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We have investigated theoretically phase separation in the presence of spatially periodic forcing. From the
analytic and numeric study of a suitably generalized Cahn-Hilliard equation in one and two dimensions, we
find that the forcing amplitude necessary to generate a periodic kink-type state from small random initial
conditions depends weakly on wave number. This amplitude is much larger than the one necessary to stabilize
the periodic state, i.e., to prevent late-stage coarsening, once it is established. Surprisingly, the destabilizing
mode is of long-wave type, which is in contrast to the well-known most rapidly growing coarsening mode in
the unforced system. In the Allen-Cahn equation with nonconserved order parameter the relevant modes are
always long wave. It appears feasible to observe these effects by imposing a temperature modulation by optical
grating which then couples to concentration modulation via the(Ludwig-)Soret effect.
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I. INTRODUCTION

The process of phase separation in a quenched system has
been the subject of many theoretical and experimental inves-
tigations in the field of small molecular or atomic systems,
such as binary alloys, fluid mixtures, and inorganic glasses
[1,2]. When such a system at the critical composition is
quenched from a homogeneous, usually high-temperature
phase to a point sufficiently below the coexistence curve(a
critical quench), a small-amplitude, long-wavelength insta-
bility develops. This phenomenon is known as spinodal de-
composition(SD). The term originally refers to the initial
stage of phase separation which occurs in a quenched, ther-
modynamically unstable, solid solution. Among the various
kinetic mechanisms associated with first-order phase transi-
tions, SD is distinguished from, say, nucleation and growth
in that it requires no thermal activation energy; that is, it
occurs in the unstable rather than in the metastable region of
a phase diagram. A second distinguishing characteristic is
that the order parameter which describes the system, usually
the composition variable(concentration), obeys a local con-
servation law. Thus the decomposition is limited by diffu-
sionlike processes and, in its later stages, exhibits very slow
coarsening rather than the more rapid approach to comple-
tion which occurs in magnetic or structural phase transitions
without conserved order parametersl , t1/2d. At later times,
the small inhomogeneities in the order parameter evolve into
macroscopic domains of one or the other phase and an inter-
connected structure is formed.

The study of phase separation in polymer blends has been
of considerable technological importance in order to develop
new materials to achieve specific properties. The high mo-
lecular weight and chainlike nature of polymers results in a
small entropy of mixing, and thus in a large region of im-
miscibility (comparatively high critical temperatures). It is
well known that the morphological and interfacial properties
of these systems play an important role in most of their prac-
tical applications.

In recent years, the dynamics of SD in polymer blends has
attracted much experimental and theoretical interest, due to

the fact that(i) it became quite clear that polymeric mixtures
belong to the same universality class as binary alloys and
low molecular weight fluid mixtures and(ii ) in these mate-
rials it is relatively easy to probe different regions of the
phase diagram over widely varying time scales.

When phase separation occurs by SD, a polymer blend
destabilizes with respect to long wavelength concentration
fluctuations. Although mixtures become increasingly suscep-
tible to external perturbations as the critical point is ap-
proached, the response changes qualitatively when the mix-
ture is quenched into the two-phase region. The system is
then in an unstable state away from equilibrium and pertur-
bations can be amplified and have a large scale influence on
the phase separation process. The beneficial aspect of this
sensitivity of phase separation and other pattern formation
processes to perturbations is that it offers substantial oppor-
tunities to control the morphology of the evolving patterns.

Up to now a large number of studies on phase separation
in polymer mixtures have considered the application of ex-
ternal fields(flow [3], gravitational field[4], concentration
[5], and temperature[6] gradients, chemical reactions, and
cross linking[7], etc.) with an attempt to elucidate the time
evolution of the structures. However, this did not lead to
substantial control over the morphology.

Motivated by experiments[8,9] we here focus on phase
separation in the presence of spatially periodic driving aris-
ing from thermal diffusion(Ludwig-Soret effect[10]) caused
by an inhomogeneous temperature distribution in the poly-
mer film. Starting with the standard Cahn-Hilliard(CH)
theory [11] we have developed the description of SD taking
into account spatially periodic temperature modulation that
could be created in optical grating experiments as in Refs.
[8,9].

The paper is organized as follows. In Sec. II we introduce
the modified CH equations and define the relation between
model parameters and those of polymer blend theory. In Sec.
III the results of one-dimensional(1D) analysis of the stabil-
ity of periodic structures are presented and compared with
systematic simulations. Section IV is devoted to the results
of representative 2D simulations. Finally, in Sec. V the re-
sults are discussed and put into perspective.
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II. THEORETICAL BACKGROUND

The main ingredient of the CH theory of phase separation
[11] is a conserved field variable representing the local con-
centration of one of the components of the binary mixture
(or, sometimes, the difference between the local concentra-
tion of the two components). Let fsr ,td denote the local
volume fraction of componentA. Then for an incompressible
binary A/B mixture the local concentration of theB compo-
nent isf1−fsr ,tdg. The continuity equation relates the spa-
tial and time dependence of the concentrationfsr ,td to the
mass currentj sr ,td, and expresses the conservation of mass
in the system,

]fsr ,td
]t

= − = · j sr ,td. s1d

The mass current can be related to gradients of the chemical
potentialms=mA−mBd and of the temperatureT, and the mass
currentj Tsr ,td arising from thermal fluctuations,

j sr ,td = − M=m − DTfs1 − fd=Tsr ,td + j Tsr ,td, s2d

where M is the “mobility” of speciesA with respect toB
(often treated as a constant although in general it would de-
pend on concentration). In a Ginzburg-Landau-type con-
tinuum description the chemical potentialm is related ther-
modynamically to the free energy functionalFffsr ,tdg,

m =
dFffg

df
,

Fffg
kBT

=
1

v
E drF fffg

kBT
+ ksfds¹fd2G , s3d

where kB is Boltzmann’s constant. We start from a lattice
model and thenv is the volume per lattice site, andfffg is
the local, homogeneous, coarse-grained free energy density
of mixing which has a double-well structure in the two-phase
region. The square gradient term expresses the unfavorable
nature of interfaces. It describes the energy necessary to cre-
ate an interface between homogeneousA-rich andB-rich do-
mains. We take the Flory-Huggins(FH) expression for the
free energy of mixing(per lattice site) for an incompressible
binary polymer blend,

f

kBT
=

f

NA
ln f +

s1 − fd
NB

lns1 − fd + xfs1 − fd, s4d

whereNA, NB are the “chain lengths”(degrees of polymer-
ization) of speciesA and B, respectively;x is the Flory in-
teraction parameter that measures the strength of interaction
between speciesA andB and favors phase separation when it
is positive. The value ofx depends on the temperature and is
usually taken as

x = a + bT−1, s5d

wherea and b are empirical constants[12]. For the coeffi-
cient of the gradient term we use de Gennes’ random phase
approximation,

ksfd =
1

36
FsA

2

f
+

sB
2

1 − f
G , s6d

wheresA and sB are the monomer sizes(Kuhn lengths) of
the A andB components, respectively.

Since we have in mind polymer blends subjected to an
inhomogeneous temperature field produced by light absorp-
tion, the heat equation should be added to the model,

]Tsr ,td
]t

= Dth¹
2Tsr ,td +

al

rcp
Isr ,td. s7d

The heat source term is proportional to the light intensityI
that corresponds to the experimental situation where the spa-
tially periodic temperature modulation is created by means
of the interference grating of intersecting laser beams or lo-
cal illumination of the polymer film[8]. Hereal is the op-
tical absorption coefficient,r is the density, andcp the spe-
cific heat at constant pressure. For the typical polymer blends
under experimental study the ratio of the temperature diffu-
sion time over the mass diffusion time is of the order of 10−3

therefore one can treat the heat equation(7) in the steady
limit (neglect the time derivative of the temperature).

The mixture of compositionf0 is unstable against phase
separation whenfffg has negative curvature atf=f0. One
easily finds that the critical point of SD in model(4) is given
by

fc = NB
1/2/sNA

1/2 + NB
1/2d,

xc = fNA
1/2 + NB

1/2g2/s2NANBd, s8d

such that the system is miscible forx,xc and immiscible
for x.xc at the critical concentration. Close tosfc,xcd the
FH expression for the free energy can be approximated by a
Taylor expansion with respect to the composition fluctuation
wsr ,td=ffsr ,td−fcg leading to the Ginzburg-Landau func-
tional (an irrelevant term linear inw has been omitted)

FGLfwg
kBTc

=
1

v
E drF1

2
bw2 +

1

4
uw4 +

1

2
Ks¹wd2G , s9d

where the coefficients are defined as

b = 2sxc − xd <
2b

Tc
2 sT − Tcd, u =

4

3
xc

2ÎNANB,

K =
1

18
fsA

2s1 +ÎNA/NBd + sB
2s1 +ÎNB/NAdg. s10d

Equations(1) and (7) in combination with Eqs.(2) and (9)
define our model close to the critical point,

]wsr ,td
]t

=
MkBTc

v
¹2fbw + uw3 − K¹2wg

+ DTfcs1 − fcd¹2T + hsr ,td, s11d

Dth¹
2T = −

al

rcp
Isr ,td. s12d

Note that the quantityST=DT/D is the Soret coefficient with
the diffusion coefficient

D = sMkBTcubud/v. s13d

In the case of optical grating experimentsIsr ,td= I0 cossqxd
[8]. Then
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¹2T = − dT0q
2 cossqxd, dT0 =

al

rcpDth

I0

q2 . s14d

The thermal noise termhsr ,td is Gaussian,d correlated, and
satisfies the fluctuation-dissipation theorem, which gives

hsr ,td = Î2MkBTczsr ,td,

kzsr ,tdl = 0,

kzsr ,tdzsr 8,t8dl = − ¹2dsr − r 8ddst − t8d. s15d

In the absence of thermal diffusion Eq.(11) reduces to the
well known CH equation(model B [13]). In fact, Eq.(11)
gives a universal description of a system in the vicinity of a
critical point leading to SD. The derivation from the Flory-
Huggins model was presented in order to estimate roughly
the parameters for polymer blends(see Sec. V).

We introduce dimensionless variables by choosing the
temperatureT0 after the quench as our reference temperature
sT0,Tcd and write

r = r 8j, j = sK/ubud1/2;

t = t8t, t = j2/D;

w = csu/ubud−1/2, s16d

where all quantities are evaluated atT0. We then obtain
(primes are omitted)

]csr ,td
]t

= ¹2f− ec + c3 − ¹2c + a cossqxdg + Îgzsr ,td,

s17d

where

e =
Tc − T

Tc − T0
, a =

DT

D
S u

ubuD
1/2

fcs1 − fcddT0,

g = 2vuj−d/2b−2. s18d

Equation (17) describes the dynamics of phase separation
following a quench from the stable one-phase regionse,0d
to the reference temperature in the two-phase regionse=1d.
In the following we will consider only the case of a symmet-
ric quench where initially, att=0, one hasedrc=0.

In the absence of the forcingsa=0d, in the linear regime,
one has exponential growth of modes with wave numberq
with rates=q2s1−q2d. Thus growth is limited toq2,1 and
the fastest growth is forq2=1/2. A system can be treated as
quasi-1D or quasi-2D if the transverse dimensions are small
compared to the growing modes.

As is seen from Eq.(17), the dimensionless noise strength
g is a measure of the quench depth. The parameterg can be
related to the Ginzburg criterion for the validity of mean-
field theory as formulated by Binder for SD[14]. In the
absence of the forcing the Ginzburg criterion gives(see Ap-
pendix)

g ! 4VsK/ubud−d/2, s19d

whereV, rm
d is a coarse-graining volume. ForT close toTc

the only relevant length scale is the correlation lengthj.
Therefore the extreme(from below) possible choice forrm
would berm=asK / ubud1/2 whereaù1 and Eq.(19) reduces
to

g ! 4ad. s20d

For dø3 this restrictsT0 to temperatures not too near toTc
[see Eqs.(18) and (10)]. In the following we will consider
essentially only the mean-field regime where one can omit
the noise term in Eq.(17).

In the case of a nonconserved order parameter the CH
equation(17) is replaced by the usual real Ginzburg-Landau
equation, which in the context of phase separation is known
as the Allen-Cahn equation. It is obtained by replacing in Eq.
(17) the operator¹2 acting on the square bracket by −1.

III. 1D SIMULATIONS AND ANALYSIS

A. Numerical simulations

We have studied the dynamics described by Eq.(17) in
the 1D case wherec=csx,td. Since weak thermal noise only
affects the initial stages of the phase separation[15] we dis-
card permanent noise in what follows. In the one-phase re-
gion se,0d one has stable, stationary solutions of Eq.(17)
that exhibit a small-amplitude spatial oscillation(for small
driving amplitude a) with period 2p /q, i.e., the driving
stimulates a concentration modulation with the amplitude
proportional to the driving amplitudea. When the system is
quenched into the two-phase region(e.0; one may choose
e=1) the SD sets in and the late stage of the process depends
on the amplitude of periodic driving. For numerical simula-
tions of the noiseless Eq.(17) a central finite difference ap-
proximation of the spatial derivative with fourth order
Runge-Kutta integration of the resulting ordinary differential
equations in time have been used. The typical system size
wasL=512 and some test runs were made withL=1024 and
2048. We used a mesh sizedx=0.5 and time stepdt=1
310−2. The accuracy of calculations was checked by choos-
ing dx=0.25 anddt=5310−4. For initial condition we took
small fluctuations around the homogeneous(single phase)
statec=0 by assigning to each lattice site a random number
uniformly distributed in the interval ±0.01. In order to aver-
age over initial random configurations 100 runs were per-
formed. Our numerical simulations show that there is a well-
defined critical amplitudeac=acsqd, above which the time
evolution of the system always ends up in the stationary,
kink-type periodic solution(for not too largeq) with the
period 2p /q, independent of the initial conditions. In con-
trast to the situation fore,0, the solution is in antiphase
with the driving, i.e.,c is positive where the driving is nega-
tive. In Fig. 1 the critical amplitudeacsqd is shown(solid
line) as obtained efficiently from the numerical simulations
se=1d.
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B. Stability analysis

In an attempt to gain an understanding of the magnitude
of acsqd we have performed a linear stability analysis of the
periodic solutioncssxd of the noiseless Eq.(17) se=1d. Thus
we write

csx,td = cssxd + estfsxd, s21d

where

− cs + cs
3 − ]xxcs + a cossqxd = 0 s22d

with periodic boundary conditionscss0d=cssLd andL is the
system length. Substituting Eq.(21) into Eq.(17) and linear-
izing in the perturbationf one gets for the growth rate

sf = ]xxLf, L = − 1 + 3cs
2 − ]xx. s23d

One expects thatf can be represented in Floquet form,

fsxd = eipxfFsxd, s24d

wherefFsxd is 2p /q periodic. Since the critical driving am-
plitude a which stabilizescs is very small(see Fig. 1) we
look for the solution of Eqs.(22) and (23) in a perturbative
way,

cs = cs0 + acs1 + ¯ ,

f = f0 + af1 + ¯ ,

s = s0 + as1 + ¯ s25d

and

L = L0 + aL1 + ¯ ,

L0 = − 1 + 3cs0
2 − ]xx,

L1 = 6cs0cs1, s26d

where from Eq.(22)

− cs0 + cs0
3 − ]xxcs0 = 0, s27d

L0cs1 = − cossqxd. s28d

Substituting the expansion(25) into Eq. (23) and collecting
the terms at zero and first order, we obtain

s0f0 − ]xxL0f0 = 0, s29d

s0f1 − ]xxL0f1 = − s1f0 + ]xxL1f0. s30d

Following the approach developed for the stability analysis
of the standard CH equationsa=0d [16] we define a “conju-

gate” f̃0 by

]xxf̃0 = f0, s31d

where f̃0 also satisfies periodic boundary conditions. Pro-
jecting Eqs.(29) and (30) onto f̃0 one obtains

s0kf̃0,f0l = kf0,L0f0l s32d

and the solvability condition forf1,

s1kf̃0,f0l = kf0,L1f0l. s33d

Thus, at first order ina, the critical amplitudeas for s<s0
+as1=0 is

as = −
kf0,L0f0l
kf0,L1f0l

. s34d

We will use the “tight-binding approximation”[16] where
only nearest-neighbor overlap integrals are kept in the calcu-
lation of the projection integrals in Eqs.(32)–(34). Without
driving sa=0d the stationary periodic solutioncs0 can be
approximated as a periodic array ofM single interfaces with
spacingp /q sL=pM /qd,

cs0 < o
n=1

M

s− 1dn−1 tanhS 1
Î2

fx − sn − 1/2dp/qgD − 1.

s35d

This leads to[see Eq.(26)]

L0 < 2 − 3o
n=1

M

sech2S 1
Î2

fx − sn − 1/2dp/qgD − ]xx.

s36d

A good trial functionf0 is obtained by superposing small
translations of the kinks,

f0 <
1

ÎM
o
n=1

M

eisn−1dpp/q sech2Sx − sn − 1/2dp/q
Î2

D , s37d

where p/q=2m/M (m is integer), or equivalently, p
=2pm/L. Note thatm=0 is not allowed since it violates the
conservation law. Keeping only nearest-neighbor overlap in-
tegrals in Eq.(32) we recover the result of Langer[16] for
the growth rates0

FIG. 1. The critical driving amplitudeac above which the evo-
lution of the system ends up in a stationary, kink-type periodic
solution (solid line). Linear stability analysis of the periodic solu-
tion: numerical(triangles) and approximate analytical results foras

from Eq. (42) (dashed line).
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kf̃0,f0l = −
4p/q

1 − cosspp/qd
,

kf0,L0f0l = − f1 + cosspp/qdg64Î2e−Î2p/q, s38d

and

s0sq,pd =
kf0,L0f0l

kf̃0,f0l
= sin2spp/qd16Î2

e−Î2p/q

sp/qd
. s39d

This demonstrates that for the unforced system the most un-
stable mode has Floquet exponentp= ±q/2 corresponding to
a period-doubling process.

Using Eq.(36) one finds the approximate solution of Eq.
(28) for q!1,

cs1 < −
1

2
cossqxd. s40d

Keeping again only nearest-neighbor overlap integrals in
kf0,L1f0l and expanding Eq.(40) around its zeros one fi-
nally finds from Eq.(34)

kf0,L1f0l = 4qS1 −
p2q2

12
D s41d

and

assq,pd = f1 + cosspp/qdg
16Î2

q
e−Î2p/qS1 +

p2q2

12
D .

s42d

This result shows that the onset of instability in the forced
system(largestas) occurs for Floquet exponentp→0, i.e.,
surprisingly, corresponds to long-wave modulation(we re-
mind thatpÞ0).

Let us contrast this with the nonconserved case described
by the Allen-Cahn equation. There the expression for the
critical amplitudeas is unchanged, i.e., Eqs.(34) and (42)
remain valid. On the other hand, the growth rates0 for the
unforced system is

s0 = −
kf0,L0f0l

kf0,f0l
= f1 + cosspp/qdg48e−Î2p/q. s43d

Thus in the Allen-Cahn equation thep dependence ofas and
s0 are the same. Therefore, in contrast to the CH equation,
the most unstable mode for the Allen-Cahn equation always
has Floquet exponentp=0.

In Fig. 2 the growth ratesssad=s0+as1 as a function of
the driving amplitudea are presented for the CH equation
and for comparison also for the Allen-Cahn equation. In or-
der to test these results we have also performed a numerical
linear stability analysis of the periodic solutions. The system
size wasL=256 andq=p /16 with periodic boundary condi-
tions. The numerical results are indistinguishable from our
analytic results forssad=s0+as1 and this remains the case
for q,p /8.

The relevant critical amplitude for the stabilization of the
periodic pattern is given byassq,pd taken in the limit p
→0. In Fig. 1 this quantity, as given from Eq.(42), is in-

cluded (dashed line). Also given are the corresponding nu-
merical results(triangles). The small differences arising for
qù0.4 cannot be resolved on the logarithmic scale of the
figure. As expected, the corresponding critical eigenfunction
exhibits a long-wave modulated superposition of kink trans-
lations.

Since linear stability of the periodic solution is a neces-
sary condition for it being an attractor one hasacsqdùassqd.
For q approaching the fastest growing wave numberq
=1/Î2 one hasacsqd<assqd (see Fig. 1), which is actually
not surprising, and this value gives a reasonable estimate for
acsqd also for smaller values ofq.

IV. 2D SIMULATIONS

We have performed extended simulations of the noiseless
Eq. (17) in two dimensions. The phase separation process
after the quench can be characterized by the structure factor

Ssk,td = uĉsk,tdu2, ĉsk,td =E dreik·rcsr ,td, s44d

which can be measured experimentally and allows direct
comparison with the predictions. For the standard CH equa-

FIG. 2. The growth ratesssad=s0+as1 for the Cahn-Hilliard
(a) and the Allen-Cahn(b) equation as a function of driving ampli-
tude a calculated analytically forq=p /16 and various values of
p/q=m/8. m=4 corresponds to the period-doubling case.
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tion the structure factor is isotropicS=Ssuk u ,td and possesses
at long times the universal scaling behaviorSsk,td
, lstddGfklstdg where the characteristic length of domains
lstd, t1/3 (for dù2) [1]. With the spatially periodic driving
we may expect an anisotropy of the structure factor. The
average domain length in thex and y directions can be re-
lated to the characteristic length scales,

lxstd = fkkxlstdg−1, lystd = fkkylstdg−1, s45d

where

kkxlstd =
E dkxSskx,0,tdkx

E dkxSskx,0,td
,

kkylstd =
E dkySs0,ky,tdky

E dkySs0,ky,td
. s46d

Numerical simulations of Eq.(17) were performed using
again central finite difference approximation of the spatial
derivatives with fourth order Runge-Kutta integration of the
resulting ordinary differential equations in time. The typical
system size wasLx=Ly=256. Some test runs were made with
Lx=Ly=512 and 1024. We used a uniform mesh sizedx
=dy=1 and time stepdt=2310−2. The accuracy of calcula-
tions was checked by choosingdx=dy=0.5 and dt=2
310−3. The dynamics of SD was computed over 6–7 de-
cades in time, which allows monitoring the late stages of the
phase separation process. Starting with random initial condi-
tions with ucu,0.01, the characteristic length dynamics was
calculated by averaging over 100 runs.

Without driving sa=0d one has the typical scenario of
spinodal decomposition and there is no anisotropy in the
behavior oflx and ly (Fig. 3). Thus initially the fastest mode
grows in amplitude. Att,15 (not shown) nonlinear satura-
tion becomes important and sharp domain boundaries form.
Then, at t,30, the late stage coarsening starts where we
observe the well-known scalinglx, ly, t1/3. In Fig. 4 snap-
shots of the phase separation process are presented for a
particular run.

We have found that in the 2D case, similar to one dimen-
sion, there exists a critical driving amplitudeac above which
the SD ends up in the stationary periodic solution with the
period of the driving, i.e., striped structure. The critical am-
plitude turned out to be about 3,5 times larger than the one
for one dimension. In particular, forq=6p /Lx with Lx=256
one has in two dimensionsac=0.014 whereas for one dimen-

FIG. 3. Dynamics of the characteristic length scaleslxstd and
lystd without driving sa=0d. System sizeLx=Ly=256,e=1.

FIG. 4. Snapshots of the phase separation process. The same parameters as in Fig. 3.
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sionac=0.0045. Thus, for two dimensions the upper curve in
Fig. 1 moves slightly upward(as will be argued below, the
other curve remains unchanged).

In Fig. 5 the dynamics of the characteristic length scaleslx
and ly is presented for the casea=0.05.ac and in Fig. 6
typical snapshots are shown. The peculiar nonmonotonic be-
havior of lx at early times can be understood as follows: in
the linear range the noise-initiated fastest mode grows expo-
nentially as c0 expst /4d and the forced modulation with
wave numberq grows linearly asat (its exponential growth
is small); see Eq.(17). Thus shortly after the quench the
fastest mode determines the average domain size. At a time
t1=sc0/ad expst1/4d,c0/a=0.2 there is a crossover, beyond
which the anisotropy becomes strong andlx reaches a plateau
that is controlled by the wave number of the forcing. Even-
tually, beyond t2=sc0/ad expst2/4d<18, the exponential

growth of the fastest mode wins, which leads to a drop oflx.
Although at this time nonlinearities are already noticable, the
suppression of the effect of the forcing remains. Subse-
quently, one has essentially isotropic coarsening untillx satu-
rates at 1/q. After this st.500d the ordering in they direc-
tion becomes exponentially fast. Actually the late stage
remains essentially unchanged if the forcing is turned on as
late ast,80 where the average domain size has reached half
the driving period. At a later time a forcing amplitudea
=Os1d is needed to generate the periodic state. In Figs. 7 and
8 we also show the dynamics of the characteristic length
scales and snapshots for a driving amplitude slightly below
the critical. One can see that att,103 there is competition
between the influence of the forcing and the coarsening pro-
cess, which finally wins.

FIG. 5. Dynamics of the characteristic length scaleslxstd and
lystd for the driving amplitudea=0.05 well above the critical. Sys-
tem sizeLx=Ly=256,e=1, q=6p /Lx.

FIG. 6. Snapshots of the phase separation process. The same parameters as in Fig. 5.

FIG. 7. Dynamics of the characteristic length scaleslxstd and
lystd for the driving amplitudea=0.01 slightly below the critical.
System sizeLx=Ly=256,e=1, q=6p /Lx.
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V. DISCUSSION

We have determined analytically and numerically the
forcing amplitudeas necessary to stabilize in the Cahn-
Hilliard equation a periodic stripe pattern against coarsening.
as decreases rapidly with decreasing forcing wave numberq.
Interestingly, the destabilizing mode is of long-wave type,
whereas the fastest-growing mode in the absence of forcing
is of period-doubling type. This can be contrasted with phase
separation in systems with nonconserved order parameter de-
scribed by the Allen-Cahn equation, where both processes
are controlled by long-wave modulations.

Although the result was established in one dimension, we
expect it to hold also for a stripe pattern in two dimensions
(i.e., a quasi-1D situation) because a stripe pattern is presum-
ably not susceptible to transverse instabilities[17].

In addition we have determined by extensive simulations
in one and two dimensions the critical forcing amplitudeac
necessary to produce a periodic stripe pattern from small
random initial conditions.ac depends only weakly onq. It
essentially coincides withas for largeq, of the order of the
fastest growing linear mode. For smallq, where the periodic
pattern consists of an array of kinks,ac is much larger than
as. We have also done some numerical simulations with ini-
tial conditions appropriate to generate a periodic state by
front propagation. In this way a critical amplitude only
slightly smaller thanac was found. We also noted that a
small amount of (permanent) noise actually reducesac
slightly.

The situation considered should be applicable to experi-
ments on spinodal decomposition in sufficiently thin polymer
films with small periodic temperature modulation created by
means of optical grating technique. Then, for polymer blend
layers of thickness less than a few micrometers the tempera-
ture variation across the film can be neglected for sufficiently
small undercooling.

We now make connection with the polymer blends con-
sidered in Sec. II taking as an example the material param-
eters of polydimethylsiloxan(55%)/polyethylmethylsiloxan
(45%) used in the experiments in Refs.[9,18]: NA=219.4,
NB=257.25, a=2.9310−3, b=3.22 K, Tc=313 K, sA
=0.583 nm, sB=0.64 nm (then K=0.084 nm2), D / ubu
=sMkBTcd /v=0.75310−6 cm2/s, DT=2310−9 cm2/ ss Kd,
and typical values for the temperature forcing amplitude
dT0=0.2 mK reachable in the optical grating experiments.
One finds that for the temperature quenchTc−T0=2.5 K
(then ubu=1.66310−4) the dimensionless driving amplitude
in the experiments is abouta<10−2, which is of the order of
the critical amplitude found in our simulations for two di-
mensions. For a quench ofTc−T0=2.5 K, taking v
=4pssA/2d3/3 andV=4prm

3 /3 with rm=sK / ubud1/2, one ob-
tains for the dimensionless noise strengthg<10. This is near
the border of the Ginzburg criterion(19) g!16p /3.

It would be interesting to verify our finding that stabiliza-
tion of a sufficiently long-wave periodic structure, once it
has been established, can be achieved with extremely small
amplitudes. Also, the prediction that the forcing may be ap-
plied with a time delay up to about 80t after the quench may
be tested experimentally. For the above parameterst
=0.04 s, so a delay of 3 s should be allowed. Combining the
two facts one concludes that the(relatively) high-amplitude
forcing can probably be restricted to a rather short time in-
terval. We plan to investigate the problem of optimal control
of a prescribed pattern by determining the minimal light en-
ergy deposition required for its realization. This may involve
also an optimization of the spatial profile of the forcing.
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APPENDIX

Here we derive the Ginzburg criterion in terms of the
dimensionless noise strengthg for Eq. (11) (in the absence of
the forcing). In the two-phase region the Ginzburg criterion
is kfdwsr ,tdg2l!wcoex

2 , wheredwsr ,td gives the fluctuations
of the order parameter andwcoex= ± subu /ud1/2 is the mean-
field value of the order parameter. The mean-square ampli-
tude of the fluctuations can be calculated by averaging the
Fourier back transform of the structure factorSsk ,td
;kudwsk ,tdu2l over a coarse-graining volumeV, rm

d ,

kfdwsr ,tdg2l =
1

V
E dr

1

s2pdd E dkSsk,tdeik·r . sA1d

Note that kdw2l is necessarily sensitive to the consistent
choice of the coarse-graining lengthrm or, equivalently, to

the upper cutoff in the integration overk. From the linear
evolution equation for the structure function

]Ssk,td
]t

= 2
MkBTc

v
s− k2df2ubu + Kk2gSsk,td + 2MkBTck

2

sA2d

one finds

Ssk,tdut→`u =
v

ubus2 + j2k2d
, sA3d

and finally, under the assumptionrm@j, for the mean-square
amplitude of the fluctuations

kfdwsr ,tdg2l =
v

2V
ubu−1. sA4d

Actually, for the purpose of estimates this expression can be
taken down torm<j. Then the Ginzburg criterion in terms of
the dimensionless noise strengthg gives

g ! 4VsK/ubud−d/2. sA5d
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