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We discuss relaxation of conformational fluctuations around deformed polymer states. To this end, Brownian
dynamics simulations of bead-spring models including a finite extensibility of the springs as well as excluded
volume and hydrodynamic interactions between the beads have been performed. Complete spectra of relax-
ation times as well as corresponding relaxation modes are obtained from the simulation data by applying the
static dynamicsformalism, which rigorously describes the initial decay of correlations between the bead
positions. As shown here, this procedure amounts to using a generalized Rouse-Zimm-like model which is
governed bylinear effective equations of motion having the same initial decay of correlations as the full
nonlinear bead-spring model used in the simulations. In thermal equilibrium, the well-known scaling laws in
the presence of excluded volume and hydrodynamic interactions between the beads are recovered, but, in
addition, thestatic dynamicsnethod also yields numeric values for the nonuniversal prefactors of the respec-
tive laws. The method is equally applicable to a broad range of problems, where the polymer is deformed by
the action of flows or forces. Two examples of recent interest are considered: a tethered polymer pulled at its
free end and one which is stretched by a uniform flow. It is shown that in both cases, the relaxation process is
dominated by a finite extensibility of the springs.
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[. INTRODUCTION conformation-dependent relaxation time is used to model the
polymer response.

The slow internal dynamics of long polymer chains is the More recently, the polymer deformation has been investi-
origin of the viscoelasticity of dilute polymer solutions gated extensively for two simple model situations: a polymer
[1-6]. The resulting flow phenomena encompass surprisingulled at the ends and a tethered polymer subjected to a
and spectacular effects such as turbulent drag reductiomniform flow. Experimentally, both situations are realized by
[7-9] or elastic turbulenc¢l10]. While many of these phe- using DNA as a model polymer which can be manipulated
nomena have been known for a long time already, their unwith the aid of optical tweezers and which can be observed
derstanding is still far from complete. A central quantity usedby fluorescence microscoph24—27. Specifically for the
in attempts to advance this understanding on a microscoppolymer pulled at the ends, the relaxation times and modes
cally founded basis is the spectrum of polymer relaxatiorhave been measured direcf®7].
times. Theoretical predictions of the polymer elongation and re-

In weak flows, the polymers are not disturbed much fromlaxation times have been obtained mainly through the blob
their coiled equilibrium conformation, hence, their dynamicsmodel, for the polymer pulled at the ends in R¢fs?,28,29
is well described by thequilibriumrelaxation spectrum. The and for the polymer in uniform flow in Ref$30—-33. The
latter can be calculated from bead-spring polymer modeldlob model is very appealing because scaling laws for both
[11-195 and a reasonable agreement with experimental datglobal and local properties characterizing the deformation as
is achieved. Thus restricting to weak flows, the linear vis-well as the dynamics of the polymer can be derived analyti-
coelastic model of rheolog{/l,2] provides a well founded cally even in the presence of excluded volume and hydrody-
continuum description of the polymer solution. namic interactions.

A significant polymer deformation is expected according Calculations for bead-spring models representing the
to the so-called time criteriofil6] when the inverse local many degrees of freedom of a polymer chain more faithfully
shear or elongation rate™ ! is shorter than the longest poly- have been carried out at different levels of approximation for
mer relaxation time. Since the latter is conformation depenthe interactions between the beads. The end-pulled case is
dent, because of hydrodynamic back-flow, it was argued thahe subject of Refs[34,35, while Refs.[36—39 consider
a hysteretic transition between a coiled and a stretched polythe uniform flow case. In comparison to the simulation data,
mer conformation may occur upon varyirg17,18. Based the basic assumptions of the blob model have been verified
on a similar argument, a truncation of the turbulent cascadand some improvements have been sugges@d41. The
was put forward as a qualitative explanation of the turbulentelaxation times have been estimated specifically for the end-
drag reduction phenomenf9]. To also obtain rheological pulled case in Refd.34,35. For the uniform flow case, a
predictions in such strong flows, phenomenological dumbealculation based on the blob model has been carried out in
bell models have been proposed as a kind of minimal deRefs.[32,55. Preliminary results using thgtatic dynamics
scription of an extensible objeci20-23, in which a approach have been given in RE£2]. In the present work,
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this method, which allows for a systematic evaluation ofa linearization of the time evolution of the correlation func-
polymer relaxation times and modes from simulation data fotion about the initial stat¢15]. An agreement with scaling
bead-spring models, is discussed in detail. As an illustrativéheories that do not rely on the mode concept shows that this
application we compare the two prototypic situations of aapproximation captures the essence of the dynamics of fluc-
tethered polymer pulled at the end and one which is subtuations of the polymer conformation in a statistically steady
jected to a uniform flow. In both cases, the relaxation timesstate. The modes obtained are a natural generalization of the
show a qualitatively similar behavior, but the correspondindinear eigenmodes in that their initial decayuscorrelated
modes have a rather different shape. They essentially describe the dynamics of a generalized
The polymer relaxation spectrum can be calculated anaRouse-Zimm-like mod€dl51]. Thestatic dynamicsnethod is
lytically only for the simplest polymer models, namely, those particularly useful in evaluating data from numerical simula-
of Rouse[11] and Zimm[12,13. Both these models share tion. From practical point of view, the method is fast, easy to
the feature that they vyield linear equations governing theuse, needs no adjustments of parameters or additional as-
motion of the polymer. Hence, a complete analytic solutionsumptions, and yields the complete spectrum in one sweep.
can be obtained in terms of independently evolving relax- The outline of the paper is as follows. In Sec. Il we con-
ation modes which decay exponentially with a certain relaxsider polymer models with linear dynamics like those of
ation time. For more realistic nonlinear polymer models,Rouse[11] and Zimm[12]. For these models, the general
modern simulation techniques allow us to solve the equatiosolution is obtained analytically as a superposition of a com-
of motion numerically. When similar information on the dy- plete set of modes which decay independent of each other.
namics as for the linear models is sought, however, a fundaFhe evolution of each of these modes follows an exponential
mental difficulty is encounterefdl4,23,43: the nonlinearity law with a certain relaxation time. An important issue is to
leads to a coupling of modes and fully independently relax-clarify consequences of the possible noncommutability of the
ing modes, as in the linear case, do not exist. matrix of force constants and the mobility matrix. This is a
A common way to deal with this situation is to simply standard result in linear algebf&2,53, and classical me-
assume that the amplitudes of the Rouse modes retain thathanics[54] which is summarized to prepare the stage for
significance for the relaxation of the polymer chain even forfurther development concerning nonlinear models.
nonlinear polymer modelgt4,45. This assumption may be In Sec. lll, we turn to thestatic dynamicsapproach
reasonable for a polymer in thermal equilibrium, but is rathef15,42,48,5% which is based on a rigorous relation for the
unlikely to hold for strongly deformed polymers subjected toinitial decay rate of correlations between two observables of
external forces or flows. Even if one accepts the premise afhe polymer conformation. The previous derivation of this
using the Rouse modes, the relaxation times then have to belation[15] makes use of the Boltzmann distribution and,
determined from an exponential fit to the time series of thenence, is valid only in thermal equilibrium. We give a some-
Rouse amplitudes, which is tedious and error prone so thatyhat more general treatment, which requires only detailed
in practice, only the few longest relaxation times can be obbalance to hold without assuming a special form of the dis-
tained in this way. tribution of polymer conformations. As shown in Appendix
Another approach which aims at the relaxation spectrunf\, the detailed balance condition applies to an important
directly without reference to a set of modes is to apply arnclass of polymer flow problems. We then generalize the pre-
inverse Laplace transform to a single time series of someious treatmenf15] to vector observables. From the discus-
observable shch as the distance between the ends of the pokjen in Sec. Il it becomes clear that there is a unique coor-
mer[24]. Here, however, the result generally depends on thelinate transformation which eliminates cross correlations
choice of the observable. Furthermore, the inversion is aibetween vector components.
ill-conditioned problem due to the presence of noise in the In Sec. IV, thestatic dynamicanethod is applied to the
data and requires the use of special regularization techniquéuse model, and a comparison with the exact analytical
[46,47). The results then, in general, depend strongly on thesolution for the discrete case is made. This allows us to as-
regularization parameter. sess the accuracy and the amount of data required to reduce
Here, we analyze a way to determine the relaxation speaumerical errors to an acceptable level. Since standard texts
trum for nonlinear polymer models which is linked rigor- mostly consider the continuous limit, a solution for the dis-
ously to the initial decay of correlations in the motion of the crete case with the same boundary conditions as used in the
polymer segments. This method is similar in spirit to an earsimulations is given in Appendix C.
lier work that made an attempt to approximate dynamical In Sec. V, bead-spring polymer models including various
guantities in terms of static averages for which the terrmonlinear effects are analyzed by ttatic dynamicsnethod
static dynamicshas been coinef48]. In contrast to these under conditions of thermal equilibrium. The effects consid-
previous works, which have focused on determining variougred are a finite extensibility of the springs as well as ex-
transport coefficient$49,50, we here aim directly at the cluded volume interactions and hydrodynamic interactions
calculation of relaxation times and also obtain a correspondbetween the beads. Details of the modeling are described in
ing set of relaxation mod€gl2]. In this way a direct com- Appendix B. The relaxation spectra obtained with gtatic
parison to calculations based on blob modgg] and to  dynamicamethod are shown to agree with the available scal-
recent experiments measuring both relaxation times anthg results.
modes[25,27] becomes possible, see REB5]. The static Finally, in Sec. VI we turn to two simple nonequilibrium
dynamicsapproach to relaxation times and -modes employgroblems which have recently attracted a great deal of atten-
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tion. Specifically, we compare a polymer chain pulled at the —AKkO — 1

ends[27,34,39 to a tethered chain stretched by a uniform TQp=HKQp=7,"Qp, @
flow [32,36,40,5% For the latter, a rather large database ha
been accumulated during a previous investigafi®®]. For
the former, some further simulations have been carried o
showing that the modes are rather different in both cased
This indicates that care must be taken when extrapolatin
results between different external conditions.

%Nherep and all other indices appearing below run from 1 to
u:%N' The eigenvalues,;1 give the inverse relaxation times
nd the eigenvector®, are the corresponding relaxation
odes. These make up the columns of a marihat effects
coordinate transformation in conformation space

Mm—Nn-1
Il. LINEAR POLYMER MODELS U=Q v, ®)
In this section we consider bead-spring polymer modelsso that the transformed matrix
which are described by a linear Langevin equation with ad-

ditive noise, =0 rQ (6)

9 __ — .
= R=—HKR+ \y2kgTHE. (1)  becomes diagonal.
SinceH andK in general do not commute, their produdict

Here, like for the nonlinear models detailed in Appendix B, is not symmetric even thougt andK are. However, sincel

R is a supervector comprising the Cartesian components aind K are positive, Eq.(4) poses a so-called generalized
the positions of alN beads and is a Gaussian white noise symmetric-definite eigenproblef2,53, which also appears
with zero mean and unit variance. The mobility matdxand  in the classical mechanics of coupled oscillatgsd]. Its

the matrix of force constant§ are both symmetric and posi- P2SiC properties are summarized in the following, where
tive. Moreover, in contrast to the models used in the simulaSUmmation over repeated indices will be implied. The eigen-
tions as described in Appendix B, we here assume Bbth values are real and the eigenvectors form a complete system

_ i which, however, is not orthogonal, i.eQLQiqa& Opq- IN-
andK to be independent of the polymer conformatien stead. the relation

Clearly, the classic models of RougEL] and Zimm[12]

are of the above form. But more generalymay arise from QlH Q=6 @
averaging the true conformation-dependent mobility matrix P X TRG

H(R) given by Eq.(B8) with respect to the conformational . . . . .
distribution for a deformed polymer, so that holds, which together with the eigenvalue relatidh gives

H=(H(R)). ) QpiKijQiq=T7p *8pq- 8)

The elements oK, in turn, may be considered as effective Owing to the positivity ofH, and hence alsbl 2, the first of
force constants defined in terms of correlations between ththese may be considered as a generalized orthogonality rela-
bead positions of a deformed polymer. By virtue of the eg-tion [56]. Moreover, these relations express the fact that

uipartition theorem, we have H~1, and hence alshl, as well aK are diagonalized simul-
_ o1 taneously, but by a congruence rather than a similarity trans-
K=kgT(UU")" ", () formation with the matrixQ [12,52,53. Therefore, these re-

. . . -1 , .
where U=R—(R) gives the deviation of the actual bead lations do notgye the matrix elemen.ts dfi” - andK with
positions from their average values. I’eSpeCt to the EIgenba@) . The matrix elements dfl and

In the presence of an external flow or force, the averag& !, however,do have a simple expression in terms of the
bead positiongR) are nonzero. However, owing to linearity metric Q;iQiq, namely,
U may replacer in Eq. (1), which we suppose from now on,
i.e., Eq.(1) will be used to describe fluctuations around the n Q- 'H.Q,,=0Ql 0, 9
average bead positions rather than the bead positions them- Pa- pi Tkl epieiq
selves. Then, the matricé$ andK, as defined by Eqg2)
and (3), already contain the effects of an imposed flow so
that the latter does not appear explicitly in the equation of

motion, Eq.(1). The kinetic part of this method, embodied in oo = Qpi'Ki; Qg = 74QpiQiq - (10
the definition ofH in Eg. (2), is similar to the generalized _ ) _ _ )
Rouse-zZimm model of @inger [51], but here used to de- It will be shown in the following section that the linear
scribe fluctuations of the polymer conformation. model with H and K, defined by Egs(2) and (3), gives

Since Eq.(1) is linear, a complete solution can be ob- exactly the same initial decay as the original nonlinear model
tained in terms of relaxation times and modes which solvdrom which the averaged mobility and effective force con-
the eigenproblem stants have been derived.
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IIl. STATIC DYNAMICS At t=0, P,1(R,t|R",0)= 3(R-R’), hence

For linear systems such as those considered in the preced-
ing section, the concept of relaxation modes and times is _<A(t)B(0)>|t=0:_f AV .[(v+H-F)BPS
clear-cut: the state vect® representing the polymer confor- dt
mation is expanded in a set of base vectors for which the —kgTH-V(BP$)]dR (16)
dynamics becomes uncoupled. For nonlinear systems, a de- B 1 '
pomposition satisfying such_ a strong property is not possiblepartial integration results in
in general. Thus, to exploit the power of linear methods,
some approximation must be made. One such approximatio
that has been found particularly useful, since it allows to_<A(t)B(0)>|t=O=J VA-{[(v+H-F)P3
draw conclusions about the relaxation of two-time correla- 9t

tions from calculation of one-time moments only, is the so- —KaTH-VPS1B—kaTPSH- VBIdR
called static dynamicsapproach15,48. In this section, we B 11B—keTP1 JdR.
discuss an extension of this formalism to nonequilibrium dy- (17

namics and to vector observables. We begin by considering . ) S
two scalar observables(R) and B(R), which will later be ~ Upon introducing the current from E¢L2), this simplifies to
taken as two componenis; and U; of U=R—(R) with

respect to a suitable basis and we calculate the initial decayi<A(t)B(o)>|tO:j VA-(J[PSIB—kgTPSH- VB)dR.
rate of correlations(A(t)B(0)). The calculation here is dt

based on the Fokker-Planck equation equivalent to the (18)
Langevin equatior{B12) rather than the Langevin equation ) ) o
itself. The current) vanishes when detailed balance holds. This is

The Fokker-Planck equation is written in the form of a the case, of course, in equilibrium, but as shown in Appendix
conservation law as A it also holds for an important class of flows and forces

when the hydrodynamic mobility matrix is averaged. Under

J this condition we recover the simple result
EP: -V-JP], (11

d
where the probability currer{ P] is given by[57,58 at ALB(0)i=0= ~keT(VA-H-VB), (19

JP]=(v+H-F)P—kgTH-VP. (120 which was obtained previously for polymers in equilibrium
[15].

The initial decay may be described by a linear law where
the rate constant of the relaxation is obtained as

Here, P is the transition probabilityP2|1(R,t|RO,O) which
satisfies the initial conditioP,;(R,t|R,0)=6(R—Ry). In
the following, v, F, andH are functions oR andV denotes
the vector of derivatives with respect to the components of

d
R. _ _ _a<A(t)B(O)>|t=O
The time correlation(A(t)B(0)) of two observables — (20)
A(R),B(R) can be calculated as AB (A(0)B(0))
(A(1)B(0)) when both observables decay to zero, (&)= (B)=0.

Taking nowA=U;=R;—(R;) andB=U;=R;—(R;), we
:f fA(R)qu(R,tlR’,o)B(R')pi(R’)dR'dR, obtain a matrix of (3)? different relaxation rates due to
cross correlations between different beads. In terms of the
(13 averaged mobility matri¥d and the matrix of effective force

where P3 is the stationary distribution of bead positions. constants defined in Eqs(2) and(3), we have

Dropping the argument® andR’, the rate of change is

I

Fij: ”1. (21)

~
=

d d
ﬁ(A(t)B(O)):f fAEPZMBPidR’dR. (14)
_ _ From the analysis of linear models in Sec. Il it is clear
By using the Fokker-Planck equati¢hl) for 7,3, we ob-  that this matrix can be made diagonal by the coordinate

tain transformation which simultaneously diagonalizésand K
via congruence. This coordinate transformation in general

d e _
m(A(t)B(O))= —J f AV - [(V+H-F)Py will be nonorthogonal sincél andK need not commute. To
make the connection explicit, consider observe1t1k~:~+50p
—kgTH-VP;]BPIdR'dR.  (15) =QymUm andB=Uq=Q U, in Eq. (20) which gives
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 QuaHmi(Q /g

Tp=—2m .
QK nEQH ],

(22 040}
Inserting &, =QnQ,,* after Hy,, and K, and identifying

QpaHmnQnr and Q7K Q. as the matrix elements!,, o
and K;rl of H andK ™! in the transformed coordinates, this

becomes 010l

5 HprQn (Q iy
pa—

— . (23 0.00 ;
Kot Q' (Q7hH, .

. : : i FIG. 1. lllustration of the chain conformation corresponding to
Now by using the relations for the matrix elementg-bfind . R
y 9 the first Rouse modep(= 1) of a chain withN= 10 beads. The bead

K from Egs.(9) and(10) in Sec. I,I itis seen that the sums in positions are on a straight line with directi&@t (a being eithelx,
the numerator and the denominator each reduce t0 & Krq; o 7) in real space as shown at the right side of the plot. The
neckers so that diagram gives the distand®,; of theith bead from the origin where
~ the chain is fixed.
Tpq=Tp Opq- (24)
from the origin. For the distance function, the calculation in
In summary, the essence of thtatic dynamicsapproach  Appendix C yieldsN different patterns of bead spacings
is the use conformation-independent matriele« which are

easily calculated from simulation data according to the defi- 2 2p—1
nitions, Egs.(2) and (3). The matrices define a generalized Rpj=——=——sin i—Tr) (26)
Rouse-Zimm model for the conformational fluctuations of VZN+1 2N+1

the polymer. The relaxation times and modes then are calcu- )

lated in a straightforward manner by numerically diagonaliz-corresponding to the valugs=1, ... N. _

ing the matrix '=HK. Its eigenmodes provide relaxation NThe dlst_ance functiorR,; is normalized according to
modes which initially decay uncorrelated with each other. Its>i=1RpiRqi= dpq Which together with the orthonormality of
eigenvalues give the inverse relaxation times describing thE® in real space expresses the orthonormality of the Rouse

initial decay of these uncorrelated modes. modes in conformation space. Since there ake rBodes,
these form a basis for the conformation space, i.e., each con-
IV. ANALYSIS OF THE ROUSE MODEL formation R may be expressed as a superpositiBn
=2g212azxyy,zAgRg, whereRy is the supervector, giving

The analytical solution of the Rouse model for a chain ing|| head positions for theth Rouse mode with direction.
thermal equilibrium with one end fixed and the other endthe mode amplitud@\g is a common scaling factor for the

free, as described in Appendix C, yields a relaxation specyqsition vectors of all beads in the chain. The amplitudlgs

trum for the three coordinate directions in real space are often
1 taken together as a vector amplituélg.
R ¢ o (2p— 1w L A .
R=_214sir? — (25) In equilibrium, none of the three directions of a Cartesian
P ky 2N+1 2 coordinate system is distinguishable. Therefore, the spectrum

. L .. of polymer relaxation times is threefold degenerate. The
For further discussion it will be useful to use separate indice$,gdes corresponding to each triplet of relaxation times differ

for bead and mode numberp=1, ... N and directions in . - . .
real spacar=x.v. z. A large part of the spectrum follows a only in their direction€£® in real space, while the spacing of
P Y2 gep P beads along this direction is the same for all three modes in

. _ 72 - . . .
sca:!ng IlaWTpﬁZp 1) d’ cf. F'%‘ 2. [’)\Ie/\élatmnz fro;‘n ttT]'S the triplet. Since all directions in space are equivalent, the
scaling law at 'arge mode numbeps= are due 10 €  4irections obtained by thetatic dynamicsmethod will be

finite number of beads and are absent in the usual treatmenqt,: : .
[15,59, where N is assumed to be very large so that the?ntggreasry, except being mutually orthogonal for each triplet of

expansion sing~x can be employed. We now turn to a comparison of the analytical results to

The Rouse modes are special chain conformations d - : ; -
scribed in the following. Because the Gaussian conformae[-he results of astatic dynamics(SD) analysis applied to

tional distribution function factori in the th drect simulation data for the Rouse model as described in the pre-
lonal distribution function tactorizes in the three 'rec.'onsceding section. The SD relaxation times shown in Fig. 2
of real space,a«=x,y,z, the position of theith bead,i

_ . IO : agree perfectly with the spectrum of Rouse times given by
=1.... N, in the mode with indiceg,  may be written as Eqg. (25 even for the highest mode numbers. The dataset

a productRy; =Ry E®. Thus, as illustrated in Fig. 1 all beads which was used for the analysis consisted of 10000 samples
are on a straight line with unit vect&@® and distance®,;  taken at time intervals of 100.0 which were generated by the
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) '
10! 10% 0 20 40 60 80 100
2p—1 1

10

FIG. 2. Comparison of the relaxation spectrum of the Rouse G- 3. Comparison of several Rouse modps-(,5,9) as cal-
chain calculated analytically from Eq25) and from simulation culated analytically from Eq(26) (solid line) and from simulation
data by means of thetatic dynamicsnethod(open trianglesfor a date_l by_means of thetatic dynamicsnethod(open trianglesfor a
chain with N=100 beads. Only every fifth value calculated from cha&in withN=100 beads.
the data is shown to prevent cluttering of the symbols at large mode o )
numbersp. At large p, there is a deviation from the scaling law  actions(EVI) and hydrodynamics interactiortsil) between

x(2p—1)2, which is caused by the discreteness of the bead-springhain segments is summarized in scaling relations for the
chain. dependence of the longest relaxation time on the number of

i ) , , , ) Kuhn segments, or beadsy<N*. To this end, the longest
Brownian dynamics simulation method described in RefSyg|axation time is estimated as the time the coil needs to
[39,60. An initial transient of 100 samples was discarded iNgiffuse its own size e~ RE/D [14]. The static scaling
order to eliminate effects of the initial configuration which relationReorbN?, wherev=3/5 with EVI andw=1/2 with-

wasR; =ibx. After this period the distance between the two 5t Ev), relates the end-to-end distarRe to the number of
ends of the polymer had reached its equilibrium value OfbeadsN Here,b is the length of a Kuhn segment, which
10.0 within a statistical error of 2%. To obtain the abovecorresiodnds to the root-mean-square bond Ieng'th in the
results we exploited the permutation symmetry of the Coorbead-spring model. The diffusion constant of the coiDis

dinate axes and averageg andR,; over the three coordi- «N¢ of D67 nRex677bN in the free-draining and non-

n‘g‘te. dirde(f:tionhsEff. dTh.g valllues g_f the (?D rglaxatiﬁn tirgzs draining limits, corresponding to the cases without and with
obtained for the individual coordinate directions showed deyy, eqnectively. Heref =67 7a is the Stokes friction coef-

viations of less than 5% from these averages. This deviati0ﬂCient for a single bead of sizzin a solvent of viscosity,

is approximately proportional to the size of the dataset. T h ; . . .
. . . e results of this scaling theory agree with those obtained
get the same results without averaging, it was necessary Oom the Rouse-zZimm moddil1 12,61 which can be ex-

increase the size of the dataset by a factor of 4. If, on th . .
other hand, only half of the data are used, the Rouse times ¢gnded to account for EVI in an approximate wa,62. In

less thanr3~0.1 were underestimated by the SD method Inaddition, the latter also provides a scaling relation for the
. . V) .
the rest of this work, we will use ensembles of 5000-10 OOOSpGCtrumTOC(2p 1)” and a numeric value for the longest

members and average over equivalent directions whenevé‘?laxat.'on time, given the bond lendtrand the bead friction
possible. coefficient. Since it turns out that the exponentsand 6,

The SD modes fop=1,59 are shown in Fig. 3 in com- which give the dependence of the relaxation timedNcsnd
parison with the analytical results for the Rouse modes. we: are the same, one may conclude that giie mode de-

find that approximately the first 10% of the modes are repro-SCribes the relaxation of sgbchains: witip segment$15]. .
For the pure Rouse chain, the simple scaling theory gives

duced accurately. For higher mode numbers, the tips of the ) ;
silﬁ]e wavesuare znderesltigmated . P 7,<N?. This result is also found from Eq25) when the

So far we have considered only a tethered polymer Wher%xpansmn fsm().%x is used, Wh'Ch is valid fop<N. For the
all degrees of freedom relax. For a freely floating polymer,ROUSE chain with EVI and without HI one finds
however, the center-of-mass motion is diffusive. This corre- 2041 2.2
sponds to an inifinite relaxation time which spoils the numer- 71N ~N™% 27
ics. The situation is easily remedied though, by performing , . .

the SD analysis on the bead positioaktiveto the center of Awhile for the Rouse model with both EVI and HI one has
mass. Thus, the relevant case for rheological applications can e N3V~NL8 (28)
also be treated with the SD method. ! '

The results for the relaxation times corresponding to the lat-
ter two cases, as calculated from simulation data by the SD
method, are shown in Fig. 4. The fit of a straight line to the
The knowledge of the equilibrium relaxation times of data in the log-log plot indicates that the SD relaxation times
polymer models, taking into account excluded volume inter-do obey a power law for both models. The exponent obtained

V. APPLICATION TO NONLINEAR POLYMER MODELS
AT EQUILIBRIUM
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107 | 3

107 ' F
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10! 10° 100 10! 10°
N 2p—1

FIG. 4. Equilibrium scaling of the longest relaxation time with ~ FIG. 5. Comparison of the spectra of relaxation times for several
the number of segments for bead-spring chains with harmoni®olymer models in thermal equilibrium. The solid line gives the
springs and excluded volume interactiofssjuares and both ex-  analytical result for the discrete finite Rouse chain according to Eq.
cluded volume and hydrodynamic interactiofdiamonds. The (25). The symbols give the values calculated from simulation data
symbols give the values calculated from simulation data by thédy the static dynamicsapproach described in Sec. Il for bead-
static dynamicsnethod described in Sec. Ill. The solid lines are fits spring chains with harmonic springs and excluded volume interac-
to a power lawr= aN?, where the fit parameters aie= —0.55 and  tions (open squargs chains with harmonic springs and both ex-
B=2.19 for the model with excluded volume interactions only andcluded volume and hydrodynamic interactiof@pen diamonds
a=—0.40 andB=1.83 for the model with both excluded volume and a FENE chain with no other interactions taken into account
interactions and hydrodynamic interactions. (solid triangle$. The number of beads i¥=100 in all cases. The

dashed lines indicate the power laws with exponent®.2 and

from the fit in the case with EVI only has a value of 2.19, 1.8, obtained from scaling theory for chains with excluded vol-
which is in good agreement with the result 2.2 derived fromume interactions and without or with hydrodynamic interactions,

scaling arguments. The fitted exponent in the case with botfkespectively.
EVI and HI has a value of 1.83, which is again in good . . .
agreement with the scaling result of 1.8. Replacing the harth® same way, could be described as a single exponential

monic springs by finitely extensible nonlinear elasGENE) ~ decay V‘gth aftime _stcgle ar?#ncézﬁxllog‘.t.Thits' has the red
springs does not affect the scaling of the longest relaxatioffa ¢ Ofder of magnitude as the relaxation ime preseiyte

. : . : . here and is also several times larger than the longest relax-
time with N as expected, since a change in the local interac- .~ . . e
P ’ 9 tion time of a Rouse chain which i§=1.36x 10°.

tions has no effect on the large scale behavior of the chaiff If HI are added to the Rouse model with Extpen dia-

[15]. T ; i
' i . . monds in Fig. 5, the scaling exponertt calculated from a fit
Figure 5 shows the full SD-relaxation spectra for dlfferent,[0 the slow end of the spectrum is changedte—1.78. At

nonlinear bead-spring chains witd=100 :bealds. It FENE intermediate values g, it increases t@= — 1.97 indicating
springs are used and other effects negle d triangles, that the HI acts less prominently over intermediate length

the SD times agree with the Rouse spectr(salid line). : .

Again, this is expected at least for the slow relaxation timesici‘gsfszheecr\ée::s d osftrt:r? IlonC%eni,t ;izx?;'c:ﬁet'glfigzno del

We find that agreement persists even for relaxation times$'. : gly P use n

where discreteness effects are already preg@sviations W'th or_lly EV". The va!ue of th_e slowest SD rggaxa“o.” time

for p=75 are probably due to numerical errors because o again consistent with the time sga;}evle obtained

the limited size of the datasgt. rom the time dependgnce E.{.N_.RO in Ref. [63]. L
Nonlocalinteractions such as EVI, in contrast, do Changeth Due to symmetnf/, mthequrl)llbrlum thz r|no<|jes ffactonzlg n

the slow relaxation times. As observed in Fig. 5, adding EVI € Same way as Tor the Rouse model aiso Tor noniinear

: _ models. The form of the distance functidty,;, of course,
Loa\t/?; ?rgtﬁimnzgge_(blpﬁg ?gf?ggiﬁ?ggszljgg ri%a(j“enlgt: € may be different from that found for the Rouse model in Eq.

o (2p—1)* with 9= —2.23. For large values gf, there is a (26). We find that EVI indeed leads to a change compared to

regime where no simple scaling law holds because of thé;e Rouse modes. The deviation is not large but clearly vis-

- - : le as shown in Fig. 6 for the first mode of a chainMf
f the chain. Furth f I ; i .
discreteness of the chain. Furthermore, we find an OVerazzoo beads. For higher modes, the difference with the

increase of the relaxation times roughly by a factor of 5. TheRouse modes is less pronounced. When Hi is added or FENE

value of the longest relaxation timg=6.50x 10° is quali- . 4 diff d 1o the R :
tatively consistent with a parallel study of polymer relaxationSp[j'lr:jgzea:;stézt;"négo iierence compared to the Rouse form

[63] where different aspects of the same model were consid°®
ered. In t_ha_t work an ensembl_e was prepared in an elongated \, App| |CATION TO MODELS FOR DEEORMED
nonequilibrium state and the time dependence ofxthem- TETHERED POLYMERS

ponent of the end-to-end vect®— R, was recorded. The

late stage of the relaxation, which corresponds to the linear Under the action of a force or flow, the beads in general
regime where average perturbations and fluctuations relax ihave different nonzero average positio(R;) # 0, so that it
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FIG. 6. First mode f=1) in thermal equilibirum for the pure ] )
Rouse modelsolid ling) as calculated analytically in Appendix ¢~ FIG. 7. End-to-end distance of a tethered FENE chain With
and the model with harmonic springs and excluded volume interac= 100 beads pulled at its free end with different foréesircles
tion taken into accountdotted ling as calculated from numerical and subjected to uniform flows of different velocitiegtriangles.

data by means of thstatic dynamicsnethod. The chain length is [N the latter case, the total force exerted on the polymeN, is
N=200 in both cases. used to factilitate a comparison.

the deviationR— (R) from this average. The stochastic force
e is then seen to couple only to the latter, while the additional
and the deviationdJ;=R;—(R;). The modes serve to de- .4 forces due to the flow appear only in the former. There-
compose fluctuations, hentg; then gives the deviation of (416 only the average bead positions are affected by the flow
the true bead position from its mean value when ther]  and the Telaxation times or modes do not change with flow
mode is excited. velocity. This behavior is reproduced by the SD analysis.
Moreover, when external forces or flows are present, the Tyring to a comparison of the two prototype situations of
spherical symmetry of the equilibrium situation is broken. Ing tethered polymer pulled at the end and one which is sub-
the case of a force applied at the free end of the polymer Ofcted to a uniform flow, we first take a look at the polymer
a uniform flow, one direction in real space, namely, that parg|ongation in both cases. Since the strongest effect on the
allel to the force or flow, is distinguished. We refer to this as,g|axation times turns out to be produced by the finite exten-
the longitudinal direction, while the other two directions, sibility of the springs, we focus on a FENE chain with
which are still related by a rotation symmetry, will be called _ 10 peads. In Fig. 7, the end-to-end distance is plotted as a
transverse Because of the reflection symmetry in the trans-gnction of the total force exerted on the polymer chain. In

verse directions, it is easy to see thqt cross cprrelations b&re end-pulled castircles, this is simply the applied force
tween one of these and the_ longitudinal direction must vang \yhile in the uniform flow casdtriangles, for a free-
ish. Therefore, the factorized form of the modek;  draining polymer, the drag forces acting on each of the beads
=U,;E” remains valid here. simply add up to a total force=v {N. From Fig. 7 it is seen

Since the symmetry between the three coordinate directhat the uniform flow is less effective in stretching the poly-
tions is broken, one in general expects a “level splitting” of mer by a factor that is approximately constant, i.e., to achive
the relaxation times in each triplet, with one distinguishedthe same elongation requires a total force that is twice as
longitudinal relaxation time and two degenerate transversstrong.
relaxation times. Of course, in the numerical results the The triplet of longest relaxation times for both cases is
alignment of the mode directions parallel or perpendicular tashown in Fig. 8 again as a function of the total force exerted
the flow is not perfect. We distinguish the modes within eacton the polymer chain. For smadllthe relaxation times are
triplet on the basis of which of the components of their di-close to their threefold degenerate equilibrium value. With
rectionE® has the largest value in a fixed coordinate systenincreasing force, a strong decrease of all relaxation times is
where the flow is along thedirection. Thus, the longitudinal observed. The reason for this behavior is that the FENE
mode is uniquely singled out. Differences between the transsprings become stiffer and stiffer the more they are stretched
verse modes or their relaxation times—which should beunder the action of the external forcing. Furthermore, we find
equal by symmetry—may serve as an estimator for statisticdhe expected level splitting, where the longitudinal mode re-
errors in the results. In Strong flows, there is also the possil.axes faster than the transverse modes. The decrease of the
blility of “level crossing,” i.e., the triplets are no longer dis- longitudinal modes in both cases appears to follow a power
tinguished by large differences in the relaxation times. HowJaw 7= f =5 The decrease of the transverse modes is some-
ever, mode triplets can still be defined by the number ofwhat slower and may tentatively be describeddyy:f 1.
nodes of the distance functids,; . As for the polymer elongation the curves at lafgkffer only

The Rouse model is the one exception to these generdly an approximately constant factor rescaling the force. In
expectations. Due to linearity the equation of motion, Eq.the uniform flow case for =0.2, one even finds level cross-
(B12), may be split into an equation for the averd@® and  ing: The first longitudinal mode has only the fifth-largest

becomes important to distinguish between the positiens
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chosen so that the polymer elongation is comparable in both

cases. It corresponds to about 80% of the contour leNdpth

For the polymer pulled at the ends, all three modes clearly

have the Rouse forrtsolid line). When the polymer is sub-

jected to a uniform flow, however, even the transverse modes

S are far from sinusoidal. This change of the shape of the

102k ) modes is a consequence of the inhomogeneous distribution

of tension along the chaifB89]. In the end-pulled case, in

W contrast, the tension is the same everywhere along the chain.
We finally remark that for the number of beads considered

here,N=100, adding EVI and HI to the FENE model does

not significantly change the behavior of the relaxation times

or modes. Chains with many more Kuhn segments, as they

are used in experiments, are beyond the present simulation
FIG. 8. The first triplet p=1) of relaxation times as calculated Capabilities[39,60. In this case, appreciable effects may

by the static dynamicanethod from simulation data of a tethered OCCUT.

FENE chain withN= 100 beads pulled at its free end with different

forcesf (circles and subjected to uniform flows of different veloci-

tiesv (triangles. In the latter case, the total force exerted on the VII. DISCUSSION AND CONCLUSIONS

polymer,v¢N, is used to factilitate a comparison. The lower curve

in each triplet corresponds to the longitudinal mode with direction

along the flow for both cases.

w
X3

109 10t
f=v¢N

The polymer relaxation spectrum forms an important link
between the dynamics of single polymers and viscoelastic
continuum mechanics. While for thermal equilibrium condi-
o . tions a rather comprehensive theory is available, the relax-
relaxation time. This means that the transverse modes of thgion pehavior of deformed polymers is far less understood.
first two triplets relax slower than the slowest longitudinal | the present work we have established an efficient
mode. o . o _ method for calculating the complete polymer relaxation

While the qualitative behavior of the relaxation times is spectra and a set of corresponding modes from simulation
similar in both cases, the modes remain unse—like in th‘?data by employing thestatic dynamicsapproach. This ap-
end-pulled case, but assume a completely different form iy gach rests on a relation for the initial decay rate which has
the uniform flow case as shown in Fig[22]. There, the first  peen generalized here to nonequilibrium situations where de-
triplet of modes is shown for a force ¢#=5.0 in the end-  tajled balance is valid. The latter has been shown to hold for
pulled casédotted line$ and a flow velocity ob=0.2inthe  polymers stretched by a force applied at the ends or by
uniform flow case(dashed lines These values have been simple flow fields of either uniform or elongational type

when a common averaging approximation is invoked to de-

0.25F ' ' ' ' b scribe hydrodynamic interactiorf42,34-37,49,5lL The re-

. laxation modes are determined by the requirement that their
initial decay is uncorrelated. In the linear case—where the
conformational distribution function is Gaussian—this, of
course, reduces to the usual Rouse modes, which are fully
statistically independent. For nonlinear models the procedure
amounts to using a generalized Rouse-Zimm model which is
adapted to the simulation data.

The suggested procedure is subject to the general critique
of any normal mode approadh4]. By its very construction
it always yields 3 modes; the birth of new relaxation times
0 20 40 60 80 100 as found in Ref[64] or the possibility of a continuous relax-

i ation spectrum conjectured in Réfl4] is thus impossible
within our framework. To circumvent the difficulties of the
normal mode approach in the case of nonlinear polymer dy-
FENE chain withN= 100 beads pulled at its free efdbtted lineg namics, the focus is usually shifted to the Scal_ing _behavior_ of
and subjected to a uniform flogdashed lines The values of the the spectra. It was shown h_ere that the equilibrium scaling
stretching forcef =5.0 and flows = 0.2 are chosen so that the end- EXPONeNts can also be obtained from the spectra calculated
to-end distance of the polymer is comparable in both cases. For th@y thestatic dynamicsnethod. In addition, thetatic dynam-
end-pulled case, the shape of transverse and longitudinal modes igS method yields numeric values for the prefactors, which is
the same and agrees with the Rouse fésalid line). For the uni-  important for technical applications, e.g., strong excluded
form flow case, the lower curve corresponds to the longitudinavolume interactions significantly slow down the relaxation
mode, while the two upper curves represent the transverse moddgfocess. Experimental evidence for a truly discrete spectrum
the symmetry between which is not broken. The shape of all modebas been given in Ref24].
in the triplet is quite different from the Rouse form. The analysis of two simple nonequilibrium problems, a

FIG. 9. The first triplet p=1) of relaxation modes as calculated
by the static dynamicanethod from simulation data of a tethered
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tethered polymer pulled at its free end and a tethered poly- gH L

. . e d -1 ik -1 v
mer subjected to a uniform flow, revealed that it is important Dijj =R Hi Vie= —R Vit H;j o . (A3)
to correctly capture the nonlinear modes. In the uniform flow ] ] r=R;

case, the finite extensibility of the polymer leads to a shape ) ) ) ]
of the modes for a strongly stretched chain which is comWhere ov/dr is the velocity gradient of the imposed flow
pletely different from the Rouse form. In the end-pulled caseiéld. Clearly, in equilibrium, where=0, the rhs becomes
in contrast, the Rouse modes remain valid also for a stronglg€'0 Which is trivially symmetric. In the free-draining limit,
stretched chain. This latter case is untypical for polymers i is both conformation independent and diagonal, i.e., its
flow in that the tension within the polymer is constant alongcOmponent matrices are;;*= 8¢ 1. Thus,D;; becomes
its contour. In both cases, there is a strong velocity depersymmetric whendv/dr is symmetric. When an averaging
dence of the relaxation times which decrease as the springpproximation for the mobility matrix is invoked, thed *
become harder the more the chain is stretched. This findingecomes independent of the polymer conformafnbut
casts doub{34,42 on the validity of theories for a coil- not diagonal. For the case of a uniform flow, whend or
stretch transition in elongational flow7,18 which as- =0, the trivial symmetry oD;; in Eq. (A3) then is imme-
sumed Rouse relaxation in the stretched state. diately obvious. For the case of a constant but nonvanishing
A large potential for further applications of tis¢atic dy-  velocity gradientgv/dr=const, which itself is symmetric,
namics method is to branched polymers and polymer netthe following argument shows that the eigendirections of
works where the calculation of relaxation times, even foreach component matrix ¢4 andH™ ! are the same as those
simple Rouse-Zimm-like models can be quite tedious al-of dv/dr. We choose orthogonal coordinates in real space
though possible analytically65,66|. along the eigendirections @i/ dr, which is possible by vir-
tue of the assumptions made. Along each of these directions,
there is a reflection symmetry so that upon averaging the
ACKNOWLEDGMENTS conformation-dependent mobility supermatrix only those
We thank B. Dmweg and D. Kienle for stimulating dis- matrix elements which are even under each reflection do not
cussions. vanish. In the Oseen approximation, EB8), these are pre-
cisely the diagonal elements of eack 3 component matrix.

Thus, it is seen that each of the averaged mobility
APPENDIX A: CONDITIONS FOR DETAILED BALANCE component-matricedd;; has the same eigendirections as

Since the independent variablé® appearing in the vl or. Since the component matri_c_es_of the inverse mobility
Langevin equationB12) are all even under time reversal, are funcnons of thqse of the.moblllty itself, the former have
the condition for detailed balance is that for the stationary?9@in the same eigendirections agr. Hence, we con-
distribution P§ the current defined in Eq(12) vanishes clude thatH;; ~ is symmetric and commutes withv/Jr so
[57,58, i.e., that againD;; as given by. I_Eq(A3) becomes symmetric. N

Under the same conditions as above—averaged mobility
o Do s matrix and constant symmetric velocity gradient—the re-
JPil=(v+H-F*)Pi—kgTH-VP{=0. (A1) quirement that the indices of the component maBjx can
be interchanged simply becomes
Dividing by P35 and multiplying from the left byH ! yields Y Y
Hj‘ila—: i]la—. (A4)
H L v+ FP=kgTV In(P3). (A2) ' '

For the case of a uniform flowy/dr=0 so that this require-

The right-hand side is explicitly gradient, hence, E41)  ment is obviously satisfied. For the case of a constant but
will be satisfied when a potential exists also for the left-handnonvanishing velocity gradiengv/Jr=const, we have the
side. This gives rise to the well-known potential conditionfact that the supermatrikd—* is symmetric, i.e., its 3
[57,58. Since here the direct forde® is already known to component-matrices obelylj_il=(Hi] HT. As shown above,
be derived from a potential, it remains to be shown that ahe component-matrice}f*.i]1 of the inverse averaged mobil-
potential exists also foH™*-v. This is the case when the ity supermatrix all have the same eigendirectionsyasr
matrix of derivativesD=V&(H™'-v), is symmetric.D is  which implies H;)T=H;*. Hence, both sides of E¢A4)
an  NXN  supermatrix —with  components Dj;  become equal. This completes the conclusion that detailed
= dldR;(H;'vi), which are themselves>33 matrices. It balance also holds for averaged hydrodynamic interactions
will be symmetric when(i) the component-matriceld;; are  when the velocity gradient is constant and symmetric.
symmetric and(ii) D;;=D;;. These two requirements are  To summarize, we have shown that detailed balance holds
examined in the following. Throughout, summation over re-for an important class of polymer flow problems, where two
peated indices will be implied. conditions are met. The first condition is that the imposed

To find conditions when the’83 component matricel;; flow be either constant everywheve- v, or have a constant
become symmetric, we first note that the imposed flow fieldand symmetric gradient= «xr. The former case of uniform
at the position of thé&th bead, of course, is a function Bf,  flow has recently attracted great interéste references cited
only, i.e.,v,=V(Ry). Hence, in the Introduction and is considered in Sec. VI of the
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respectively. For the case of harmonic springs, the force con-
stantky=3.0 is chosen so that the root-mean-square bond
length in equilibrium,b, becomes unity. The FENE spring
law is augmented by a nearest-neighbor repulsion of the
form described in Eq(B6) below, so that a good approxima-
tion of rigid rods is obtained as described in R&7]. Suit-
able parameter values for the force consigst 30.0 and the
maximum extension of the springg= 1.5 result in a bond
FIG. 10. Sketch of the bead-spring model for a polymer whichlength of b=0.96 for this case . An additional bead with
is fixed at one endbead index =0) and free to move at the other indexi=0 which is fixed atR,=0 is used to implement the
(bead index =N). The coordinate origin is arbitrarily chosen at the poundary condition at the tethered chain end. An external

position O.f the fixed end. .AISO indicat_ed are the bond ledgénd  ¢,00 \yith magnitudef and directionx applied at the other
the effective hydrodynamic bead radias chain end is considered in Sec. VI. The corresponding poten-
present work. The latter case of elongational flow is impor—tlal 1S

tant in rheology[1,2,23. Second, the hydrodynamic interac-

tions are described by an averaged mobility tensor which is a DH=FO[(r—Ry)-X]. (B5)
common practice in many studies of polymer dynamics, e.g.,

Refs.[12,34-37,49,5]L In more general situations, no obvi-

ous conclusions can be drawn, since an explicit expression The contribution arising from the excluded volume effect
for H™! is not available(in contrast toH). We remark that is purely repulsive and acts between any pair of beads. It is
external forces exerted on the polymer, e.g., by pulling thelescribed by a truncated Lennard—Jofie® potential

ends are subsumed in the direct fofe® (in case they are

derived from a potential which is generally the casgince

in this casev=0, detailed balance holds trivially. o excluded % A (( o )12 ( o 6+ 1
L ¢ _ -
=i IR — Rl |R;— Rl 4
APPENDIX B: BEAD-SPRING MODEL =1
FOR NUMERICAL SIMULATIONS XO(|Rj—Ri|—Ryy). (B6)

For the numerical simulations we use a bead-spring model

as sketched in Fig. 10. As usual, only motion on the diffusiveTphe parameters= 1.0 ando= 1.0 define energy and length
time scale is considered, hence, the equation of motion fogcales of the excluded volume interaction. The cutoff radius
the position of theth bead (=1, ... N) is obtained froma R ;=216 is chosen at the minimum of the conventional
balance between all forc%s acting on it. These forces com-ennard-Jones potential af¥(r) is the Heaviside function.
prise viscous drag forcels™ on one side and potential and \when combined with harmonic springs, an effective equilib-

stochastic force§®, F* on the other: rium bond length ob=1.33 resultd60]. Together with the
H b s FENE potential for the springs, the bead-spring chain be-
—Fi=F+F. (B1)  comes self-avoiding like a real polymer for the parameters

) . ) chosen[67]. If the case without excluded volume effects is
The potential forcd~" is often also called direct force to ynder investigationg®cdedjs set to zero.

distinguish it from the solvent mediated hydrodynamic  The hydrodynamic forces are linear functions of the bead
forces. It describes binding and excluded volume interactiong | J.itiesR. relative to the imposed flow at their position
between the beads as well as possible external forces appli ! o ) ’

. R; . In terms of the mobility matriXd, we hav
e.g., by laser tweezers, i.e., i) [68]. In terms of the mobility matrbH, we have

F?’: _VRi(q)bond+ (I)excluded+ (Dext)_ (BZ) N -
Fl'=—2> H; " [R—V(R)]. (B7)
The binding between next-nearest neighbors along the chain =1
is described by either harmonic or FEN#hitely extensible

nonlinear elasticsprings with potentials Without hydrodynamic interactions, the inverse mobility ma-
trix is proportional to the identityd 1= 1. The constant of
proportionality is the single bead friction coefficierdt
=67 na, wherey is the viscosity of the solvent aralis the
effective hydrodynamic radius of a bead. Since in this case,
or the external flow remains unchanged throughout the polymer
coil, this is referred to as the free-draining limit. If desired,

IR, ;—R|2 hydrodynamic interactions are incorporated in t_h.e O_seen ten-

-——— |, (B4 sor approximation15,69. This turns the mobility into a
Rr conformation-dependent tensor, which is given by

N-1
Phond= 20 EkH|Ri+1_Ri|2 (B3)

N-1

1
pPond= ' —EkFR,z:In 1
i=0

021804-11



R. RZEHAK AND W. ZIMMERMANN PHYSICAL REVIEW E 68, 021804 (2003

1 APPENDIX C: THE ROUSE MODEL
-1 for i=j
H. = 4 : (B8) Here, we consider a bead-spring chainhbeads con-
B Q(Ri—R;) for i#]j, nected by harmonic springs. For this case, @1.2), which
) governs the Brownian dynamics of the chain reduces to the
set of linearly coupled Langevin equations
where
1 £iR:(R- —2Ri+R; )+£\/2k T (CL
Q(r)=W(1+FFT) (B9) ky gt L ST YRR

. . . . whereky is the force constant of the springs atids the
is the Oseen tensor. Since the mobility matrix constructedingle bead friction coefficient. The bead indesuns from
with the Oseen tensor becomes nonpositive at small begd-1 . . N. In order to impose boundary conditions we in-

s:eparation$23], we always consider hydrodynamic interac- troduce fictitious beads=0,N+ 1 whereRg ;= const for
tions together with the excluded volume effect. The collec-3 fixed chain end anBo . 1= R,y for a free-chain end. In

tive effect of the HI is to reduce the penetration of the exteryne following, we will assume one end fixed at the origin and
nal flow into the polymer coil. The extreme case of thiSthe other end free to move, i.e.,

screening of the flow is referred to as the nondraining limit.

To get a strong effect of HI, which in equilibrium comes as Ro=0 and Ry,;=Ry. (C2
close as possible to the nondraining limit, we sgb

=0.25. It should be noted, however, that parts of the polyFinding the general solution to EGC1) requires diagonal-
mer chain which become stretched under the action of airation of the rhs, i.e., one has to solve the eigenvalue prob-
external force of flow eventually must become free draininglem

[38].

A uniform flow field v=uvX is considered specifically in
Sec. VI, while homogeneous flows=vy+ «r appear in the
results of Sec. A.

The stochastic forces are related to the dissipative drag b?/t
the fluctuation dissipation theorej0] to ensure the correct

Ri+1_2Ri+Ri—1:_)\Ri' (C3)

The sign of\ is chosen such that positive eigenvalues yield
able solutions. Its relation to the relaxation timés

equilibrium distribution. Taking the forces acting aal T:ﬁﬁ_ (C4)
beads together as a single supervector, we have Kn A
FS=\2kgTH 1. & (B10) Equation(C3) has the form of a linear difference equation

which may be solved by standard methods as described, e.g.,

where T is the temperatureks is the Boltzmann constant, in Ref.[71]. The ansatR,= p*E®, whereE“ is the direction
and & is an uncorrelated Gaussian white noise with zeroof the mode according to Sec. IV, leads to the auxiliary equa-

mean and unit variance tion p>—(2—\)p+1=0, the solutions of which are
(&1))=0, (B11) pro=3[2-N=\(2—\)%—4]. (C5)
(& E(t))=8(t—t")1. Depending on the sign of the radicand we have three differ-

ent types of solution which are named analogous to their

In terms of the supervectd® for the bead positions, the counterparts for differential equations although in the true
equation of motion for the models considered may be writtersense of the word all solutions are, of course, bounded:
in the general form “unbound” solutions Ry=c;p%+c,pk for (2—N\)2>4; (ii)
“secular” solutions R,= (c,+c,k)p* for (2—\)?=4: and
(iii ) “bound” solutions R,= c;coskd+c,sinkd for (2—\)?
<4 [or equivalentlyf e (0,7)].

In case(iii) we introducedd by (2—\)=2 cosf which
The potentiald is obtained by summing the contributions gives p, ,=cosf=siné. Only this case leads to solutions
from binding and excluded volume according to E@3)—  which satisfy the boundary conditions under consideration
(B6), while the mobility is given by Eq(B8). The yet un-  [73]. For the constants; andc,, we obtain from the bound-
specified parametelgT=1.0 and{=1.0 essentially define ary conditions
the units of energy and time.

Except for the simple Rouse mode| H, and F*= c1=0, cysin((N+1)6)=c,sin(Ng). (Co)
—VRr® are nonlinear functions of the polymer conformation
R, and one has to rely on numerical simulation to solve thé=or c,#0, one obtains
equation of motion, Eq(B12). A Brownian dynamics simu-
lation scheme suitable for this task is described in Refs. o= 2p—1
[39,60. 2N+1

%RZV(R)+H-(—VR<I>)+ V2kgTH-&  (B12)

7 p=12,...N. (C7)
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Larger values ofp violate the condition ord. Hence, we
obtainN eigenvalues

(C

PHYSICAL REVIEW E68, 021804 (2003

for the eigenvalues and

The Rouse modes are then found by introducing this result in

the ansatz in cas@i) as

2p—1
2N+1

. (C9

Rkpzczsin( k

The remaining constard,=2/\2N+ 1 is fixed by the nor-
malization requiremen}ZEﬂRﬁp:N.

Reo=—2—cos [ k= =| P C11
kp= sin or2°° 2/ N7 (€1
for the eigenvectors. Herg,runs fromp=0, ... N—1 and

the normalization i, = 1/N.

If the argument of the sine in Eq$C8) and (C10 is
small, one can expand the sine as:gifx. This reproduces
the usual textbook resuil5,59 for the different boundary
conditions which is obtained by passing to a continuous ver-

For boundary conditions with two free ends one obtainssion of Eq.(C1) at the very beginning of the calculation,

the results

Z|o
NE

Ap=4 sir?( (C10

whereby the finite difference operatd®(.;— 2R+ R;_1) is
replaced by a second-order derivative. This is now seen to be
an approximation which is valid if the mode numbgris
small compared to the number of beadisn the chain.
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