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About the lifetime of simple knots in stretched polymers
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Abstract. — Knots on a flexible polymer, whose two ends are kept at a finite distance, are
studied by means of Brownian dynamics simulation. Knots in open polymers represent long-
lived metastable states and their average lifetime increases with the polymer length as well as
with the magnitude of the forces applied to the polymer ends. Each knot migrates according
to an identified whipping effect always to the nearest polymer end. This knot motion resembles
a directed one—dimensional random walk in an inverted harmonic potential as described by a
corresponding one—dimensional Fokker—Planck equation.

Introduction. — Knots occur in linear polymers, they are much appreciated in art and
are important for many other circumstances, see e.g. Refs. [1,2]. Knots in space curves may
be characterized by their topology, but for polymers also the thermal motion is important,
especially for the dynamical behavior of knots. Under conditions of thermal equilibrium, self-
knotted conformations on linear and open polymers occur only with a low probability and
hence do not play an important role for their physics except under poor solvent conditions,
where the chain is collapsed into a rather dense globule [3]. For a DNA-strand stretched by
a uniform flow, however, evidence for the existence of knotted conformations obtained from
direct observation by fluorescence microscopy has been reported recently [4]. Furthermore,
in elongational flow, a zoo of possible long-lived classes of polymer conformations has been
described in Refs. [5-7] which may be interpreted as knots [8].

Tying a knot into a real DNA molecule has been proven possible in Refs. [9,10] by keeping
their ends with attached latex spheres in the focus of two optical tweezers. Such a knotted
conformation of a stretched linear and open polymer chain represents a long—lived metastable
state and we investigate the dependence of its lifetime on various model parameters. To this
end we perform Brownian dynamics simulations of a self-avoiding bead—spring chain whose
two ends are kept at a finite distance. We predict that the knot on an open polymer with fixed
ends always moves to the nearest polymer end by a so—called whipping effect. This symmetry
breaking effect with respect to the diffusive knot motion decreases with increasing values of
the pulling forces at the polymer ends while the lifetime of a knot increases.
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Fig. 1 — The ”brezel”’-knot used as initial conformation in our Brownian dynamics simulations. In
a projection on the zy-plane, there are three crossings which according to the convention lead to a
crossing number of n = 3. The bright beads belong to the localized knot while the dark beads are
outside of it.

The presence of a knot reduces the effective contour length of the polymer available for
stretching by a flow causing a difference of the response compared to an unknotted polymer.
This may also have various implications for the rheology of polymer solutions similar to
topological constraints in polymer melts [11].

Bead Spring Polymer Model. — In our simulations we follow the Brownian dynamics of a
bead spring model as described in more details in Refs. [12-14]. The equation of motion for
the i-th bead (i =1,..., N) with position R; is

Ri= ¢ (Fest 4+ Fint) + /2kpT CT 6, (1)

Here, ¢ is the friction coefficient of a single bead which may be linked to the bead radius a
and the solvent viscosity n by Stokes’law ¢ = 67na; kp is the Boltzmann constant and T'
the temperature. F’f” = f(6;n — 6;1) T is the external force of magnitude f acting at each
chain end to stretch the polymer along the z-direction. The internal forces Fint comprise a
repulsive Lennard Jones force describing excluded volume interactions between the beads and
next-neighbor bond forces for which we use the familiar FENE (Finite Extensible Nonlinear
Elastic) force law. The latter provides a reasonable approximation of polymers with a fixed
bond length b for forces f < 50kpT/b. The parameters appearing in the internal forces Fiint
are the same as in Ref. [15], where this choice was shown to prohibit bond crossings so that the
bead spring chain becomes self-avoiding. Hydrodynamic interactions are not expected to play
a prominent role for the phenomena considered in the present work and hence are neglected.
The heat bath driving thermal motion of the polymer chain is modeled by the stochastic
process £(t) which is an uncorrelated Gaussian white noise with zero mean and unit variance
in order to satisfy the fluctuation dissipation theorem. Throughout this work a chain length of
N =100 is used. The values ¢ = 1.0, kgT = 1.0 and b = 0.961 for the bond length fix the units
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Fig. 2 — Part a) shows the time development of the crossing number n and b) the end-to-end distance
REg. Each picture is for the same realization of a polymer with NV = 100 beads stretched by a force
f = 9.6 kBT/b along the z—direction. The presence of the knot is characterized topologically by a
value of n = 3 while for the unknotted chain by n = 0. Obviously, at time t ~ 16900¢b> /kpT the knot
slips off from the chain. This results in a significant increase in Rg since the contour length taken up
by the knot becomes available to stretching.

of force, energy, length etc. Equation (1) is solved by means of a stochastic velocity-Verlet
algorithm. During the implementation of methods to simulate strongly stretched polymers, it
turns out that a Verlet neighbor-list is the most efficient method for the short-ranged excluded
volume forces in this case.

Characterization of knotted conformations, end—to—end distance. — A knot is a three-
dimensional space—curve and is most conveniently classified by looking at a plane projection,
where the space—curve is crossing itself. The so—called crossing number n is defined as the
least number of crossings that occur in any plane projection of the space—curve. For knots on
closed curves, the crossing number is a topological invariant, i.e. it does not change when the
knotted curve is deformed continuously and all knots are tabulated based on their crossing
numbers. It must be mentioned that in a strict mathematical sense the notion of a knot refers
to a closed curve [2] and hence applies to ring polymers [16,17] which cannot become untied.
For the open knots considered here, invariance is no longer obeyed strictly, because the knot
can slip off from the polymer changing the crossing number to zero.

In Fig. 2a) we plot the crossing number calculated from a simulation of the bead spring
polymer starting from an initial conformation as shown in Fig. 1 for which the crossing number
ism = 3. At first this value remains constant, except for occasional glitches due to the fact that
the projection plane is kept fixed for simplicity. If such a glitch occurs, the result is checked
several time steps later by repeating the calculation for n.

At t = 16900¢b?/kpT the crossing number changes permanently to 0 indicating that the
knot has slipped off from the polymer chain. This topological characterization of the knot is
compared to the end—to—end distance in Fig. 2b). The latter first fluctuates around an average
value of Ry =~ 83b and shows a remarkable increase again at t ~ 16900¢b? /kpT. This behavior
is due to the fact that the knot takes up some fraction of the polymer contour length which
is not available to stretch the chain. Once the knot slips off from the chain this length is set
free and the chain can become stretched further. Thus, a sudden increase of the end—to—end
distance provides an indicator from which the lifetime of the knot on the polymer chain can
be inferred. The precise magnitude of this increase, of course, depends on the non—bonded
interactions as well as on the strength of the stretching force and the type of the knot.
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Fig. 3 — Part a) shows the distribution P(7) of the lifetime of knots, 7, and part b) shows the mean
value of the mean lifetime, (), as function of the stretching force f applied to the polymer end.
The data points are obtained from Brownian dynamics simulation of a bead—spring polymer chain
with N = 100 beads stretched in part a) by a force |f| = 10ksT'/b along the z—direction. The solid
line in part a) is given by the formula in Eq. (4) for the parameters k = 3.6 x 10~°kpT/(¢b?) and
D = 0.046ksT/(.

Knot motion, lifetime. — Besides the rather obvious reduction of the end—to—end distance
by a knot, a very natural question to ask for is how long a knotted state persists, i.e. what
is the time a knot needs to reach one end of the open polymer. For the diffusive motion
of a knot along a stretched polymer chain, its lifetime 7 will be expected to be a random
variable. In our simulations the lifetime distribution of single knots per chain, P(7), is obtained
by accumulating a histogram of values obtained from simulation of an ensemble of ~ 1000
realizations of the knot motion starting with an initial position of the knot in the middle of
a stretched polymer chain. A typical result is shown in Fig. 3a). If a knot is off the middle
of the polymer chain it performs a directed one-dimensional random motion to the nearest
polymer end. This symmetry breaking effect is explained below.

A model of such a one-dimensional diffusive knot motion is the Fokker-Planck equation

oP = =01 (A()P) + Ou(B()P) (2)

for the transition probability P(I,t|l',t') that the knot is at position ! at time ¢ while it was
at position I’ at time t'. A solution of Eq. (2) with suitable initial conditions can be used
to infer the distribution of the lifetime of knots. Specifically, if we set the knot initially in
the middle of the chain, then L/2 is the distance it has to move along the polymer before it
slips off of either end and one has P(r) « 2P(L/2,7|0,0). The imposed initial condition is
PLtl,t)=61-1U")att=¢ =0.

For the simplest case of free diffusion, where A(l) = 0 and B(l) = D, the solution of the
Fokker-Planck equation is known analytically [18] and one finds for the distribution of the
knot lifetime 7

1 Ly 1 —3/2
P(1) WS exp (_4DT) W, +0(r73/?) . (3)

The asymptotic behavior for large values of 7 clearly rules out this simple model.
The next simplest case is a model for the so-called inverted parabolic potential with A(l) =
1kl and B(l) = D. Again, the solution of the Fokker-Planck equation is known analytically [18]
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and the distribution of the lifetime 7 is given by

k kL? exp(—2kT)
Pr) o \/27TD(1 “exp(—2kr)) <_ 2D(1 — exp(—2kr))

As shown by the solid line in Fig. 3a), this model is in accord with the simulation results,
whereby the two model parameters k = 3.6 x 107° kgT/(¢b?) and D = 0.046 kT /( have
been obtained by fitting the simulation data generated for the end force |f| = 10.4kgT'/b. The
value of L has been determined in the following way and independent of the fit: The beads
defining the polymer model can be numbered consecutively. Consider a single crossing in a
plane projection, where two parts of the space—curve are crossing themselves. Since each part
of the space—curve is defined by two successive beads, one crossing point may be defined by
four beads. The ”brezel”-knot in Fig. 1 has three crossings, i.e. one has the crossing number
n = 3 and there are twelve beads involved in the three crossings. It can be said that the knot
consists of the part of the chain between lowest and highest bead index that is involved in
the crossings. In some manner this locates the knot on the polymer. Subtracting its length
from the contour length of the polymer gives twice the length the knot has to move before it
reaches one of the chain ends. An average value of L = 88b is obtained for our model. Due
to conformational fluctuations there are usually more than three crossings among which the
"right” ones are singled out by assuming that their positions change only little during one
time step of the simulation.

The drift term in the model described by Eq. (2) breaks the translational symmetry along
the polymer chain, meaning that there is a systematic motion of the knot towards the nearer
chain end. The following mechanism is suggested as an explanation: The parts of the polymer
chain to either side perform thermal fluctuations. The longer part is composed of N; segments
and the shorter one by No < N; segments, whereby the fluctuation amplitudes of each part of
the polymer scale as f,1 o< /N1 and fpo o< /N2 [19], respectively. Each part shakes the knot
to the other chain end and according to the different amplitudes, to the end of the shorter
part. This whipping effect is crucial and it causes a net motion of the knot towards the nearer
chain end. For rather long chains and knot positions in the range close to the center, the
ratio between fluctuation amplitudes of the parts to each side of the knot is /N1 /Ny = 1.
Accordingly, in this regime the symmetry breaking effect is expected to be small, as for instance
in a recent experiment about knot diffusion close to the center of a DNA molecule whose ends
are also fixed by forces [10].

exp(—k) . (4)
)

Parameters as functions of the stretching force f. — The parameter k and the diffusion
constant D in Eq. (4), of course, depend on the strength of the force f which stretches the
polymer. Repeating the simulations and the fitting procedure as described in the previous
section, the parameters k and D are determined as a function of the force f as shown in Fig. 4
and in a range of f, where the directed knot diffusion can be easily detected. In this f-range
RpE varies 66b < Rg < 83b with increasing values of f while D as well as k are decreasing
nearly linear.

The contour length taken up by the knot and therefore the value of L turned out to depend
only weakly on the stretching force f in the observed range. Hence, the value L = 88b has
been used for all fits in Fig. 4. In the range f > 12.5kpT/b and beyond that as shown in
Fig. 4, the pulling force dominates the thermal forces and the parameters D and k become
rather small. So for large values of f the knot becomes eventually immobile. Our data indicate
the possibility that this might occur for a finite stretching force, but a definitive conclusion
on this point cannot be drawn at present. This behavior is in accord with the whipping effect
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Fig. 4 — In part a) the model parameter k and in part b) the diffusion constant D is shown as functions
of the stretching force f and as obtained by fitting simulation results with the formula in Eq. (4). For
a large stretching force f the knot becomes less mobile.

suggested in the previous section being the cause for the observed drift: for a larger stretching
force, the fluctuations of the two parts of chain decrease and thus remove the cause of the
drift.

In the range below that as shown in Fig. 4 the thermal motion becomes more and more
vigorous and knot diffusion increases, for instance at f ~ 4.8kpT/b already by a factor of
about four, i.e. D ~ 0.5. This also explains why knotted polymer conformations are not
important for chains in equilibrium. For a medium stretched chain, in contrast, the knot is
tighter and its diffusive motion becomes less important than the systematic drift.

Conclusions. — For the simple model problem of a polymer stretched by pulling on its
ends, we have demonstrated that a knotted conformation represents a long-lived state. The
lifetime of such a state has been determined from simulations and a simple Fokker-Planck
model has been presented which reproduces the simulation results. Our most important finding
was that a symmetry breaking occurs leading to a systematic motion of the knot towards the
nearer chain end. A whipping effect has been suggested to explain this directed motion. The
model problem we have chosen is similar to a recent experiment [10]. However, in this case
the polymer was rather long and the diffusive knot was mainly detected close to the center of
the polymer, where the whipping effect is expected to be rather weak and without hitting the
end. In our simulations of a model polymer we have also found a rather plausible dependence
of the diffusion constant on the pulling force, whereas it was rather independent of the pulling
force f in Ref. [10]. One reason might be, that the polymer was already in a rather stretched
state in Ref. [10], where the diffusion constant becomes also rather independent of f in our
simulations. The semi—flexibility of the DNA molecule may also come into play in the range
of a strong pulling regime and may modify the f-dependence. The effects of semi-flexibility
on the knot motion are investigated elsewhere.

Since the somewhat more complex case of extensional flow has attracted a great deal of
attention recently [5-8], one may also use our findings to discuss this case as well. Since in
extensional flow a stretching force applies at each bead, all these forces sum up in the middle
of the polymer causing a strong stretching there. Based on a direct application of our results
we thus expect a very long lifetime of knots, which are initially close to the middle of the
polymer contour. However, the possibility of other mechanisms driving a systematic motion
of the knot must be considered in addition to the whipping effect described here. Specifically,
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a gradient of tension along the polymer chain might also cause a systematic knot motion by
pulling it tighter on one end and leaving it looser on the other. The relative magnitude of
this gradient—effect may be estimated by k o« Af o f/Rg. Since Rg increases with f this is
smaller than the magnitude of the drift caused by the whipping effect which is k& o< f. Hence
we conclude that to a first order approximation the lifetime of knots on polymers stretched
in an extensional flow should be similar to the problem discussed here when the force acting
in the center of the chain is substituted for f.
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