maximum at a finite value ofj is typical for the unstable
tion against inhomogeneous order parameter fluctuationisotropic state and is in agreement with similar results for
[19,23. In Eq. (1b) this is taken into account by microscopic model§19]. A linear stability analysis of the
#[(1-p)A] and the last two terms limit the wave number homogeneous nematic statgin terms of microscopic mod-

and the amplitude of the nonlinear modulations)ofFor  els is rather involvedi23]. For our phenomenological model,
however, the determination f(q) is a straightforward task

intermediate values gf, Egs.(1) have stationary kink solu-
and its typical shape at the unstable nematic branch is shown

tions as shown in Fig.(t). The densitiesp; and p,, in the
isotropic and nematic range, respectively, are determined by Fig. 2(b). Along the dashed part of the curve in FigbjL

the two coefficients, anda,, as described in the following. the homogeneous nematic state is linear unstable. Between
For stationary kinks as in Fig(@) the particle transport van- our result and the linear stability described[i®] there is a
ishes,j,(x)=0, andu(X) = u;= u, is constant. Sufficiently far major difference. In both cases(q) for the isotropic state

away from the kinkp, and p; are constant too and one ob- takes its maximum at a finite value gf and has positive
values for anyp>p.. This is somewhat in contradiction to

tains the equation
022902-2
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FIG. 2. In part(a) o(q) is shown for periodic perturbations of the isotropic state wih- p. and in part(b) of the nematic state without
kinetics and at the unstable branch in Figb)1 In part(c) o(q) is given for perturbations of the nematic state in the case with reaction
kinetics and at the unstable branch in Figd)3 In parts(a) and (b) the parameters arg;=1.05 andX=0 and in(c) 2=0.003 ands
=0.03. The other parameters are as in Fig. 1.

Onsager’s statistical theory, where inhomogeneous states (7tm:Dm3)2(m—ysm+ Y2p. (50)
(via phase separatiprare only energetically preferred for a
rod density below a maximum valye<p,. In our model The constanty is a measure for the number of subunits per
nonlinear effects stabilize the uniform nematic state forrodlike particle. In the nematic range oriented filaments are
p>p, and it is unstable only along the dashed line in Fig.lost, but new ones are nucleated everywhere with an arbitrary
1(b). Simulations of Egs(1) confirm that inhomogeneous orientation which have to relax to the local mean orientation
solutions\(x) and p(x) only occur for a mean density, by rotational diffusion. Accordingly, there is only a decay
smaller thanp,. term in Eq.(5b) which can be justified also microscopically
Reaction kinetics drives patterm cells and in vitro actin  [23]. This reaction kinetically caused partial loss of the ori-
and microtubule filaments are usually out of equilibrium and.entational order leads to a higher critical density for the
due to an ongoing assembly-disassembly reaction, filamen{sotropic-to-nematic transitiop,=1+3/D,. In the presence
have a finite lifetimer. This reaction kinetics leads to a sta- of reactive steps the ratesand S determine the mean rod

tionary length distribution of the filamen{d1] or even to density in terms of the monomer densitysS~*m. The spa-
osglllatory polymerlza}t|or[2,27,2§. Dunng _the phase Sepa- ially homogeneous solutions of EqS) are
ration at the isotropic-to-nematic transition, filaments are

transported, but only over a lifetime-dependent distance of 1 1 3 s
aboutlp=VD,7. Since the lifetime of filaments is a constant, P=po, No=0, A= 6 + 6 9- —(1 + 5) , (6)
much more subunits are released in the nematic range with a r
h'gmgsvrésv'te%paéngntgn ;h?n'jgﬁr?g;gé?n d%gu\g;ghnaclgr\?/s;jair;SIEKeWhere)\i(p) are depicted as a function of the mean dengity
pl 1 1 i 1

subunits are redistributed quickly, leading to a nearly homoIn Fig. ¥d). In a certain parameter range may become

: . unstable with respect to periodic perturbations,p;
geneous subunlt'de'nsmy(x)..Thus the number qf nucleated «exp(ottigx) and the wave number dependence of the
filaments per unit time, which depends omx), is weakly

. hi litati . growth ratec(q) has a typical shape as in Fig(c2 Com-
v?ryggntotot.r iy trlts ?ual;ta:i\t/e frrer?]sfhnmr? rcr)1m'?i etxptictsi ared to the case without kinetics as in Figh)?2 long-
tsr(?;licyrarfge Zn(sjpi(r)] thoe (S)l:)plésitz di?ectioi aetraa;lscpoort 01’ca fifiwavelgngth perturpa_tions are now suppressed and only per-
ments, whereby the latter one is limited to distances of th jurbations with a finite wave number grow. The_ parameter

' ; o ) ange of the unstable homogeneauydranch is indicated by
order ofl or smaller. This length restriction causes, instea

4 . o he dashed and the stable one by the solid line in Fid). 3
of a large-scale phase separation, a spatially periodic patte';fhe unstable range of the nematic branch decreases with
with a wavelength in the order of.

Along this qualitative reasoning the complexity of the increasing coefficients), and , and with increasing and
b'ocher?fcal reqact'on Steps. invol ged durin Fihe ;/ssembl moderate values of the decay rate Periodic states occur-
d! IbI f It' PS, Itvb\ll aun ? ial th.yring at the unstable nematic branch are shown in Figs. 3
V\;S\allsfenmthyli?nita(t:i |r;] o'r: nr“?rzotunu es, Iznnongnrjr::ili IOL l'sand 3b) for three different mean densitipg. The maxima of

aveleng ation. For instance, actin and microtubules (x) come close te, (cf. Fig. 1), but the minima op(x) are
are usually met with a polydisperse length distribution. Sinc ; . . S
S e onsiderably larger thap, in the case without kinetics. The
the slowest kinetic step and the small diffusion constant ofonsiaeranly. N .
solid line in Fig. 3c) indicates the range where the nonlinear

the long filaments will govern the limitation, we discard the ” " .~ . 2 ; X
polydispersity and assume for the sake of simplicity that a"perlod|c state Is In coexistence W'th th(.a homogeneogs states.
For p>p , along the dashed line in Fig(d, the periodic

filaments are of the same length. With a deay7* and a . . :
) X e pattern becomes increasingly anharmonic, plateatisp,
nucleation rates of the filaments and a diffusion constdng, d d th I f low fil densitv in b
of the subunits one ends up finally with the three equation spread out, and the valleys of low filament density in be-
Sween become less and narrower by approaching the upper
dp=D,%[-\p-S,%p+a,p’l+sm-2p, (58  end of the dashed curve in Fig(c}, a behavior that is rather
uncommon[29]. At the left end of this curve the state re-
3 . ,.9 4 mains periodic, the wavelength increases, and the valleys
dA==Dr| (1 -p)A - SPNTF 5P spread out.
5 ConclusionsA reaction kinetically driven pattern forming
+D, (1L -pA = S FZN+a\°] -3\,  (5b)  process is predicted near the isotropic-nemdtiy) transi-
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FIG. 3. Parts(a) and (b) show periodic solutiong(x) and A(x) of Egs. (5) for py=0.8 (dotted ling, pg=0.95 (dashed ling and pq
=1.056(solid line), respectively. Partd) displays the stable homogeneous nematic braschd line) and the unstable ong¢dashed ling
In part(c) the existence range of the stalpgelid line) and unstabl¢dashed lingperiodic patterns with the modulation amplitudlef A (x)
are given. Parameters are as in Fig. 1 vith=10, y=100, 2 =0.003, ancs=0.01=.

tion, which is supported by recent experiments on actin postates as predicted by a linear stability analysis of the isotro-
lymerization [8]. A phenomenological continuum model is pic state[19,20 may be irrelevant due to nonlinear effects.

introduced that reproduces the first order I-N transition inThis pattern formation process near the I-N transition is ex-
lyotropic liquid crystals, including the phase separation in itspected to be generic and may also apply to situations with
neighborhood and being in agreement with the statisticagjifferent transport and filament accumulation mechanisms

theory of Onsager. Periodic solutions arise due to a finitgych as in the case of filament bundlifig0-33. Even

lifetime 7 and a nucleation rate of the filaments. However,though our description is very simplified and restricted to
the correlation between a finiteand the occurrence of pe- 5, spatial dimension, we expect that the basic physical
mechanism also plays a crucial role for situations with poly-
disperse filament distribution$§2,11,33, including living

nc:sells. Polydispersity favors periodic patterns and together
with higher spatial dimensions this will give rise to an even
variety of phenomena, to which forthcoming works

riodic patterns is independent of the details of the model
Beyond a critical density, the isotropic orientation of the
filaments and below a certaji the uniform nematic state
becomes unstable against inhomogeneous perturbatio
Hence forp<p" periodic states are favored and for our

model the wave number varies as 7 °1". However,p, in-

creases ang’ decreases witk =7"* and it may happen that
p <pc holds; i.e., in a certain parameter range kinetics fa-
vors the uniform nematic state. Therefore, inhomogeneouklammele, J. Kas, and K. Kawasaki for fruitful discussions.

larger

are devoted.
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