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Static dynamics approach to relaxation modes and times for deformed polymers
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We discuss relaxation of conformational fluctuations around deformed polymer states. To this end, Brownian
dynamics simulations of bead-spring models including a finite extensibility of the springs as well as excluded
volume and hydrodynamic interactions between the beads have been performed. Complete spectra of relax-
ation times as well as corresponding relaxation modes are obtained from the simulation data by applying the
static dynamicsformalism, which rigorously describes the initial decay of correlations between the bead
positions. As shown here, this procedure amounts to using a generalized Rouse-Zimm-like model which is
governed bylinear effective equations of motion having the same initial decay of correlations as the full
nonlinear bead-spring model used in the simulations. In thermal equilibrium, the well-known scaling laws in
the presence of excluded volume and hydrodynamic interactions between the beads are recovered, but, in
addition, thestatic dynamicsmethod also yields numeric values for the nonuniversal prefactors of the respec-
tive laws. The method is equally applicable to a broad range of problems, where the polymer is deformed by
the action of flows or forces. Two examples of recent interest are considered: a tethered polymer pulled at its
free end and one which is stretched by a uniform flow. It is shown that in both cases, the relaxation process is
dominated by a finite extensibility of the springs.

DOI: 10.1103/PhysRevE.68.021804 PACS number~s!: 36.20.Ey, 05.40.Jc, 83.10.Mj, 47.50.1d
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I. INTRODUCTION

The slow internal dynamics of long polymer chains is t
origin of the viscoelasticity of dilute polymer solution
@1–6#. The resulting flow phenomena encompass surpris
and spectacular effects such as turbulent drag reduc
@7–9# or elastic turbulence@10#. While many of these phe
nomena have been known for a long time already, their
derstanding is still far from complete. A central quantity us
in attempts to advance this understanding on a microsc
cally founded basis is the spectrum of polymer relaxat
times.

In weak flows, the polymers are not disturbed much fro
their coiled equilibrium conformation, hence, their dynam
is well described by theequilibriumrelaxation spectrum. The
latter can be calculated from bead-spring polymer mod
@11–15# and a reasonable agreement with experimental d
is achieved. Thus restricting to weak flows, the linear v
coelastic model of rheology@1,2# provides a well founded
continuum description of the polymer solution.

A significant polymer deformation is expected accordi
to the so-called time criterion@16# when the inverse loca
shear or elongation ratek21 is shorter than the longest poly
mer relaxation time. Since the latter is conformation dep
dent, because of hydrodynamic back-flow, it was argued
a hysteretic transition between a coiled and a stretched p
mer conformation may occur upon varyingk @17,18#. Based
on a similar argument, a truncation of the turbulent casc
was put forward as a qualitative explanation of the turbul
drag reduction phenomenon@19#. To also obtain rheologica
predictions in such strong flows, phenomenological dum
bell models have been proposed as a kind of minimal
scription of an extensible object@20–23#, in which a
1063-651X/2003/68~2!/021804~14!/$20.00 68 0218
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conformation-dependent relaxation time is used to model
polymer response.

More recently, the polymer deformation has been inve
gated extensively for two simple model situations: a polym
pulled at the ends and a tethered polymer subjected
uniform flow. Experimentally, both situations are realized
using DNA as a model polymer which can be manipula
with the aid of optical tweezers and which can be obser
by fluorescence microscopy@24–27#. Specifically for the
polymer pulled at the ends, the relaxation times and mo
have been measured directly@27#.

Theoretical predictions of the polymer elongation and
laxation times have been obtained mainly through the b
model, for the polymer pulled at the ends in Refs.@14,28,29#
and for the polymer in uniform flow in Refs.@30–33#. The
blob model is very appealing because scaling laws for b
global and local properties characterizing the deformation
well as the dynamics of the polymer can be derived anal
cally even in the presence of excluded volume and hydro
namic interactions.

Calculations for bead-spring models representing
many degrees of freedom of a polymer chain more faithfu
have been carried out at different levels of approximation
the interactions between the beads. The end-pulled cas
the subject of Refs.@34,35#, while Refs.@36–39# consider
the uniform flow case. In comparison to the simulation da
the basic assumptions of the blob model have been ver
and some improvements have been suggested@38–41#. The
relaxation times have been estimated specifically for the e
pulled case in Refs.@34,35#. For the uniform flow case, a
calculation based on the blob model has been carried ou
Refs. @32,55#. Preliminary results using thestatic dynamics
approach have been given in Ref.@42#. In the present work,
©2003 The American Physical Society04-1
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this method, which allows for a systematic evaluation
polymer relaxation times and modes from simulation data
bead-spring models, is discussed in detail. As an illustra
application we compare the two prototypic situations o
tethered polymer pulled at the end and one which is s
jected to a uniform flow. In both cases, the relaxation tim
show a qualitatively similar behavior, but the correspond
modes have a rather different shape.

The polymer relaxation spectrum can be calculated a
lytically only for the simplest polymer models, namely, tho
of Rouse@11# and Zimm @12,13#. Both these models shar
the feature that they yield linear equations governing
motion of the polymer. Hence, a complete analytic solut
can be obtained in terms of independently evolving rel
ation modes which decay exponentially with a certain rel
ation time. For more realistic nonlinear polymer mode
modern simulation techniques allow us to solve the equa
of motion numerically. When similar information on the d
namics as for the linear models is sought, however, a fun
mental difficulty is encountered@14,23,43#: the nonlinearity
leads to a coupling of modes and fully independently rel
ing modes, as in the linear case, do not exist.

A common way to deal with this situation is to simp
assume that the amplitudes of the Rouse modes retain
significance for the relaxation of the polymer chain even
nonlinear polymer models@44,45#. This assumption may be
reasonable for a polymer in thermal equilibrium, but is rath
unlikely to hold for strongly deformed polymers subjected
external forces or flows. Even if one accepts the premise
using the Rouse modes, the relaxation times then have t
determined from an exponential fit to the time series of
Rouse amplitudes, which is tedious and error prone so t
in practice, only the few longest relaxation times can be
tained in this way.

Another approach which aims at the relaxation spectr
directly without reference to a set of modes is to apply
inverse Laplace transform to a single time series of so
observable shch as the distance between the ends of the
mer @24#. Here, however, the result generally depends on
choice of the observable. Furthermore, the inversion is
ill-conditioned problem due to the presence of noise in
data and requires the use of special regularization techni
@46,47#. The results then, in general, depend strongly on
regularization parameter.

Here, we analyze a way to determine the relaxation sp
trum for nonlinear polymer models which is linked rigo
ously to the initial decay of correlations in the motion of t
polymer segments. This method is similar in spirit to an e
lier work that made an attempt to approximate dynami
quantities in terms of static averages for which the te
static dynamicshas been coined@48#. In contrast to these
previous works, which have focused on determining vario
transport coefficients@49,50#, we here aim directly at the
calculation of relaxation times and also obtain a correspo
ing set of relaxation modes@42#. In this way a direct com-
parison to calculations based on blob models@32# and to
recent experiments measuring both relaxation times
modes@25,27# becomes possible, see Ref.@55#. The static
dynamicsapproach to relaxation times and -modes empl
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a linearization of the time evolution of the correlation fun
tion about the initial state@15#. An agreement with scaling
theories that do not rely on the mode concept shows that
approximation captures the essence of the dynamics of fl
tuations of the polymer conformation in a statistically stea
state. The modes obtained are a natural generalization o
linear eigenmodes in that their initial decay isuncorrelated.
They essentially describe the dynamics of a generali
Rouse-Zimm-like model@51#. Thestatic dynamicsmethod is
particularly useful in evaluating data from numerical simu
tion. From practical point of view, the method is fast, easy
use, needs no adjustments of parameters or additiona
sumptions, and yields the complete spectrum in one swe

The outline of the paper is as follows. In Sec. II we co
sider polymer models with linear dynamics like those
Rouse@11# and Zimm @12#. For these models, the gener
solution is obtained analytically as a superposition of a co
plete set of modes which decay independent of each ot
The evolution of each of these modes follows an exponen
law with a certain relaxation time. An important issue is
clarify consequences of the possible noncommutability of
matrix of force constants and the mobility matrix. This is
standard result in linear algebra@52,53#, and classical me-
chanics@54# which is summarized to prepare the stage
further development concerning nonlinear models.

In Sec. III, we turn to thestatic dynamicsapproach
@15,42,48,55# which is based on a rigorous relation for th
initial decay rate of correlations between two observables
the polymer conformation. The previous derivation of th
relation @15# makes use of the Boltzmann distribution an
hence, is valid only in thermal equilibrium. We give a som
what more general treatment, which requires only deta
balance to hold without assuming a special form of the d
tribution of polymer conformations. As shown in Append
A, the detailed balance condition applies to an import
class of polymer flow problems. We then generalize the p
vious treatment@15# to vector observables. From the discu
sion in Sec. II it becomes clear that there is a unique co
dinate transformation which eliminates cross correlatio
between vector components.

In Sec. IV, thestatic dynamicsmethod is applied to the
Rouse model, and a comparison with the exact analyt
solution for the discrete case is made. This allows us to
sess the accuracy and the amount of data required to re
numerical errors to an acceptable level. Since standard t
mostly consider the continuous limit, a solution for the d
crete case with the same boundary conditions as used in
simulations is given in Appendix C.

In Sec. V, bead-spring polymer models including vario
nonlinear effects are analyzed by thestatic dynamicsmethod
under conditions of thermal equilibrium. The effects cons
ered are a finite extensibility of the springs as well as
cluded volume interactions and hydrodynamic interactio
between the beads. Details of the modeling are describe
Appendix B. The relaxation spectra obtained with thestatic
dynamicsmethod are shown to agree with the available sc
ing results.

Finally, in Sec. VI we turn to two simple nonequilibrium
problems which have recently attracted a great deal of at
4-2
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tion. Specifically, we compare a polymer chain pulled at
ends@27,34,35# to a tethered chain stretched by a unifor
flow @32,36,40,55#. For the latter, a rather large database h
been accumulated during a previous investigation@39#. For
the former, some further simulations have been carried
showing that the modes are rather different in both ca
This indicates that care must be taken when extrapola
results between different external conditions.

II. LINEAR POLYMER MODELS

In this section we consider bead-spring polymer mod
which are described by a linear Langevin equation with
ditive noise,

]

]t
R52H̄K̄R1A2kBTH̄j. ~1!

Here, like for the nonlinear models detailed in Appendix
R is a supervector comprising the Cartesian component
the positions of allN beads andj is a Gaussian white nois
with zero mean and unit variance. The mobility matrixH̄ and
the matrix of force constantsK̄ are both symmetric and pos
tive. Moreover, in contrast to the models used in the simu
tions as described in Appendix B, we here assume botH̄
and K̄ to be independent of the polymer conformationR.

Clearly, the classic models of Rouse@11# and Zimm@12#

are of the above form. But more generally,H̄ may arise from
averaging the true conformation-dependent mobility ma
H(R) given by Eq.~B8! with respect to the conformationa
distribution for a deformed polymer, so that

H̄5^H~R!&. ~2!

The elements ofK̄, in turn, may be considered as effectiv
force constants defined in terms of correlations between
bead positions of a deformed polymer. By virtue of the e
uipartition theorem, we have

K̄5kBT^UUT&21, ~3!

where U5R2^R& gives the deviation of the actual bea
positions from their average values.

In the presence of an external flow or force, the aver
bead positionŝR& are nonzero. However, owing to linearit
U may replaceR in Eq. ~1!, which we suppose from now on
i.e., Eq.~1! will be used to describe fluctuations around t
average bead positions rather than the bead positions th
selves. Then, the matricesH̄ and K̄, as defined by Eqs.~2!
and ~3!, already contain the effects of an imposed flow
that the latter does not appear explicitly in the equation
motion, Eq.~1!. The kinetic part of this method, embodied
the definition ofH̄ in Eq. ~2!, is similar to the generalized
Rouse-Zimm model of O¨ ttinger @51#, but here used to de
scribe fluctuations of the polymer conformation.

Since Eq.~1! is linear, a complete solution can be o
tained in terms of relaxation times and modes which so
the eigenproblem
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GQp[H̄K̄Qp5tp
21Qp , ~4!

wherep and all other indices appearing below run from 1
3N. The eigenvaluestp

21 give the inverse relaxation time
and the eigenvectorsQp are the corresponding relaxatio
modes. These make up the columns of a matrixQ that effects
a coordinate transformation in conformation space

Ũ5Q21U, ~5!

so that the transformed matrix

G̃5Q21GQ ~6!

becomes diagonal.
SinceH̄ andK̄ in general do not commute, their productG

is not symmetric even thoughH̄ andK̄ are. However, sinceH̄
and K̄ are positive, Eq.~4! poses a so-called generalize
symmetric-definite eigenproblem@52,53#, which also appears
in the classical mechanics of coupled oscillators@54#. Its
basic properties are summarized in the following, whe
summation over repeated indices will be implied. The eig
values are real and the eigenvectors form a complete sys
which, however, is not orthogonal, i.e.,Qpi

T QiqÞdpq . In-
stead, the relation

Qpi
T H̄i j

21Qjq5dpq ~7!

holds, which together with the eigenvalue relation~4! gives

Qpi
T K̄ i j Qjq5tp

21dpq . ~8!

Owing to the positivity ofH̄, and hence alsoH̄21, the first of
these may be considered as a generalized orthogonality
tion @56#. Moreover, these relations express the fact t
H̄21, and hence alsoH̄, as well asK̄ are diagonalized simul-
taneously, but by a congruence rather than a similarity tra
formation with the matrixQ @12,52,53#. Therefore, these re
lations do not give the matrix elements ofH̄21 and K̄ with
respect to the eigenbasisQp . The matrix elements ofH̄ and
K̄21, however,do have a simple expression in terms of th
metric Qpi

T Qiq , namely,

H̃̄pq5Qpi
21H̄ i j Qjq5Qpi

T Qiq ~9!

and

K̃̄pq
215Qpi

21K̄ i j
21Qjq5tqQpi

T Qiq . ~10!

It will be shown in the following section that the linea
model with H̄ and K̄, defined by Eqs.~2! and ~3!, gives
exactly the same initial decay as the original nonlinear mo
from which the averaged mobility and effective force co
stants have been derived.
4-3
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III. STATIC DYNAMICS

For linear systems such as those considered in the pre
ing section, the concept of relaxation modes and time
clear-cut: the state vectorR representing the polymer confo
mation is expanded in a set of base vectors for which
dynamics becomes uncoupled. For nonlinear systems, a
composition satisfying such a strong property is not poss
in general. Thus, to exploit the power of linear metho
some approximation must be made. One such approxima
that has been found particularly useful, since it allows
draw conclusions about the relaxation of two-time corre
tions from calculation of one-time moments only, is the s
called static dynamicsapproach@15,48#. In this section, we
discuss an extension of this formalism to nonequilibrium d
namics and to vector observables. We begin by conside
two scalar observablesA(R) andB(R), which will later be
taken as two componentsŨi and Ũj of U5R2^R& with
respect to a suitable basis and we calculate the initial de
rate of correlationŝ A(t)B(0)&. The calculation here is
based on the Fokker-Planck equation equivalent to
Langevin equation~B12! rather than the Langevin equatio
itself.

The Fokker-Planck equation is written in the form of
conservation law as

]

]t
P52“•J@P#, ~11!

where the probability currentJ@P# is given by@57,58#

J@P#5~v1H•F!P2kBTH•“P. ~12!

Here, P is the transition probabilityP2u1(R,tuR0,0) which
satisfies the initial conditionP2u1(R,tuR0,0)5d(R2R0). In
the following,v, F, andH are functions ofR and“ denotes
the vector of derivatives with respect to the components
R.

The time correlation^A(t)B(0)& of two observables
A(R),B(R) can be calculated as

^A~ t !B~0!&

5E E A~R!P2u1~R,tuR8,0!B~R8!P 1
s~R8!dR8dR,

~13!

where P 1
s is the stationary distribution of bead position

Dropping the argumentsR andR8, the rate of change is

d

dt
^A~ t !B~0!&5E E A

]

]t
P2u1BP 1

sdR8dR. ~14!

By using the Fokker-Planck equation~11! for P2u1, we ob-
tain

d

dt
^A~ t !B~0!&52E E A“•@~v1H•F!P2u1

2kBTH•“P2u1#BP 1
sdR8dR. ~15!
02180
d-
is

e
e-

le
,
on
o
-
-

-
g

ay

e

f

At t50, P2u1(R,tuR8,0)5d(R2R8), hence

d

dt
^A~ t !B~0!&u t5052E A“•@~v1H•F!BP 1

s

2kBTH•“~BP 1
s!#dR. ~16!

Partial integration results in

d

dt
^A~ t !B~0!&u t505E “A•$@~v1H•F!P 1

s

2kBTH•“P 1
s#B2kBTP 1

sH•“B%dR.

~17!

Upon introducing the current from Eq.~12!, this simplifies to

d

dt
^A~ t !B~0!&u t505E “A•~J@P 1

s#B2kBTP 1
sH•“B!dR.

~18!

The currentJ vanishes when detailed balance holds. This
the case, of course, in equilibrium, but as shown in Appen
A it also holds for an important class of flows and forc
when the hydrodynamic mobility matrix is averaged. Und
this condition we recover the simple result

d

dt
^A~ t !B~0!&u t5052kBT^“A•H•“B&, ~19!

which was obtained previously for polymers in equilibriu
@15#.

The initial decay may be described by a linear law whe
the rate constant of the relaxation is obtained as

GAB5

2
d

dt
^A~ t !B~0!&u t50

^A~0!B~0!&
, ~20!

when both observables decay to zero, i.e.,^A&5^B&50.
Taking nowA5Ui5Ri2^Ri& andB5U j5Rj2^Rj&, we

obtain a matrix of (3N)2 different relaxation rates due t
cross correlations between different beads. In terms of
averaged mobility matrixH̄ and the matrix of effective force
constantsK̄ defined in Eqs.~2! and ~3!, we have

G i j 5
H̄ i j

K̄ i j
21

. ~21!

From the analysis of linear models in Sec. II it is cle
that this matrix can be made diagonal by the coordin
transformation which simultaneously diagonalizesH̄ and K̄
via congruence. This coordinate transformation in gene
will be nonorthogonal sinceH̄ andK̄ need not commute. To
make the connection explicit, consider observablesA5Ũp

5Qpm
21Um andB5Ũq5Qqn

21Un in Eq. ~20! which gives
4-4
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G̃pq5
Qpm

21H̄mn~Q21!nq
T

Qpm
21K̄mn

21~Q21!nq
T

. ~22!

Insertingdnl5QnrQrl
21 after H̄mn and K̄mn and identifying

Qpm
21H̄mnQnr and Qpm

21K̄mn
21Qnr as the matrix elementsH̃̄pr

and K̃̄ pr
21 of H̄ and K̄21 in the transformed coordinates, th

becomes

G̃pq5
H̃̄prQrl

21~Q21! lq
T

K̃̄pr
21Qrl

21~Q21! lq
T

. ~23!

Now by using the relations for the matrix elements ofH̃̄ and

K̃̄ from Eqs.~9! and~10! in Sec. II it is seen that the sums i
the numerator and the denominator each reduce to a
neckerd so that

G̃pq5tp
21dpq . ~24!

In summary, the essence of thestatic dynamicsapproach
is the use conformation-independent matricesH̄, K̄ which are
easily calculated from simulation data according to the d
nitions, Eqs.~2! and ~3!. The matrices define a generalize
Rouse-Zimm model for the conformational fluctuations
the polymer. The relaxation times and modes then are ca
lated in a straightforward manner by numerically diagona
ing the matrix G5H̄K̄. Its eigenmodes provide relaxatio
modes which initially decay uncorrelated with each other.
eigenvalues give the inverse relaxation times describing
initial decay of these uncorrelated modes.

IV. ANALYSIS OF THE ROUSE MODEL

The analytical solution of the Rouse model for a chain
thermal equilibrium with one end fixed and the other e
free, as described in Appendix C, yields a relaxation sp
trum

tp
R5

z

kH
F4sin2S 2p21

2N11

p

2 D G21

. ~25!

For further discussion it will be useful to use separate indi
for bead and mode numbersi ,p51, . . . ,N and directions in
real spacea5x,y,z. A large part of the spectrum follows
scaling lawtp}(2p21)22, cf. Fig. 2. Deviations from this
scaling law at large mode numbersp*N/2 are due to the
finite number of beads and are absent in the usual treatm
@15,59#, where N is assumed to be very large so that t
expansion sin(x);x can be employed.

The Rouse modes are special chain conformations
scribed in the following. Because the Gaussian conform
tional distribution function factorizes in the three directio
of real space,a5x,y,z, the position of thei th bead, i
51, . . . ,N, in the mode with indicesp,a may be written as
a productRpi

a 5RpiÊ
a. Thus, as illustrated in Fig. 1 all bead

are on a straight line with unit vectorÊa and distancesRpi
02180
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from the origin. For the distance function, the calculation
Appendix C yieldsN different patterns of bead spacings

Rpi5
2

A2N11
sinS i

2p21

2N11
p D ~26!

corresponding to the valuesp51, . . . ,N.
The distance functionRpi is normalized according to

( i 51
N RpiRqi5dpq which together with the orthonormality o

Êa in real space expresses the orthonormality of the Ro
modes in conformation space. Since there are 3N modes,
these form a basis for the conformation space, i.e., each
formation R may be expressed as a superpositionR
5(p51

N (a5x,y,zAp
aRp

a , whereRp
a is the supervector, giving

all bead positions for thepth Rouse mode with directiona.
The mode amplitudeAp

a is a common scaling factor for th
position vectors of all beads in the chain. The amplitudesAp

a

for the three coordinate directions in real space are o
taken together as a vector amplitudeAp .

In equilibrium, none of the three directions of a Cartesi
coordinate system is distinguishable. Therefore, the spect
of polymer relaxation times is threefold degenerate. T
modes corresponding to each triplet of relaxation times di
only in their directionsÊa in real space, while the spacing o
beads along this direction is the same for all three mode
the triplet. Since all directions in space are equivalent,
directions obtained by thestatic dynamicsmethod will be
arbitrary, except being mutually orthogonal for each triplet
modes.

We now turn to a comparison of the analytical results
the results of astatic dynamics~SD! analysis applied to
simulation data for the Rouse model as described in the
ceding section. The SD relaxation times shown in Fig
agree perfectly with the spectrum of Rouse times given
Eq. ~25! even for the highest mode numbers. The data
which was used for the analysis consisted of 10 000 sam
taken at time intervals of 100.0 which were generated by

FIG. 1. Illustration of the chain conformation corresponding
the first Rouse mode (p51) of a chain withN510 beads. The bead

positions are on a straight line with directionÊa (a being eitherx,
y, or z) in real space as shown at the right side of the plot. T
diagram gives the distanceRpi of the i th bead from the origin where
the chain is fixed.
4-5
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Brownian dynamics simulation method described in Re
@39,60#. An initial transient of 100 samples was discarded
order to eliminate effects of the initial configuration whic
wasRi5 ib x̂. After this period the distance between the tw
ends of the polymer had reached its equilibrium value
10.0 within a statistical error of 2%. To obtain the abo
results we exploited the permutation symmetry of the co
dinate axes and averagedtp and Rpi over the three coordi-
nate directionsÊa. The values of the SD relaxation time
obtained for the individual coordinate directions showed
viations of less than 5% from these averages. This devia
is approximately proportional to the size of the dataset.
get the same results without averaging, it was necessar
increase the size of the dataset by a factor of 4. If, on
other hand, only half of the data are used, the Rouse time
less thantp

R'0.1 were underestimated by the SD method.
the rest of this work, we will use ensembles of 5000–10 0
members and average over equivalent directions when
possible.

The SD modes forp51,5,9 are shown in Fig. 3 in com
parison with the analytical results for the Rouse modes.
find that approximately the first 10% of the modes are rep
duced accurately. For higher mode numbers, the tips of
sine waves are underestimated.

So far we have considered only a tethered polymer wh
all degrees of freedom relax. For a freely floating polym
however, the center-of-mass motion is diffusive. This cor
sponds to an inifinite relaxation time which spoils the num
ics. The situation is easily remedied though, by perform
the SD analysis on the bead positionsrelative to the center of
mass. Thus, the relevant case for rheological applications
also be treated with the SD method.

V. APPLICATION TO NONLINEAR POLYMER MODELS
AT EQUILIBRIUM

The knowledge of the equilibrium relaxation times
polymer models, taking into account excluded volume int

FIG. 2. Comparison of the relaxation spectrum of the Ro
chain calculated analytically from Eq.~25! and from simulation
data by means of thestatic dynamicsmethod~open triangles! for a
chain with N5100 beads. Only every fifth value calculated fro
the data is shown to prevent cluttering of the symbols at large m
numbersp. At large p, there is a deviation from the scaling lawt
}(2p21)2, which is caused by the discreteness of the bead-sp
chain.
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actions~EVI! and hydrodynamics interactions~HI! between
chain segments is summarized in scaling relations for
dependence of the longest relaxation time on the numbe
Kuhn segments, or beads,t}Nm. To this end, the longes
relaxation time is estimated as the time the coil needs
diffuse its own size, i.e.,t1'RE

2/D @14#. The static scaling
relationRE}bNn, wheren53/5 with EVI andn51/2 with-
out EVI, relates the end-to-end distanceRE to the number of
beads,N. Here,b is the length of a Kuhn segment, whic
corresponds to the root-mean-square bond length in
bead-spring model. The diffusion constant of the coil isD
}Nz or D}6phRE}6phbNn in the free-draining and non
draining limits, corresponding to the cases without and w
HI, respectively. Here,z56pha is the Stokes friction coef-
ficient for a single bead of sizea in a solvent of viscosityh.
The results of this scaling theory agree with those obtai
from the Rouse-Zimm model@11,12,61# which can be ex-
tended to account for EVI in an approximate way@15,62#. In
addition, the latter also provides a scaling relation for t
spectrumt}(2p21)u and a numeric value for the longe
relaxation time, given the bond lengthb and the bead friction
coefficientz. Since it turns out that the exponentsm andu,
which give the dependence of the relaxation times onN and
p, are the same, one may conclude that thepth mode de-
scribes the relaxation of subchains withN/p segments@15#.

For the pure Rouse chain, the simple scaling theory gi
t1}N2. This result is also found from Eq.~25! when the
expansion sin(x)'x is used, which is valid forp!N. For the
Rouse chain with EVI and without HI one finds

t1}N2n11'N2.2, ~27!

while for the Rouse model with both EVI and HI one has

t1}N3n'N1.8. ~28!

The results for the relaxation times corresponding to the
ter two cases, as calculated from simulation data by the
method, are shown in Fig. 4. The fit of a straight line to t
data in the log-log plot indicates that the SD relaxation tim
do obey a power law for both models. The exponent obtai

e

e

g

FIG. 3. Comparison of several Rouse modes (p51,5,9) as cal-
culated analytically from Eq.~26! ~solid line! and from simulation
data by means of thestatic dynamicsmethod~open triangles! for a
chain withN5100 beads.
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from the fit in the case with EVI only has a value of 2.1
which is in good agreement with the result 2.2 derived fro
scaling arguments. The fitted exponent in the case with b
EVI and HI has a value of 1.83, which is again in go
agreement with the scaling result of 1.8. Replacing the h
monic springs by finitely extensible nonlinear elastic~FENE!
springs does not affect the scaling of the longest relaxa
time with N as expected, since a change in the local inter
tions has no effect on the large scale behavior of the ch
@15#.

Figure 5 shows the full SD-relaxation spectra for differe
nonlinear bead-spring chains withN5100 beads. If FENE
springs are used and other effects neglected~solid triangles!,
the SD times agree with the Rouse spectrum~solid line!.
Again, this is expected at least for the slow relaxation tim
We find that agreement persists even for relaxation tim
where discreteness effects are already present.~Deviations
for p*75 are probably due to numerical errors because
the limited size of the dataset.!

Nonlocal interactions such as EVI, in contrast, do chan
the slow relaxation times. As observed in Fig. 5, adding E
to the Rouse model~open squares! changes the scaling be
havior from t}(2p21)22 for the pure Rouse model tot
}(2p21)u with u522.23. For large values ofp, there is a
regime where no simple scaling law holds because of
discreteness of the chain. Furthermore, we find an ove
increase of the relaxation times roughly by a factor of 5. T
value of the longest relaxation timet156.503103 is quali-
tatively consistent with a parallel study of polymer relaxati
@63# where different aspects of the same model were con
ered. In that work an ensemble was prepared in an elong
nonequilibrium state and the time dependence of thex com-
ponent of the end-to-end vectorRN2R0 was recorded. The
late stage of the relaxation, which corresponds to the lin
regime where average perturbations and fluctuations rela

FIG. 4. Equilibrium scaling of the longest relaxation time wi
the number of segments for bead-spring chains with harmo
springs and excluded volume interactions~squares! and both ex-
cluded volume and hydrodynamic interactions~diamonds!. The
symbols give the values calculated from simulation data by
static dynamicsmethod described in Sec. III. The solid lines are fi
to a power lawt}aNb, where the fit parameters area520.55 and
b52.19 for the model with excluded volume interactions only a
a520.40 andb51.83 for the model with both excluded volum
interactions and hydrodynamic interactions.
02180
th

r-

n
c-
in

t

.
s

f

e
I

e
ll

e

d-
ed

ar
in

the same way, could be described as a single expone
decay with a time scale aroundt'63103. This has the
same order of magnitude as the SD relaxation time prese
here and is also several times larger than the longest re
ation time of a Rouse chain which ist1

R51.363103.
If HI are added to the Rouse model with EVI~open dia-

monds in Fig. 5!, the scaling exponentu calculated from a fit
to the slow end of the spectrum is changed tou521.78. At
intermediate values ofp, it increases tou521.97 indicating
that the HI acts less prominently over intermediate len
scales. The value of the longest relaxation timet151.77
3103 is decreased strongly compared to the Rouse mo
with only EVI. The value of the slowest SD relaxation tim
is again consistent with the time scalet'23103 obtained
from the time dependence ofRN2R0 in Ref. @63#.

Due to symmetry, in equilibrium the modes factorize
the same way as for the Rouse model also for nonlin
models. The form of the distance functionRpi , of course,
may be different from that found for the Rouse model in E
~26!. We find that EVI indeed leads to a change compared
the Rouse modes. The deviation is not large but clearly
ible as shown in Fig. 6 for the first mode of a chain ofN
5200 beads. For higher modes, the difference with
Rouse modes is less pronounced. When HI is added or FE
springs are used, no difference compared to the Rouse f
could be discerned.

VI. APPLICATION TO MODELS FOR DEFORMED
TETHERED POLYMERS

Under the action of a force or flow, the beads in gene
have different nonzero average positions,^Ri&Þ0, so that it

ic

e

FIG. 5. Comparison of the spectra of relaxation times for seve
polymer models in thermal equilibrium. The solid line gives t
analytical result for the discrete finite Rouse chain according to
~25!. The symbols give the values calculated from simulation d
by the static dynamicsapproach described in Sec. III for bead
spring chains with harmonic springs and excluded volume inte
tions ~open squares!, chains with harmonic springs and both e
cluded volume and hydrodynamic interactions~open diamonds!,
and a FENE chain with no other interactions taken into acco
~solid triangles!. The number of beads isN5100 in all cases. The
dashed lines indicate the power laws with exponents22.2 and
21.8, obtained from scaling theory for chains with excluded v
ume interactions and without or with hydrodynamic interactio
respectively.
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becomes important to distinguish between the positionsRi
and the deviationsUi5Ri2^Ri&. The modes serve to de
compose fluctuations, henceUp

a then gives the deviation o
the true bead position from its mean value when the (p,a)
mode is excited.

Moreover, when external forces or flows are present,
spherical symmetry of the equilibrium situation is broken.
the case of a force applied at the free end of the polyme
a uniform flow, one direction in real space, namely, that p
allel to the force or flow, is distinguished. We refer to this
the longitudinal direction, while the other two directions
which are still related by a rotation symmetry, will be calle
transverse. Because of the reflection symmetry in the tran
verse directions, it is easy to see that cross correlations
tween one of these and the longitudinal direction must v
ish. Therefore, the factorized form of the modesUpi

a

5UpiÊ
a remains valid here.

Since the symmetry between the three coordinate di
tions is broken, one in general expects a ‘‘level splitting’’
the relaxation times in each triplet, with one distinguish
longitudinal relaxation time and two degenerate transve
relaxation times. Of course, in the numerical results
alignment of the mode directions parallel or perpendicula
the flow is not perfect. We distinguish the modes within ea
triplet on the basis of which of the components of their
rectionÊa has the largest value in a fixed coordinate syst
where the flow is along thex direction. Thus, the longitudina
mode is uniquely singled out. Differences between the tra
verse modes or their relaxation times—which should
equal by symmetry—may serve as an estimator for statis
errors in the results. In strong flows, there is also the po
blility of ‘‘level crossing,’’ i.e., the triplets are no longer dis
tinguished by large differences in the relaxation times. Ho
ever, mode triplets can still be defined by the number
nodes of the distance functionUpi .

The Rouse model is the one exception to these gen
expectations. Due to linearity the equation of motion, E
~B12!, may be split into an equation for the average^R& and

FIG. 6. First mode (p51) in thermal equilibirum for the pure
Rouse model~solid line! as calculated analytically in Appendix C
and the model with harmonic springs and excluded volume inte
tion taken into account~dotted line! as calculated from numerica
data by means of thestatic dynamicsmethod. The chain length is
N5200 in both cases.
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the deviationR2^R& from this average. The stochastic forc
is then seen to couple only to the latter, while the additio
drag forces due to the flow appear only in the former. The
fore, only the average bead positions are affected by the fl
and the relaxation times or modes do not change with fl
velocity. This behavior is reproduced by the SD analysis.

Turning to a comparison of the two prototype situations
a tethered polymer pulled at the end and one which is s
jected to a uniform flow, we first take a look at the polym
elongation in both cases. Since the strongest effect on
relaxation times turns out to be produced by the finite ext
sibility of the springs, we focus on a FENE chain withN
5100 beads. In Fig. 7, the end-to-end distance is plotted
function of the total force exerted on the polymer chain.
the end-pulled case~circles!, this is simply the applied force
f, while in the uniform flow case~triangles!, for a free-
draining polymer, the drag forces acting on each of the be
simply add up to a total forcef 5vzN. From Fig. 7 it is seen
that the uniform flow is less effective in stretching the po
mer by a factor that is approximately constant, i.e., to ach
the same elongation requires a total force that is twice
strong.

The triplet of longest relaxation times for both cases
shown in Fig. 8 again as a function of the total force exer
on the polymer chain. For smallf the relaxation times are
close to their threefold degenerate equilibrium value. W
increasing force, a strong decrease of all relaxation time
observed. The reason for this behavior is that the FE
springs become stiffer and stiffer the more they are stretc
under the action of the external forcing. Furthermore, we fi
the expected level splitting, where the longitudinal mode
laxes faster than the transverse modes. The decrease o
longitudinal modes in both cases appears to follow a po
law t1

i } f 21.5. The decrease of the transverse modes is so
what slower and may tentatively be described byt1

'} f 21.0.
As for the polymer elongation the curves at largef differ only
by an approximately constant factor rescaling the force.
the uniform flow case forv>0.2, one even finds level cross
ing: The first longitudinal mode has only the fifth-large

c-

FIG. 7. End-to-end distance of a tethered FENE chain withN
5100 beads pulled at its free end with different forcesf ~circles!
and subjected to uniform flows of different velocitiesv ~triangles!.
In the latter case, the total force exerted on the polymer,vzN, is
used to factilitate a comparison.
4-8
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STATIC DYNAMICS APPROACH TO RELAXATION . . . PHYSICAL REVIEW E68, 021804 ~2003!
relaxation time. This means that the transverse modes o
first two triplets relax slower than the slowest longitudin
mode.

While the qualitative behavior of the relaxation times
similar in both cases, the modes remain Rouse-like in
end-pulled case, but assume a completely different form
the uniform flow case as shown in Fig. 9@72#. There, the first
triplet of modes is shown for a force off 55.0 in the end-
pulled case~dotted lines! and a flow velocity ofv50.2 in the
uniform flow case~dashed lines!. These values have bee

FIG. 8. The first triplet (p51) of relaxation times as calculate
by the static dynamicsmethod from simulation data of a tethere
FENE chain withN5100 beads pulled at its free end with differe
forcesf ~circles! and subjected to uniform flows of different veloc
ties v ~triangles!. In the latter case, the total force exerted on t
polymer,vzN, is used to factilitate a comparison. The lower cur
in each triplet corresponds to the longitudinal mode with direct
along the flow for both cases.

FIG. 9. The first triplet (p51) of relaxation modes as calculate
by the static dynamicsmethod from simulation data of a tethere
FENE chain withN5100 beads pulled at its free end~dotted lines!
and subjected to a uniform flow~dashed lines!. The values of the
stretching forcef 55.0 and flowv50.2 are chosen so that the en
to-end distance of the polymer is comparable in both cases. Fo
end-pulled case, the shape of transverse and longitudinal mod
the same and agrees with the Rouse form~solid line!. For the uni-
form flow case, the lower curve corresponds to the longitudi
mode, while the two upper curves represent the transverse mo
the symmetry between which is not broken. The shape of all mo
in the triplet is quite different from the Rouse form.
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chosen so that the polymer elongation is comparable in b
cases. It corresponds to about 80% of the contour lengthNb.
For the polymer pulled at the ends, all three modes clea
have the Rouse form~solid line!. When the polymer is sub
jected to a uniform flow, however, even the transverse mo
are far from sinusoidal. This change of the shape of
modes is a consequence of the inhomogeneous distribu
of tension along the chain@39#. In the end-pulled case, in
contrast, the tension is the same everywhere along the ch

We finally remark that for the number of beads conside
here,N5100, adding EVI and HI to the FENE model doe
not significantly change the behavior of the relaxation tim
or modes. Chains with many more Kuhn segments, as t
are used in experiments, are beyond the present simula
capabilities @39,60#. In this case, appreciable effects ma
occur.

VII. DISCUSSION AND CONCLUSIONS

The polymer relaxation spectrum forms an important li
between the dynamics of single polymers and viscoela
continuum mechanics. While for thermal equilibrium cond
tions a rather comprehensive theory is available, the re
ation behavior of deformed polymers is far less understo

In the present work we have established an effici
method for calculating the complete polymer relaxati
spectra and a set of corresponding modes from simula
data by employing thestatic dynamicsapproach. This ap-
proach rests on a relation for the initial decay rate which
been generalized here to nonequilibrium situations where
tailed balance is valid. The latter has been shown to hold
polymers stretched by a force applied at the ends or
simple flow fields of either uniform or elongational typ
when a common averaging approximation is invoked to
scribe hydrodynamic interactions@12,34–37,49,51#. The re-
laxation modes are determined by the requirement that t
initial decay is uncorrelated. In the linear case—where
conformational distribution function is Gaussian—this,
course, reduces to the usual Rouse modes, which are
statistically independent. For nonlinear models the proced
amounts to using a generalized Rouse-Zimm model whic
adapted to the simulation data.

The suggested procedure is subject to the general crit
of any normal mode approach@14#. By its very construction
it always yields 3N modes; the birth of new relaxation time
as found in Ref.@64# or the possibility of a continuous relax
ation spectrum conjectured in Ref.@14# is thus impossible
within our framework. To circumvent the difficulties of th
normal mode approach in the case of nonlinear polymer
namics, the focus is usually shifted to the scaling behavio
the spectra. It was shown here that the equilibrium sca
exponents can also be obtained from the spectra calcul
by thestatic dynamicsmethod. In addition, thestatic dynam-
ics method yields numeric values for the prefactors, which
important for technical applications, e.g., strong exclud
volume interactions significantly slow down the relaxati
process. Experimental evidence for a truly discrete spect
has been given in Ref.@24#.

The analysis of two simple nonequilibrium problems,
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R. RZEHAK AND W. ZIMMERMANN PHYSICAL REVIEW E 68, 021804 ~2003!
tethered polymer pulled at its free end and a tethered p
mer subjected to a uniform flow, revealed that it is importa
to correctly capture the nonlinear modes. In the uniform fl
case, the finite extensibility of the polymer leads to a sh
of the modes for a strongly stretched chain which is co
pletely different from the Rouse form. In the end-pulled ca
in contrast, the Rouse modes remain valid also for a stron
stretched chain. This latter case is untypical for polymers
flow in that the tension within the polymer is constant alo
its contour. In both cases, there is a strong velocity dep
dence of the relaxation times which decrease as the spr
become harder the more the chain is stretched. This find
casts doubt@34,42# on the validity of theories for a coil-
stretch transition in elongational flows@17,18# which as-
sumed Rouse relaxation in the stretched state.

A large potential for further applications of thestatic dy-
namicsmethod is to branched polymers and polymer n
works where the calculation of relaxation times, even
simple Rouse-Zimm-like models can be quite tedious
though possible analytically@65,66#.
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APPENDIX A: CONDITIONS FOR DETAILED BALANCE

Since the independent variablesRi appearing in the
Langevin equation~B12! are all even under time reversa
the condition for detailed balance is that for the station
distribution P 1

s the current defined in Eq.~12! vanishes
@57,58#, i.e.,

J@P 1
s#[~v1H•FF!P 1

s2kBTH•“P 1
s50. ~A1!

Dividing by P 1
s and multiplying from the left byH21 yields

H21
•v1FF5kBT“ ln~P 1

s!. ~A2!

The right-hand side is explicitly gradient, hence, Eq.~A1!
will be satisfied when a potential exists also for the left-ha
side. This gives rise to the well-known potential conditi
@57,58#. Since here the direct forceFF is already known to
be derived from a potential, it remains to be shown tha
potential exists also forH21

•v. This is the case when th
matrix of derivatives,D5“^ (H21

•v), is symmetric.D is
an N3N supermatrix with components Di j

5]/]Rj (Hik
21vk), which are themselves 333 matrices. It

will be symmetric when~i! the component-matricesDi j are
symmetric and~ii ! Di j 5Dj i . These two requirements ar
examined in the following. Throughout, summation over
peated indices will be implied.

To find conditions when the 333 component matricesDi j
become symmetric, we first note that the imposed flow fi
at the position of thekth bead, of course, is a function ofRk
only, i.e.,vk5v(Rk). Hence,
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Di j 5
]

]Rj
Hik

21vk5
]Hik

21

]Rj
vk1Hi j

21 ]v

]r U
r 5Rj

, ~A3!

where ]v/]r is the velocity gradient of the imposed flow
field. Clearly, in equilibrium, wherev[0, the rhs becomes
zero which is trivially symmetric. In the free-draining limi
H21 is both conformation independent and diagonal, i.e.,
component matrices areHi j

215d i j z
211. Thus,Di j becomes

symmetric when]v/]r is symmetric. When an averagin
approximation for the mobility matrix is invoked, thenH21

becomes independent of the polymer conformationR, but
not diagonal. For the case of a uniform flow, where]v/]r
[0, the trivial symmetry ofDi j in Eq. ~A3! then is imme-
diately obvious. For the case of a constant but nonvanish
velocity gradient]v/]r[const, which itself is symmetric
the following argument shows that the eigendirections
each component matrix ofH andH21 are the same as thos
of ]v/]r . We choose orthogonal coordinates in real spa
along the eigendirections of]v/]r , which is possible by vir-
tue of the assumptions made. Along each of these directi
there is a reflection symmetry so that upon averaging
conformation-dependent mobility supermatrix only tho
matrix elements which are even under each reflection do
vanish. In the Oseen approximation, Eq.~B8!, these are pre-
cisely the diagonal elements of each 333 component matrix.
Thus, it is seen that each of the averaged mobi
component-matricesHi j has the same eigendirections
]v/]r . Since the component matrices of the inverse mobi
are functions of those of the mobility itself, the former ha
again the same eigendirections as]v/]r . Hence, we con-
clude thatHi j

21 is symmetric and commutes with]v/]r so
that againDi j as given by Eq.~A3! becomes symmetric.

Under the same conditions as above—averaged mob
matrix and constant symmetric velocity gradient—the
quirement that the indices of the component matrixDi j can
be interchanged simply becomes

Hj i
21 ]v

]r
5Hi j

21 ]v

]r
. ~A4!

For the case of a uniform flow,]v/]r[0 so that this require-
ment is obviously satisfied. For the case of a constant
nonvanishing velocity gradient,]v/]r[const, we have the
fact that the supermatrixH21 is symmetric, i.e., its 333
component-matrices obeyHj i

215(Hi j
21)T. As shown above,

the component-matricesHi j
21 of the inverse averaged mobi

ity supermatrix all have the same eigendirections as]v/]r
which implies (Hi j

21)T5Hi j
21 . Hence, both sides of Eq.~A4!

become equal. This completes the conclusion that deta
balance also holds for averaged hydrodynamic interacti
when the velocity gradient is constant and symmetric.

To summarize, we have shown that detailed balance h
for an important class of polymer flow problems, where tw
conditions are met. The first condition is that the impos
flow be either constant everywherev5v0 or have a constan
and symmetric gradientv5kr . The former case of uniform
flow has recently attracted great interest~see references cite
in the Introduction! and is considered in Sec. VI of th
4-10
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STATIC DYNAMICS APPROACH TO RELAXATION . . . PHYSICAL REVIEW E68, 021804 ~2003!
present work. The latter case of elongational flow is imp
tant in rheology@1,2,23#. Second, the hydrodynamic intera
tions are described by an averaged mobility tensor which
common practice in many studies of polymer dynamics, e
Refs.@12,34–37,49,51#. In more general situations, no obv
ous conclusions can be drawn, since an explicit expres
for H21 is not available~in contrast toH). We remark that
external forces exerted on the polymer, e.g., by pulling
ends are subsumed in the direct forceFF ~in case they are
derived from a potential which is generally the case!. Since
in this casev[0, detailed balance holds trivially.

APPENDIX B: BEAD-SPRING MODEL
FOR NUMERICAL SIMULATIONS

For the numerical simulations we use a bead-spring mo
as sketched in Fig. 10. As usual, only motion on the diffus
time scale is considered, hence, the equation of motion
the position of thei th bead (i 51, . . . ,N) is obtained from a
balance between all forces acting on it. These forces c
prise viscous drag forcesFH on one side and potential an
stochastic forcesFF, FS on the other:

2Fi
H5Fi

F1Fi
S. ~B1!

The potential forceFi
F is often also called direct force t

distinguish it from the solvent mediated hydrodynam
forces. It describes binding and excluded volume interacti
between the beads as well as possible external forces app
e.g., by laser tweezers, i.e.,

Fi
F52¹Ri

~Fbond1Fexcluded1Fext!. ~B2!

The binding between next-nearest neighbors along the c
is described by either harmonic or FENE~finitely extensible
nonlinear elastic! springs with potentials

Fbond5 (
i 50

N21
1

2
kHuRi 112Ri u2 ~B3!

or

Fbond5 (
i 50

N21

2
1

2
kFRF

2lnS 12
uRi 112Ri u2

RF
2 D , ~B4!

FIG. 10. Sketch of the bead-spring model for a polymer wh
is fixed at one end~bead indexi 50) and free to move at the othe
~bead indexi 5N). The coordinate origin is arbitrarily chosen at th
position of the fixed end. Also indicated are the bond lengthb and
the effective hydrodynamic bead radiusa.
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respectively. For the case of harmonic springs, the force c
stant kH53.0 is chosen so that the root-mean-square b
length in equilibrium,b, becomes unity. The FENE sprin
law is augmented by a nearest-neighbor repulsion of
form described in Eq.~B6! below, so that a good approxima
tion of rigid rods is obtained as described in Ref.@67#. Suit-
able parameter values for the force constantkF530.0 and the
maximum extension of the springRF51.5 result in a bond
length of b50.96 for this case . An additional bead wit
index i 50 which is fixed atR050 is used to implement the
boundary condition at the tethered chain end. An exter
force with magnitudef and directionx̂ applied at the other
chain end is considered in Sec. VI. The corresponding po
tial is

Fext5 f Q@~r2RN!• x̂#. ~B5!

The contribution arising from the excluded volume effe
is purely repulsive and acts between any pair of beads.
described by a truncated Lennard–Jones~LJ! potential

Fexcluded5(
j . i
i 51

N

4eS S s

uRj2Ri u
D 12

2S s

uRj2Ri u
D 6

1
1

4D
3Q~ uRj2Ri u2RLJ!. ~B6!

The parameterse51.0 ands51.0 define energy and lengt
scales of the excluded volume interaction. The cutoff rad
RLJ521/6s is chosen at the minimum of the convention
Lennard-Jones potential andQ(r ) is the Heaviside function.
When combined with harmonic springs, an effective equil
rium bond length ofb51.33 results@60#. Together with the
FENE potential for the springs, the bead-spring chain
comes self-avoiding like a real polymer for the paramet
chosen@67#. If the case without excluded volume effects
under investigation,Fexcludedis set to zero.

The hydrodynamic forces are linear functions of the be
velocities Ṙj relative to the imposed flow at their position
v(Rj ) @68#. In terms of the mobility matrixH, we have

Fi
H52(

j 51

N

Hi j
21

•@Ṙj2v~Rj !#. ~B7!

Without hydrodynamic interactions, the inverse mobility m
trix is proportional to the identity,H215z1. The constant of
proportionality is the single bead friction coefficientz
56pha, whereh is the viscosity of the solvent anda is the
effective hydrodynamic radius of a bead. Since in this ca
the external flow remains unchanged throughout the poly
coil, this is referred to as the free-draining limit. If desire
hydrodynamic interactions are incorporated in the Oseen
sor approximation@15,69#. This turns the mobility into a
conformation-dependent tensor, which is given by
4-11
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Hi j 5H 1

z
1 for i 5 j

q~Ri2Rj ! for iÞ j ,
~B8!

where

q~r !5
1

8phur u ~11 r̂ r̂T! ~B9!

is the Oseen tensor. Since the mobility matrix construc
with the Oseen tensor becomes nonpositive at small b
separations@23#, we always consider hydrodynamic intera
tions together with the excluded volume effect. The colle
tive effect of the HI is to reduce the penetration of the ext
nal flow into the polymer coil. The extreme case of th
screening of the flow is referred to as the nondraining lim
To get a strong effect of HI, which in equilibrium comes
close as possible to the nondraining limit, we seta/b
50.25. It should be noted, however, that parts of the po
mer chain which become stretched under the action of
external force of flow eventually must become free drain
@38#.

A uniform flow field v5v x̂ is considered specifically in
Sec. VI, while homogeneous flowsv5v01kr appear in the
results of Sec. A.

The stochastic forces are related to the dissipative dra
the fluctuation dissipation theorem@70# to ensure the correc
equilibrium distribution. Taking the forces acting onall
beads together as a single supervector, we have

FS5A2kBTH21
•j, ~B10!

where T is the temperature,kB is the Boltzmann constant
and j is an uncorrelated Gaussian white noise with z
mean and unit variance

^j~ t !&50, ~B11!

^j~ t !jT~ t8!&5d~ t2t8!1.

In terms of the supervectorR for the bead positions, the
equation of motion for the models considered may be writ
in the general form

]

]t
R5v~R!1H•~2“RF!1A2kBTH•j. ~B12!

The potentialF is obtained by summing the contribution
from binding and excluded volume according to Eqs.~B3!–
~B6!, while the mobility is given by Eq.~B8!. The yet un-
specified parameterskBT51.0 andz51.0 essentially define
the units of energy and time.

Except for the simple Rouse modelv, H, and FF5
2“RF are nonlinear functions of the polymer conformati
R, and one has to rely on numerical simulation to solve
equation of motion, Eq.~B12!. A Brownian dynamics simu-
lation scheme suitable for this task is described in Re
@39,60#.
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APPENDIX C: THE ROUSE MODEL

Here, we consider a bead-spring chain ofN beads con-
nected by harmonic springs. For this case, Eq.~B12!, which
governs the Brownian dynamics of the chain reduces to
set of linearly coupled Langevin equations

z

kH

]

]t
Ri5~Ri 1122Ri1Ri 21!1

z

kH
A2kBTzj, ~C1!

where kH is the force constant of the springs andz is the
single bead friction coefficient. The bead indexi runs from
i 51, . . . ,N. In order to impose boundary conditions we i
troduce fictitious beadsi 50,N11 whereR0,N115const for
a fixed chain end andR0,N115R1,N for a free-chain end. In
the following, we will assume one end fixed at the origin a
the other end free to move, i.e.,

R050 and RN115RN . ~C2!

Finding the general solution to Eq.~C1! requires diagonal-
ization of the rhs, i.e., one has to solve the eigenvalue pr
lem

Ri 1122Ri1Ri 2152lRi . ~C3!

The sign ofl is chosen such that positive eigenvalues yie
stable solutions. Its relation to the relaxation timet is

t5
z

kH

1

l
. ~C4!

Equation~C3! has the form of a linear difference equatio
which may be solved by standard methods as described,
in Ref. @71#. The ansatzRk5rkÊa, whereÊa is the direction
of the mode according to Sec. IV, leads to the auxiliary eq
tion r22(22l)r1150, the solutions of which are

r1,25
1
2 @22l6A~22l!224#. ~C5!

Depending on the sign of the radicand we have three dif
ent types of solution which are named analogous to th
counterparts for differential equations although in the tr
sense of the word all solutions are, of course, bounded~i!
‘‘unbound’’ solutionsRk5c1r1

k1c2r2
k for (22l)2.4; ~ii !

‘‘secular’’ solutions Rk5(c11c2k)rk for (22l)254; and
~iii ! ‘‘bound’’ solutions Rk5c1cosku1c2sinku for (22l)2

,4 @or equivalentlyuP(0,p)].
In case~iii ! we introducedu by (22l)52 cosu which

gives r1,25cosu6sinu. Only this case leads to solution
which satisfy the boundary conditions under considerat
@73#. For the constantsc1 andc2, we obtain from the bound-
ary conditions

c150, c2sin~~N11!u!5c2sin~Nu!. ~C6!

For c2Þ0, one obtains

u5
2p21

2N11
p, p51,2, . . . ,N. ~C7!
4-12
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Larger values ofp violate the condition onu. Hence, we
obtainN eigenvalues

lp54 sin2S 2p21

2N11

p

2 D . ~C8!

The Rouse modes are then found by introducing this resu
the ansatz in case~iii ! as

Rkp5c2sinS k
2p21

2N11D . ~C9!

The remaining constantc252/A2N11 is fixed by the nor-
malization requirement(k51

N Rkp
2 5N.

For boundary conditions with two free ends one obta
the results

lp54 sin2S p

N

p

2 D ~C10!
ci

t

s

d

n

s

02180
in

s

for the eigenvalues and

Rkp5
c2

sinu/2
cosF S k2

1

2D p

N
pG ~C11!

for the eigenvectors. Here,p runs fromp50, . . . ,N21 and
the normalization isc251/AN.

If the argument of the sine in Eqs.~C8! and ~C10! is
small, one can expand the sine as sin(x)'x. This reproduces
the usual textbook result@15,59# for the different boundary
conditions which is obtained by passing to a continuous v
sion of Eq. ~C1! at the very beginning of the calculation
whereby the finite difference operator (Ri 1122Ri1Ri 21) is
replaced by a second-order derivative. This is now seen t
an approximation which is valid if the mode numberp is
small compared to the number of beadsN in the chain.
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