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Abstract. The problem of convection induced by radial buoyancy in an electrically conduct-
ing fluid contained by a rotating cylindrical annulus (angular frequency, Ω) in the presence
of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap
approximation is used together with rigid cylindrical boundaries. The onset of convection oc-
curs in the form of axial, axisymmetric or oblique rolls. The angle ψ between the roll axis
and the axis of rotation depends of the ratio between the Chandrasekhar number, Q ∼ B2,
and the Coriolis number, τ ∼ Ω. Fully three-dimensional numerical simulations as well as
Galerkin representations for roll patterns including the subsequent stability analysis are used
in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and
to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the
asymptotically realized state may depend on the initial conditions.
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1 Introduction

Convection driven by thermal buoyancy in rotating fluid layers heated from below in the presence of a mag-
netic field is a typical problem encountered in planetary and stellar fluid dynamics. The most commonly
treated version of this problem corresponds to the case when both, the axis of rotation and the direction of the
imposed homogenous magnetic field, are parallel to the gravity vector. The onset of convection in this case
was considered by Chandrasekhar [6]. He found the surprising result that the Lorentz force and the Coriolis
force may counter each other such that the critical Rayleigh number for onset of convection is lower than in
cases when either the magnetic field or the rotation rate vanishes.

For planetary and stellar applications the configuration of rotation axis and magnetic field direction per-
pendicular to each other and perpendicular to the gravity vector could be more important. It corresponds to
the case of convection in the equatorial regions of rotating spherical fluid shells when an azimuthal magnetic
field is imposed. Toroidal magnetic fields in the electrically conducting cores of planets or in the solar atmo-
sphere are believed to be often much stronger than the poloidal components which can be measured from the
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Fig. 1. (a) Schematic representation of the rotating annulus. (b) The analogy to the planar convection (d ≡ R2 − R1)

outside. It is thus of interest to study the properties of convection in this situation which can also be realized
in laboratory experiments through the use of the rotating annulus configuration (see Fig. 1a). In this case the
centrifugal force is used as effective gravity and the radial direction thus corresponds to “vertical”. Although
the motivation for the rotating magnetic annulus experiment has arisen in the geophysical context, the prob-
lem is also of interest from a more general point of view in that it concerned with formations of patterns in
the presence of two competing directional effects. In fact, as will be demonstrated a large variety of con-
vection patterns is found already at small values of the rotation and magnetic field parameters for moderate
values of the Rayleigh number. In this respect the present paper can be regarded as an extension of the paper
by Auer et al. [2] to the case when a homogeneous magnetic field is added. A rotating annulus experiment
corresponding to the paper of Auer et al. [2] has been performed by Jaletzky and Busse [9].

In Sect. 2 the mathematical formulation of the problem is discussed and an outline of the computational
procedures is given. In the small gap approximation, the problem reduces to the case of a horizontal fluid
layer heated from below with magnetic field, axis of rotation, and the vertical direction corresponding to
the x-, y- and z-axis of a Cartesian system of coordinates. A sketch of the geometrical configuration to be
considered in this paper is shown in Fig. 1b.

The results of the linear theory for the onset of convection which has first been considered by Eltayeb [7]
more than 30 years ago are discussed in Sect. 3. In order to obtain simple expressions, Eltayeb has used
idealized boundary conditions, namely stress-free conditions for the velocity field and electrically infinitely
conducting boundaries for the magnetic field. In the present paper the more realistic case of rigid, electrically
insulating boundaries is considered. The weakly nonlinear analysis and a stability analysis of convection
rolls is described in Sect. 4. A survey of the various patterns of convection that are introduced by secondary
bifurcations is given in Sect. 5. Some of the instabilities of convection rolls can be understood on the basis of
analytical results obtained in earlier work on the related problem of convection in the absence of a magnetic
field (Auer et al. [2], Busse et al. [4]). But new mechanisms of instability are introduced by the Lorentz force.
Future research and potential application are discussed in the concluding section.

2 Mathematical formulation of the problem and numerical methods

In the following, we refer to the situation shown in Fig. 1b. The effective gravity is provided by the centrifu-
gal force, g = Ω2(R1 + R2)/2, and its direction is given by the unit vector k. The upper and lower boundaries
are kept at the constant temperatures T1 and T2, T2 > T1, respectively. In this paper we use the thickness d of
the layer as length scale, the vertical diffusion time, d2

κ
= tκ , as time scale, (T2 −T1)/R as temperature scale,

and the magnetic flux density B0 of the imposed field as scale of the magnetic field. Then the basic equations
of motion for the velocity field u, the heat equation for the deviation Θ of the temperature from the state of
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pure conduction and the equation of magnetic induction in dimensionless form read as follows:

P−1
(

∂

∂t
+u ·∇

)
u+2τ j ×u = −∇Π −kΘ +∇2u+ Q

(
i + κ

λ
b
)

·∇b, (1a)

∇ ·u = 0, (1b)(
∂

∂t
+u ·∇

)
Θ = −Rk ·u+∇2Θ, (1c)

κ

λ

(
∂

∂t
b+u ·∇b−b ·∇u

)
= i ·∇u+∇2b, (1d)

∇ ·b = 0, (1e)

where all gradient terms in Eq. (1a) have been combined into the pressure term ∇Π. The Rayleigh number
R, the Prandtl number P, the Coriolis parameter τ and the Chandrasekhar number Q are defined by

R = (
α(T2 − T1)gd3)/(νκ), P = ν

κ
, τ = Ωd2/ν, Q = (

B0
2d2)/(�µλν), (2)

where α, ν, κ, µ and λ are the coefficient of thermal expansion, the kinematic viscosity, the thermal diffusiv-
ity, the magnetic permeability and the magnetic diffusivity of the fluid, respectively. The magnetic field has
been represented in the form B = Bo(i + κ

λ
b) where i is the unit vector in the x-direction. In the following we

shall focus the attention on the case of liquid metals where κ
λ

is of the order 10−4 to 10−5. Hence we shall
adopt in this paper the limit κ � λ and drop the terms on the left hand side of Eq. (1d) and the term multiplied
by κ

λ
in Eq. (1a).

We use a Cartesian system of coordinates with the unit vectors i, j , k in the direction of the x, y, z-axes
as shown in Fig. 1. The conditions at the boundaries are then given by

u = 0, Θ = 0, ∇ ×b ·k = 0 at z = ±1

2
. (3)

The continuity of the magnetic field b across the boundaries does not have to be taken into account explicitly
in the limit κ � λ as will be pointed out below. Following earlier papers (Auer et al. [2], Busse et al. [4]) we
assume periodic boundary conditions in the x, y-plane. The agreement between the results of those papers
and the experimental observations of Jaletzky and Busse [9] indicates that the periodic boundary conditions
as well as the small gap approximation are appropriate for the rotating annulus experiment at the moderate
values of τ to be considered in this paper. In order to eliminate the pressure term in Eq. (1a) we introduce the
general representations for the solenoidal vector fields u and b, (see Eqs. (1b) and (1e)):

u=u+∇ × (∇ ×kv)+∇ ×kw ≡ u+δv+εw, (4a)

b=b+∇ × (∇ ×kh)+∇ ×kg ≡ b+δh +εg, (4b)

where overbars in u and b denote the average over the x, y− plane of u and b. The functions v, h and w,
g describing the poloidal and toroidal components of the velocity and the magnetic field, respectively are
uniquely defined if the conditions v = h = w = g = 0 are imposed. After the application of the differential
operators δ and ε on the velocity Eq. (1a) we arrive at the following equations for v and w

∇4∆2v−2τ
∂

∂y
∆2w+∆2θ + Qi ·∇∇2∆2h = P−1

[
∂

∂t
∇2∆2v+δ · (u ·∇)u

]
, (5a)

∇2∆2w+2τ
∂

∂y
∆2v+ Qi ·∇∆2g = P−1

[
∂

∂t
∆2w+ε· (u ·∇)u

]
. (5b)

In addition, an equation for the mean flow u is obtained by averaging the velocity Eq. (1a) over the x–y plane.

∂2

∂z2 u = 1

P

(
∂

∂t
u− ∂

∂z
∆2v

(
∇2

∂

∂z
v+εw

))
. (6)
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Analogously, when applying δ and ε on Eq. (1d), we obtain in the limit κ
λ

→ 0

∇2∆2h = −i ·∇∆2v, (7a)

∇2∆2g = −i ·∇∆2w. (7b)

The heat equation (1c) can now be written in the form

∇2Θ + R∆2v = (δv+εw+u) ·∇Θ + ∂

∂t
Θ. (8)

The mean distortion b of the magnetic field does not enter the problem since it vanishes in the limit κ � λ. In
writing Eqs. (5–8) we have introduced the horizontal gradient, ∇2 ≡ ∇ −kk ·∇, and the horizontal Lapla-
cian, ∆2 ≡ ∇2 · ∇2. In line with Eqs. (3,4) the basic Eqs. (5–8) must be solved subject to the boundary
conditions

v = ∂

∂z
v = w = Θ = g = 0 at z = ±1

2
. (9)

The Eq. (7a) for h and the corresponding boundary condition can be dropped, since h can be eliminated
from the problem by replacing ∇2∆2h in Eq. (5a) with i ·∇∆2v in accordance with Eq. (7a). As usual we
assume the idealization of an infinitely extended fluid layer in the horizontal plane, i.e., the x, y- dependence
is captured by a 2D Fourier series.

For simplicity, a symbolic notation for the Eqs. (5-8) is used in the following

C
d

dt
V(x, t) = LV(x, t)+ N(V(x, t)|V(x, t)), L = A + R B, (10)

where the symbolic vector V(x, t) = (v, w, g,Θ, u) represents the fields in Eqs. (5–8). V(x, t) ≡ 0 corres-
ponds to the ground state. The operators C, L, A and B are linear differential operators while N describes
the quadratic nonlinearities. Note that we have made explicit the Rayleigh number, R, in the definition
L = A + R B of the linear operator L.

To describe the solution periodic in the plane of the problem posed by Eq. (5) through Eq. (8) and the
boundary conditions (9) we use the Galerkin method. The boundary conditions (9) are satisfied by expan-
sions in suitable complete sets of functions:

v(x, y, z, t) =
N∑

n=1

M∑
l,m=−M

vlmn(t) exp [i(lqxx +mqy y)] fn(z), (11a)

w(x, y, z, t) =
N∑

n=1

M∑
l,m=−M

wlmn(t) exp [i(lqxx +mqy y)] sin nπ

(
z + 1

2

)
, (11b)

g(x, y, z, t) =
N∑

n=1

M∑
l,m=−M

glmn(t) exp [i(lqxx +mqy y)] sin nπ

(
z + 1

2

)
, (11c)

Θ(x, y, z, t) =
N∑

n=1

M∑
l,m=−M

Θlmn(t) exp [i(lqxx +mqy y)] sin nπ

(
z + 1

2

)
, (11d)

u(z, t) =
N∑

n=1

un(t) sin nπ

(
z + 1

2

)
. (11e)

The fn(z) denotes the Chandrasekhar functions (Chandrasekhar [6]) fn
(± 1

2

) = ∂
∂z fn

(± 1
2

) = 0,

fn(z) =




cosh βn z

cosh βn/2
− cos βnz

cos βn/2
for odd n,

sinh βn z

sinh βn/2
− sin βnz

sin βn/2
for even n.

(12)
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The coefficients βn are determined as roots of the equations,

tanh βn/2+ tan βn/2 = 0 for odd n, cothβn/2−cot βn/2 = 0 for even n. (13)

The summation in the velocity expressions (11a–c) runs through all positive integers n and through all in-
tegers l and m with the exception of the case l = m = 0 in the sums (11a–c). In the sum (11d) the terms
l = m = 0 must be included since they describe the distortion of the mean temperature profile. The reality
of all fields requires vl,m,n = v∗−l,−m,n , etc., where the star indicates the complex conjugate.

The expressions (11) are inserted into Eqs. (5,7,8) and projected onto the various expansion functions
in Eq. (11). Thus, one obtains a set of ordinary nonlinear differential equations for the coefficients almn(t),
blmn(t), clmn(t) and un(t). Since the coefficients glmn(t) are slaved to the wlmn(t) according to Eq. (7b) as:

glmn(t) = i l qx wlmn(t)

l2qx
2 +m2qy

2 +n2π2 , (14)

they can be eliminated from the beginning.
The sums (11) will describe the solution correctly only in the limit when the parameters N and M tend

to infinity. But in order to actually solve the infinite system for the expansion coefficients, finite values of N
and M must be adopted. We are interested in solutions for moderate Rayleigh number and find that typic-
ally truncation parameters M = 4 and N = 4 have been sufficient to achieve an accuracy of about 1% in the
Galerkin approach for periodic solutions. To check the accuracy of these solutions the truncation parameters
have been increased to M = N = 6 in some cases. In order to assess complex spatio-temporal solutions in a
large horizontal domain and also to validate the Galerkin results, we have performed direct simulations of the
basic Eqs. (1) as well using typically the truncation parameters M = 64 and N = 4. For this purpose we have
adopted a well proven code originally designed for ordinary Rayleigh–Bénard (RB) convection (Pesch [10]).
The code uses in principle the Galerkin representation (11) and solves the horizontal dependence with a
pseudo-spectral method. The time stepping is implicit with respect to the linear parts and explicit (Adams–
Bashforth) with respect to the nonlinear parts. In special cases simulations with M = 128 and N = 4 have
been carried out.

3 Linear analysis for the onset of convection

In order to determine the neutral curve for instability of the ground state V(x, t) ≡ 0 we use the ansatz

V(x, t) = exp [σt + iq · x]Vlin(q, z) (15)

in Eq. (10) which leads to the linear eigenvalue problem

σ(q, R)CVlin(q, z) = (A + R B)Vlin(q, z) (16)

where we have introduced the wavevector q = (qx, qy, 0). The condition that the maximum real part of σ

vanishes,R{σ(q, R)} = 0, determines the neutral curve, R = R0(q). The minimum of R0(q) with respect to
q yields the critical wave vector qc. Thus the critical Rayleigh number Rc satisfies Rc = R0(qc).

We have found that the onset of convection is always stationary, in which case I{σ(q, R0)} = 0 holds as
well, in accordance with the findings of Eltayeb [8] in the limit κ � λ. The neutral curve can thus be obtained
more simply as the smallest eigenvalue R = R0(q) of the linear eigenvalue problem (σ = 0 in Eq. (16))

(A + R B)Vlin(q, z) = 0. (17)

Note that the stationary threshold does not depend on the Prandtl number P. In the framework of our
Galerkin ansatz the operators A, B are mapped on matrices. For the resulting eigenvalue problem effective
computer routines are available. This approach also facilitates the subsequent weakly nonlinear analysis.
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A very useful analytical approximation of R0(q) as a function of control parameters τ and Q is obtained
if only one z mode is retained in (11), i.e. (N = 1),

R0(q) = RRB(|q|)+ 4 τ2
(
q2 +π2

)2 sin2 ψ(
q2 +π2

)2 + Q q2 cos2 ψ
+c1 Q

(
q2 +π2) cos2 ψ, (18a)

RRB(|q|) =
(
q4 +2 π2 c2 q2 +π4 c3

)(
q2 +π2

)
c1

q2 . (18b)

Here, q = (qx, qy) is the wave vector of the rolls and the obliqueness angle ψ ∼ arctan qy
qx

thus denotes
the angle between the rolls and the rotation axis. The numerical constants c1, c2, c3 are combinations
of certain overlap integrals of trigonometric and Chandrasekhar functions (12) and assume the values
c1 = 1.0281, c2 = 1.2465 and c3 = 5.1388. Note that Eq. (18a) is exact for free boundary conditions where
ci = 1 for i = 1, 2, 3 holds. The minimum of RRB(|q|) yields an approximate Rayleigh–Bénard (RB) thresh-
old (τ = Q = 0) with |q|c = 3.0963, RRB = 1728.38. The well-known rigorous values |q|c = 3.116 and
RRB = 1707.76 differ by less then 1.2% from the approximate ones.

From Eq. (18a) it is obvious that in the case τ � Q the minimum of Rc(|q|c) is obtained for ψ = 0◦
(“axial rolls”). It is interesting that the relation

Rτ (q) = RRB(|q|)+4τ2sin2 ψ (19)

which derives from Eq. (18a) for Q = 0 is mathematically rigorous if the exact neutral curve RRB(|q|) for
Rayleigh–Bénard convection is chosen.

In the opposite limit, Q � τ , the minimum of R0(q) is found at ψ = 90◦ (“zonal rolls”). In the interme-
diate regime Q ∼ τ we have oblique rolls at onset (0◦ < ψ < 90◦), for instance, ψ = 55◦ for Q = 14 and
τ = 8.

The general numerical results for Rc and qc as function of τ and Q are shown in Fig. 2 and Fig. 3. The
critical Rayleigh number, Rc(τ, Q) in Fig. 2a is always larger than RRB(qc). It increases linearly at small Q
and quadratically at small τ , in perfect agreement with the analytical approximation (18a). The modulus qc =
|qc| of the critical wave vector shown in Fig. 2b decreases monotonously from the RB value (qc = 3.116) to
smaller values for increasing τ and Q.

The obliqueness angle ψ as a function of τ and Q is given in Fig. 3. One observes a transition from zonal
rolls (ψ = 90◦) to axial rolls (ψ = 0◦) via intermediate oblique rolls with increasing τ at fixed Q. The tran-
sition lines between zonal rolls, oblique rolls and axial rolls in the Q–τ plane are shown in Fig. 3b. (See also
the upper and lower faces of the parallelepiped in Fig. 3a.) Apparently, the oblique roll region is confined by
an almost linear upper curve and an approximately parabolic lower curve as indicated in Fig. 3b.

In general the approximate values for qc and Rc obtained from (18) deviate by less than 1% from
the exact (numerical) ones (Fig. 2). For instance, for the parameter values τ = 84 and Q = 300, we find

Fig. 2. (a) Critical Rayleigh numbers, Rc, (b) critical wave numbers, qc, as a function of τ and Q
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Fig. 3. (a) The obliqueness angles, ψ, of the critical wave vector qc as a function of τ and Q. (b) The transition lines between
zonal rolls, oblique rolls and axial rolls in the Q–τ plane (see text)

Rc = 6417.048, |q| = q = 1.9927 and oblique angle, ψ = 10.97◦ which compare well with the correspond-
ing approximate values Rc = 6459.938, qc = 2.0022 and ψ = 13.34.

4 Nonlinear analysis and instabilities

In order to assess the nature of the primary bifurcation to rolls we first perform the standard weakly nonlinear
analysis in the vicinity of R = Rc. We solve Eq. (10) with the ansatz

V = A
(

exp [iqc · x]Vlin(qc, z)+ c.c.
)+ V⊥ (20)

where c.c. indicates the complex conjugate and where V⊥ is of the order O(A2) and orthogonal to the first
term on the right hand side.

After expanding (10) in powers of A and projecting on Vlin(qc, z) one arrives at the standard amplitude
equation:

d

dt
A = (ε− εc)A −cA3 (21)

with ε = (R − Rc
RB)/Rc

RB and εc = (Rc − Rc
RB)/Rc

RB. We found exclusively supercritical (i.e. c > 0)
bifurcations for values of the Prandtl number P larger than unity.

In a further step, the stationary nonlinear roll solutions Vroll(x) for a given wave vector q are determined
by solving the nonlinear coupled Eqs. (10) for the various expansion coefficients by the Newton–Raphson
method. For this purpose the general representation (11) can be simplified by dropping the summation over
m for axial rolls and the summation over l for zonal rolls. In the case of oblique rolls we assume m = l. The
weakly nonlinear solutions are used to provide suitable starting values for the Galerkin calculations.

The stability of rolls is examined as usual by linearizing (10) about the Galerkin solutions Vroll using the
ansatz

V(x, t) = Vroll(x)+exp [σnt + is · x] δV(x) (22)

with the Floquet wave vector s = (sx, sy, 0). Here δV(x) is a periodic function of x with the same spatial
period as Vroll(x). We arrive thus at a linear eigenvalue problem for σn(R, q, s). The condition R{σn} = 0
determines the secondary bifurcations of the rolls.

A representative stability diagram for convection roll in the τ–ε plane is given in Fig. 4. Here and in the
following we restrict the attention to the case Q = 14, P = 10. The diagram shows the threshold curve (solid
thick) from the conductive to the convective state as function of τ . As already discussed in the previous sec-
tion we find zonal rolls at small τ and axial rolls at larger τ separated by a regime of oblique rolls which is
indicated by vertical dashes on the threshold curve at τ = 7.2 and τ = 9.5.
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Fig. 4. Stability diagram for rolls with the critical wavevector qc as a function of the rotation parameter τ for increasing ε in the
case Q = 14, P = 10. The dotted curve indicates the neutral curve for zonal rolls and the black markers indicate the parameter
values for which numerical simulation are described in Sect. 5

According to the stability diagram, rolls with the critical wavevector qc are always found to be stable
against long-wave perturbations (| s |� | q |). The zonal rolls at small τ ≤ 7 are stable against shortwave
(| s |≈ | q |) instabilities as well. This is in contrast to the case of the axial rolls for large τ , which be-
come unstable at the dashed line in Fig. 4 by shortwave perturbations. For τ > 9, the hexaroll instability (see
e.g., in Auer et al. [2], Busse et al. [4]) comes into play, where | s |∼= | q | and the angle between s and q
approaches 60◦.

The oblique rolls in the intermediate regime 7.2 < τ < 9.5 are stable below the dashed curve. The in-
stability resembles the hexaroll instability although the angle of the disturbance differs from the value 60◦
assumed in the axial roll regime.

5 Numerical simulation of the evolution of convection in time

The results of the stability analysis presented in Fig. 4 are incomplete since roll solutions with a wavevector
q different from the critical one qc have not been considered. When this is done the results shown in Fig. 5
are obtained. For instance, the region of stable axial rolls is expanded since axial rolls with q = 2.8 turn out to
be stable to higher values of ε than axial rolls with qc = 2.95. Even more striking is the result that the region
of stable zonal rolls is expanded to much higher values of τ as indicated by the dotted line in Fig. 5. The
wavenumbers q of the most stable zonal rolls are given by the numbers close to the curve.

The study of the stability of rolls by the Galerkin method has been complemented by the direct simulation
method. The simulations are started either from random initial condition or from a roll pattern with a super-
imposed noise. In the latter case, we are able to confirm the stability boundaries of convection rolls obtained
from the Galerkin code since the noise contribution decays with time in the stable roll regime. In Figs. 4 and
5, we have indicated some parameter values for which long period simulations have been done, which will
now be discussed in detail.

As seen in Fig. 4, stable zonal rolls exist in the entire left side of the figure even for large ε values. This
is confirmed by simulations started with random initial conditions. Indeed, as shown in Fig. 6, zonal roll
structures perfectly aligned with the magnetic field are obtained after a relatively short time.

In the case of moderate τ values which are comparable to the value of Q, oblique rolls as predicted by
linear analysis are found for low values of ε. A typical time evolution from random initial conditions to an
oblique roll pattern is shown in Fig. 7. The preferred angle of oblique rolls changes rapidly as ε is increased.
This is evident from Fig. 5 where the approximate regions of stability of oblique rolls are indicated (thin
lines). As the angle ψ approaches 90◦ with increasing ε, we enter the stability region of zonal rolls. This ten-
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Fig. 5. Stability diagram and convection patterns in the τ–ε plane in the case of Q = 14 and P = 10. Simulations discussed in the
text have been done at the indicated points. Open squares indicate zig-zag patterns, open triangles correspond to knot patterns,
closed diamonds indicate spatio-temporally chaotic convection and stars indicate the points where two different patterns have
been obtained. The dotted curve determines the value of τ up to which stable steady zonal rolls with wavenumbers q as indicated
can be obtained. Stable axial rolls are found between the neutral curve and the dash-dotted line

Fig. 6. Zonal rolls for τ = 3, ε = 0.8. The plots from left to right correspond to the times t = 0, 14.3, 28.57 and 114.3. The aspect
ratio is Γ = 20. Here and in the following figures the temperature field in the plane z = 0.5 is shown. The x-coordinate increases
towards the right and the y-coordinate is directed upwards

Fig. 7. Oblique rolls for τ = 8.7, ε = 0.18. The plots from left to right correspond to the times t = 0, 13.6, 27.3 and 109.1. The
aspect ratio is Γ = 20

dency towards zonal rolls with increasing ε has also been observed experimentally (Jaletzky and Busse [9])
as well as theoretically (Busse et al. [4]) in the case Q = 0.

The range of stable zonal rolls above the dotted line in Fig. 5 overlaps to a considerable extent with the
region where stable oblique rolls with the critical wavenumber qc are found. Accordingly we expect the hys-
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Fig. 8. The evolution of the convection pattern for τ = 9.1, ε = 0.65 starting from initial conditions of oblique rolls with su-
perimposed noise. The plots from left to right correspond to the times t = 7.1, 32.9, 58.6 and 428.57. The aspect ratio is
Γ = 20

Fig. 9. The pattern evolution for the same parameters as in Fig. 8 starting from random initial conditions. The plots from left to
right correspond to the times t = 48.3, 71.7, 113.3 and 466.7, respectively. The aspect ratio is Γ = 20

Fig. 10. Stable zonal rolls at the simulation point is denoted by a star in Fig. 5 for τ = 14, ε = 1.54, qzonal = 4. The plots from
left to right correspond to times t = 0, 0.125, 0.25 and 5. The aspect ratio is Γ = 16

Fig. 11. Evolution of convection from random initial condition for the same parameters as in Fig. 10. The plots from left to right
correspond to times t = 0, 1.7, 5 and 433. The aspect ratio is Γ = 21

teresis phenomena. Oblique rolls with increasing angle are found when ε is increased. But zonal rolls persist
when ε is decreased down to the dotted line in Fig. 5.

To the right of the dashed line of Fig. 4 at values of ε of the order unity it depends on the initial condi-
tion whether stable zonal rolls are realized or not. This property is demonstrated in Fig. 8 where initially
oblique rolls evolve into a pattern of zonal rolls with two dislocations which are likely to disappear after
much longer integration times. In contrast, when the integration in time is started with random initial con-
ditions a steady pattern of zonal rolls will not be obtained as asymptotic state. Instead a spatio-temporally
chaotic pattern persists in which zonal rolls predominate only locally as demonstrated in Fig. 9. The coex-
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Fig. 12. Stable knot convection patterns for τ = 14, ε = 0.247 (left plot), τ = 18, ε = 0.326 (middle plot) and τ = 18, ε = 0.342
(right plot). The aspect ratio is Γ = 22

Fig. 13. Evolution of spatio-temporally chaotic oblique rolls for τ = 14, ε = 0.28. Corresponding times are t = 33.3, 50, 83.3
and 150, respectively. The aspect ratio is Γ = 20

Fig. 14. Spatio-temporal pattern for τ = 18, ε = 1. Last picture gives the power spectrum of the last pattern. The plots from left
to right correspond to times t = 8.3, 16.7 and 25. The aspect ratio is Γ = 20

Fig. 15. Stable oblique rolls just above the instability line for τ = 10, ε = 0.19. The plots from left to right correspond to times
t = 5.5, 6.4, 18.2 and 327.3. The aspect ratio is Γ = 20

istence of steady attractors and spatio-temporally chaotic ones is a well known phenomenon in problems of
pattern formation. For an example we refer to the case of spiral defect chaos in RB convection (Cakmur et
al. [5]). Another example of this phenomenon is demonstrated by Figs. 10 and 11 for a much higher value
of τ .

The stability region of axial rolls remains relatively small even when wavenumbers q other than the criti-
cal value are considered. Beyond the stability boundary stable steady knot convection is realized in the cases
τ = 14 and τ = 18 for a small interval of ε as shown in Fig. 12. At slightly higher value of ε a chaotic pat-
tern is found which is dominated by a switching back and forth between the two kinds of oblique rolls with
an angle of ψ = ±37◦ as shown in Fig. 13. For even larger values of ε the oblique rolls are replaced by fully
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Fig. 16. Zig-zag pattern evolving from random initial condition for τ = 13, ε = 1.51. The plots from left to right correspond to
the times t = 5, 33.3, 66.6 and 100. The aspect ratio is Γ = 20

phase-turbulent convection in this regime. An example is shown in Fig. 14. We have included a graph of the
power spectrum which corresponds to the last spatial pattern in Fig. 14. Note that the ring like wave vector
distribution is nearly isotropic with the approximate mean radius given by | qc |. This feature can be under-
stood on the basis of the property that the stabilizing effects exerted by rotation and by the magnetic field in
the two orthogonal directions are approximately equal.

For lower values of τ the axial rolls become unstable to the hexaroll instability according to the Galerkin
analysis. But instead of a steady hexaroll pattern the convection evolves into a stable oblique roll pattern in
agreement with the stability results. This evolution is shown in Fig. 15. Note that hexaroll instability is well
expressed in the transients.

In a region surrounding the open squares in Fig. 5 steady zig zag patterns have been found as attractors as
shown, for example, in Fig. 16. Outside this region, however, spatio-temporally chaotic convection is usually
found when the simulations are started with random initial conditions.

6 Concluding remarks

Although only a small part of the parameter space of convection in a rotating cylindrical annulus has yet been
investigated, it is obvious from the results of this paper that a large variety of spatio-temporal patterns can
be found in this problem. It will be of interest to obtain a comparison with experimental observation even-
tually. Because of the geophysical and astrophysical relevance of the problem some experimental attempts
towards a laboratory realization of this convection problem have been made. Brito and Cardin [3] have exper-
imentally realized convection in an annular configuration with an azimuthal magnetic field in liquid sodium.
Because of the low viscosity of this liquid metal they had to use high values of the Coriolis parameter τ in
order to achieve a centrifugal force exceeding gravity by a sufficiently high factor. The high value of τ in
their experiment prevented them to attain a value of Q comparable to that of τ , which appears to be necessary
to obtain convection structures deviating from the axial roll structure.

Low values of τ in centrifugally driven convection can be realized when high Prandtl number fluids are
used as in the experiments of Jaletzky and Busse [9]. Unfortunately high Prandtl number liquids usually
do not offer high electrical conductivities which facilitate the attainment of sufficiently high values of Q.
However, high Prandtl number electrolytes could eventually solve this experimental problem. An experiment
on the RB convection in an electrolyte with a horizontal magnetic field without rotation has recently been
performed by Andreev et al. [1].
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