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Phase separation in the presence of spatially periodic forcing
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We have investigated theoretically phase separation in the presence of spatially periodic forcing. From the
analytic and numeric study of a suitably generalized Cahn-Hilliard equation in one and two dimensions, we
find that the forcing amplitude necessary to generate a periodic kink-type state from small random initial
conditions depends weakly on wave number. This amplitude is much larger than the one necessary to stabilize
the periodic state, i.e., to prevent late-stage coarsening, once it is established. Surprisingly, the destabilizing
mode is of long-wave type, which is in contrast to the well-known most rapidly growing coarsening mode in
the unforced system. In the Allen-Cahn equation with nonconserved order parameter the relevant modes are
always long wave. It appears feasible to observe these effects by imposing a temperature modulation by optical
grating which then couples to concentration modulation via(thelwig-)Soret effect.
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[. INTRODUCTION the fact thai) it became quite clear that polymeric mixtures
belong to the same universality class as binary alloys and
The process of phase separation in a quenched system Haw molecular weight fluid mixtures andi) in these mate-

been the subject of many theoretical and experimental invegials it is relatively easy to probe different regions of the
tigations in the field of small molecular or atomic systems,phase diagram over widely varying time scales.
such as binary alloys, fluid mixtures, and inorganic glasses When phase separation occurs by SD, a polymer blend
[1,2]. When such a system at the critical composition isdestabl!lzes with respect to long Wavel_ength concentration
quenched from a homogeneous, usually high-temperatur%“Ct”a“O“S- Although mixtures become mqeasmg_ly suscep-
phase to a point sufficiently below the coexistence cuave tible to external perturbations as the_ crmcal point is ap-
critical quench, a small-amplitude, long-wavelength insta- Proached, thehredsponsehchangeshqualltatl_vely#]hen the mix-
bility develops. This phenomenon is known as spinodal de%ﬁre IS quenc tebIImotefteeatwa(l)-F}r(?r?]eeregll%?" o Znst’ijteertn:Jrl-S
composition(SD). The term originally refers to the initial en in an unstable s way quiibru P

¢ £ oh i hich ; hed. th bations can be amplified and have a large scale influence on
stage of phase separafion which OCcurs In a quenched, thgp, phase separation process. The beneficial aspect of this

modynamically unstable, solid solution. Among the variousqe ity of phase separation and other pattern formation
kinetic mechanisms associated with first-order phase transjocesses to perturbations is that it offers substantial oppor-
tions, SD is distinguished from, say, nucleation and growthniies to control the morphology of the evolving patterns.
in that it requires no thermal activation energy; that is, it p to now a large number of studies on phase separation
occurs in the unstable rather than in the metastable region @4 polymer mixtures have considered the application of ex-
a phase diagram. A second distinguishing characteristic igernal fields(flow [3], gravitational field[4], concentration
that the order parameter which describes the system, usualfg], and temperaturg6] gradients, chemical reactions, and
the composition variabléconcentration obeys a local con- cross linking[7], etc) with an attempt to elucidate the time
servation law. Thus the decomposition is limited by diffu- evolution of the structures. However, this did not lead to
sionlike processes and, in its later stages, exhibits very slowubstantial control over the morphology.
coarsening rather than the more rapid approach to comple- Motivated by experiment§8,9] we here focus on phase
tion which occurs in magnetic or structural phase transitionseparation in the presence of spatially periodic driving aris-
without conserved order parametért'/2). At later times,  ing from thermal diffusion(Ludwig-Soret effecf10]) caused
the small inhomogeneities in the order parameter evolve intky an inhomogeneous temperature distribution in the poly-
macroscopic domains of one or the other phase and an intemer film. Starting with the standard Cahn-Hillia@CH)
connected structure is formed. theory[11] we have developed the description of SD taking
The study of phase separation in polymer blends has beednto account spatially periodic temperature modulation that
of considerable technological importance in order to develogould be created in optical grating experiments as in Refs.
new materials to achieve specific properties. The high mof8,9].
lecular weight and chainlike nature of polymers results in a The paper is organized as follows. In Sec. Il we introduce
small entropy of mixing, and thus in a large region of im- the modified CH equations and define the relation between
miscibility (comparatively high critical temperatupedt is  model parameters and those of polymer blend theory. In Sec.
well known that the morphological and interfacial propertieslil the results of one-dimensionélD) analysis of the stabil-
of these systems play an important role in most of their pracity of periodic structures are presented and compared with
tical applications. systematic simulations. Section IV is devoted to the results
In recent years, the dynamics of SD in polymer blends ha®f representative 2D simulations. Finally, in Sec. V the re-
attracted much experimental and theoretical interest, due tsults are discussed and put into perspective.
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[l. THEORETICAL BACKGROUND Since we have in mind polymer blends subjected to an

Th - dient of the CH th foh ti r;nhomogeneous temperature field produced by light absorp-
€ main ingrecient ot the eOory 01 pnase Separatio tion, the heat equation should be added to the model,

[11] is a conserved field variable representing the local con-

centration of one of the components of the binary mixture JT(r ,t) , a,
(or, sometimes, the difference between the local concentra- —a DipVAT(r 1) + Tl(r’t)' (7)
tion of the two componenys Let ¢(r,t) denote the local Pep

volume fraction of componem. Then for an incompressible The heat source term is proportional to the light intensity
binary A/B mixture the local concentration of tH&2compo-  that corresponds to the experimental situation where the spa-
nent is[1-¢(r ,t)]. The continuity equation relates the spa- tially periodic temperature modulation is created by means
tial and time dependence of the concentratifin,t) to the  of the interference grating of intersecting laser beams or lo-
mass currenf(r ,t), and expresses the conservation of mas$al illumination of the polymer filn{8]. Here ), is the op-

in the system, tical absorption coefficieniy is the density, and,, the spe-
cific heat at constant pressure. For the typical polymer blends
ag(r 1) =-V.j(r.1) (1) under experimental study the ratio of the temperature diffu-
at s sion time over the mass diffusion time is of the order of*10

. . therefore one can treat the heat equati@nin the steady
The mass current can be related to gradients of the chemic it (neglect the time derivative of the temperajure

pOtentiQI’U“(:“A_.’“.B) afnd of thhe tenlufaleratur'e and the mass The mixture of compositionp, is unstable against phase
currentj(r,t) arising from thermal fluctuations, separation whelf[ ¢] has negative curvature gt=¢,. One
j(r, ) =—MVu-Drd(1 - HVT(r,0) +j(r,t), (2) easily finds that the critical point of SD in mod@) is given

b
where M is the “mobility” of speciesA with respect toB y ) ) )
(often treated as a constant although in general it would de- b= NgAI(NK2+ N2,
pend on concentration In a Ginzburg-Landau-type con-
tinuum description the chemical potentjalis related ther- xe = [NE2+ NY22/(2NANp), (8)

modynamically to the free energy functio r,t)], . o . L
y y gy ] such that the system is miscible fgr<<y., and immiscible

_OFl¢] Fle] _1 q flg] V)2 3 for x> x. at the critical concentration. Close (g, xo) the
B o6¢p ' kT v kT + (V7| () FH expression for the free energy can be approximated by a
) _ Taylor expansion with respect to the composition fluctuation
where kg is Boltzmann’s constant. We_ start from a Ia_lttlce o(r ,1)=[¢(r 1) - ¢.] leading to the Ginzburg-Landau func-
model and thew is the volume per lattice site, arffi¢] is  tjonal (an irrelevant term linear i has been omitted
the local, homogeneous, coarse-grained free energy density
of mixing which has a double-well structure in the two-phase Fale] _ 1 f ar [}w
2

1 1
2 4= 2
region. The square gradient term expresses the unfavorable keTe v Ul ZK(V(P) - O

4
nature of interfaces. It describes the energy necessary to cre-

ate an interface between homogeneaurich andB-rich do-  Where the coefficients are defined as

mains. We take the Flory-Huggin&H) expression for the 2B 4 ,—
free energy of mixingper lattice sitg for an incompressible b=2(x.—x) = F(T_ To), u= 3XcVNaNs,
binary polymer blend, ¢
f 1- 1 J— —
L2 T g iyga-a, @ K= 1021+ NJNg) + 21+ NNl (10
kgT  Na Ng 18

whereN,, Ng are the “chain lengths{degrees of polymer- Equations(1) and(7) in combination with Eqs(2) and(9)
ization) of speciesA and B, respectively;y is the Flory in-  define our model close to the critical point,
teraction parameter that measures the strength of interaction

between species andB and favors phase separation when it de(r,0) = MVZ[bcp +ug® - KV2p]
is positive. The value of depends on the temperature and is ot v
usually taken as + Dydpol(1 = d) V2T + (1 1), (11)
x=a+pTt (5
where« and 8 are empirical constanfd2]. For the coeffi- Dy V2T = - ﬂI(r,t). (12
cient of the gradient term we use de Gennes’ random phase PCp
approximation, Note that the quantit$;=D+/D is the Soret coefficient with
1 {Ui UZB ] the diffusion coefficient
=—| =+ , 6
M=6l 5t 1o ©® D = (MkgTb)/v. (13
where o, and og are the monomer sizg&uhn lengthg of  In the case of optical grating experimerts,t)=1, cogqx)
the A and B components, respectively. [8]. Then
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| < 4V(K/|b|)™¥2, 19
V2T = - 6Tq? codqx), 8Tg= — 2. (14 g (K/lb) (19
PCthhq
The thermal noise terny(r ,t) is Gaussiang correlated, and
satisfies the fluctuation-dissipation theorem, which gives

WhereV~rﬂ, is a coarse-graining volume. Fadrclose toT,
the only relevant length scale is the correlation length
Therefore the extremédrom below) possible choice for,

f Id b =a(K/|b])*2 wh =1 d Eq.(19) red
7(r,t) = V2MkgTcL(r 1), \t/vou erm=a(K/|b))¥? where o and Eq.(19) reduces
r,t)=0,

ro$r\\ — 2 ! ’
(Erogr ) =-vear - r)at-t). (9 For d=<3 this restrictsT, to temperatures not too near 19

In the absence of thermal diffusion H4J) reduces to the  [see Eqgs(18) and (10)]. In the following we will consider
well known CH equationimodel B [13]). In fact, Eq.(11)  essentially only the mean-field regime where one can omit
gives a universal description of a system in the vicinity of athe noise term in Eq(17).
critical point leading to SD. The derivation from the Flory-  |n the case of a nonconserved order parameter the CH
Huggins model was presented in order to estimate roughlgquation(17) is replaced by the usual real Ginzburg-Landau
the parameters for polymer blengsee Sec. Y. equation, which in the context of phase separation is known

We introduce dimensionless variables by choosing thess the Allen-Cahn equation. It is obtained by replacing in Eq.

temperaturdl,, after the quench as our reference temperaturg17) the operatoiv? acting on the square bracket by —1.
(To<T,.) and write

r=r'¢ &= (Ki/b)¥3 IIl. 1D SIMULATIONS AND ANALYSIS

A. Numerical simulations
t=t'r, 7= €ID;
We have studied the dynamics described by &J) in
©= Y(ullb) Y2, (16) the 1D case wherg=(x,t). Since weak thermal noise only
affects the initial stages of the phase separaftids we dis-
where all quantities are evaluated &. We then obtain card permanent noise in what follows. In the one-phase re-

(primes are omitted gion (e<0) one has stable, stationary solutions of EL7)
that exhibit a small-amplitude spatial oscillatigfor small
M = V[~ e+ ¢F - V2 + acodgx)] + \@g(r,t), dr_iving amplitude a) With period 277_/q, i.e_., the driving

at stimulates a concentration modulation with the amplitude

(17) proportional to the driving amplituda. When the system is
quenched into the two-phase regi@>0; one may choose

where e=1) the SD sets in and the late stage of the process depends
12 on the amplitude of periodic driving. For numerical simula-
€= Te—T a= D_T(i) b1 = o) 5T, tions of the noiseless E@l7) a central finite difference ap-
T.-To D \|b] ¢ S proximation of the spatial derivative with fourth order

Runge-Kutta integration of the resulting ordinary differential
g=2vu¢& 9?2, (18)  equations in time have been used. The typical system size
wasL =512 and some test runs were made with1024 and
Equation(17) describes the dynamics of phase separatiorp048. We used a mesh siz&=0.5 and time stepst=1
following a quench from the stable one-phase rediori0)  x 1072 The accuracy of calculations was checked by choos-

to the reference temperature in the two-phase regéori). ing 8x=0.25 anddt=5X 10"*. For initial condition we took
In the following we will consider only the case of a symmet- small fluctuations around the homogened@amgle phasg
ric quench where initially, at=0, one hagdr =0. stateyy=0 by assigning to each lattice site a random number

In the absence of the forcing=0), in the linear regime, uniformly distributed in the interval £0.01. In order to aver-
one has exponential growth of modes with wave nundper age over initial random configurations 100 runs were per-
with rate 0=0%(1-qg?. Thus growth is limited ta®<1 and  formed. Our numerical simulations show that there is a well-
the fastest growth is fo?=1/2. Asystem can be treated as defined critical amplitudea,=a.(q), above which the time
guasi-1D or quasi-2D if the transverse dimensions are sma#volution of the system always ends up in the stationary,
compared to the growing modes. kink-type periodic solution(for not too largeq) with the

As is seen from Eq(17), the dimensionless noise strength period 27/q, independent of the initial conditions. In con-
g is a measure of the quench depth. The paranmetem be trast to the situation foe<0, the solution is in antiphase
related to the Ginzburg criterion for the validity of mean- with the driving, i.e.,iy is positive where the driving is nega-
field theory as formulated by Binder for SQ4]. In the tive. In Fig. 1 the critical amplitude(q) is shown(solid
absence of the forcing the Ginzburg criterion giyese Ap-  line) as obtained efficiently from the numerical simulations
pendi® (e=1).
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107 B = Yo+ U~ G0 =0, 27)
10° ¢ ]
o Lot =~ c080X). (28
107 g ]
7 Substituting the expansiof25) into Eq.(23) and collecting
I A ] the terms at zero and first order, we obtain
S ,/
107 ¢ i 1 0000~ IxLopo=0, (29
/
/
L / ]
10 A Ooh1~ IxLopr =~ 01 + I L16bo. (30)
_7 /
10 / ] Following the approach developed for the stability analysis
10" , [ , ‘ , of the standard CH equatida=0) [16] we define a “conju-
00 01 02 03 04 05 06 gate” ¢, by
q

. . . . (?xxd’oz ¢Oa (31)
FIG. 1. The critical driving amplitude, above which the evo- _
lution of the system ends up in a stationary, kink-type periodicwhere ¢, also satisfies periodic boundary conditions. Pro-

solution (solid line). Linear stability analysis of the periodic solu- jecting Egs.(29) and(30) onto ao one obtains
tion: numerical(triangles and approximate analytical results fay

from Eq.(42) (dashed ling 0o bo, bo) = b, Lobo) (32)
B. Stability analysis and the solvability condition fotp,
In an attempt to gain an understanding of the magnitude 01(Po, o) = (o, L1bo). (33)

of a;(q) we have performed a linear stability analysis of the
periodic solutiony(x) of the noiseless Eq17) (e=1). Thus  Thus, at first order ir, the critical amplitudeas for o= oy

we write +ao;=0is
Pxt) = gu(x) + €7 p(x), (21) {0 Logo)
a=—-——. (39
where (o, L160)
= s+ Y2 — dahs+acogqx) = 0 (22) We will use the “tight-binding approximatiorf16] where

only nearest-neighbor overlap integrals are kept in the calcu-
with periodic boundary conditiong(0)=yx(L) andL is the  |ation of the projection integrals in Eq&32)«(34). Without
system length. Substituting E(1) into Eq.(17) and linear-  driving (a=0) the stationary periodic solutiog, can be
izing in the perturbationp one gets for the growth rate approximated as a periodic array Mf single interfaces with

0P = oL, L=—1+3f = (23) spacingw/q (L=7wM/q),

. M
One expects thap can be represented in Floquet form, 1
P % 'p a o=~ >, (1" tan)'<?[x— (n- 1/2)1T/q]) -1.
B(x) = PP (x), (24) n=1 V2
where ¢(x) is 27r/q periodic. Since the critical driving am- (35
plitude a which s'tablllzesws is very smal](see Fig. 1we  This |eads tdsee Eq(26)]
look for the solution of Eqs(22) and(23) in a perturbative

- s H(l[ (n-172) ])
Lo=2-32, sech| —=[x—(n—1/2)m/q] | — dyy.
lﬁs = wSO + awsl +oe ’ 0 n=1 \1’5 XX
36
= dotagyt -, (36
A good trial function ¢, is obtained by superposing small
o=ogtaoy t+-- (25) translations of the kinks,
and M
1 . X—=(n=1/2)7lq
~ —=—> el secﬁ(— , (37
Leryvaly+ . VD) 5 37)
Lo=- 1+3‘/f§0_axxr where p/g=2m/M (m _is integey, or _ equ?va!ently, p
=2mm/L. Note thatm=0 is not allowed since it violates the
L= 6igth (26) conservation law. Keeping only nearest-neighbor overlap in-
17 YTl tegrals in Eq(32) we recover the result of Langét6] for
where from Eq(22) the growth raterg
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~ 47T/q 2.5
20 p 1
(do- Lopo) = ~[1+ cogpmia)]642e™2™9,  (38) 15| _
and
(b0, Lodo) g Ehl 3 ]
' —e Ve —
on(@p = 2 G2 o165 (39)
(b0, o) (m/q) 0.5 1
2 m=1
This demonstrates that for the unforced system the most un- 0.0
stable mode has Floquet exponent+q/2 corresponding to \ \6 5
a period-doubling process. _05 8 ! , ,
Using Eq.(36) one finds the approximate solution of Eq. “ o0 1 2 3 4
(28) for q<1, (a) 10%
1 2.0
Yo =~ 5 COSQX). (40)
Keeping again only nearest-neighbor overlap integrals in L5 Ry m=0
(o, L1¢g) and expanding Eq40) around its zeros one fi- 1
nally finds from Eq.(34) 1.0 F ' 5
o
(s Lacbe) = 4 (1 ﬂzqz) (41) E
¢o, L1¢po) = 49 12 05 L 3
s 4
and 6
_ - 0.0
16V2 _ 5
af(q,p)=[1+ coipw/q)]—\e“zw’q<1 + ﬂ) : g Y
q 12 0.5 - ' :
42 0 1 2 3 4
42 (b) 10°a
This result shows that the onset of instability in the forced »
system(largesta,) occurs for Floquet exponem—0, i.e., FIG. 2. The growth rates(a)=oo+ao for the Cahn-Hilliard
surprisingly, corresponds to long-wave modulatiove re- (@ and the Allen-Cahrgb) equation as a function of driving ampli-
mind thatp# 0). tude a calculated analytically fog=#/16 and various values of

Let us contrast this with the nonconserved case describgf 4=m/8. m=4 corresponds to the period-doubling case.

by the Allen-Cahn equation. There the expression for the
critical amplitudeag is unchanged, i.e., Eq$34) and (42)  cluded(dashed ling Also given are the corresponding nu-
remain valid. On the other hand, the growth ratefor the  merical resultgtriangleg. The small differences arising for
unforced system is g=0.4 cannot be resolved on the logarithmic scale of the
figure. As expected, the corresponding critical eigenfunction
_ M =[1+ coipw/q)]489‘\’§”’q (43) exhibits a long-wave modulated superposition of kink trans-
(b0, Do) ) lations.

. . Since linear stability of the periodic solution is a neces-
Thus in the Allen-Cahn equation thredependence dds and . L
. . t for it ttract = .
oy are the same. Therefore, in contrast to the CH equatio sary condition for it being an attractor one hag) = a(q)

the most unstable mode for the Allen-Cahn equation alwaygOr 9_ approaching the fastest growing wave numiger
has Floguet exponemt=0 =1/y2 one hasa,(q) =ayq) (see Fig. 1, which is actually
In Fig. 2 the growth rétes(a)=00+aal as a function of Nt surprising, and this value gives a reasonable estimate for

the driving amplitudea are presented for the CH equation 3,(q) also for smaller values dj.
and for comparison also for the Allen-Cahn equation. In or- IV. 2D SIMULATIONS
der to test these results we have also performed a numerical ] ) )
linear stability analysis of the periodic solutions. The system V& have performed extended simulations of the noiseless
size was. =256 andg=/16 with periodic boundary condi- Eq. (17) in two dimensions. The phase separation process
tions. The numerical results are indistinguishable from ouffter the quench can be characterized by the structure factor
analytic results for(a) =oy+aoc; and this remains the case R . .
for q<’7T/8 S(kit)=|¢(k!t)|2! lﬂ(k,t)zjdrelk'rlﬂ(r,t), (44)

The relevant critical amplitude for the stabilization of the
periodic pattern is given byg(q,p) taken in the limitp  which can be measured experimentally and allows direct
—0. In Fig. 1 this quantity, as given from E@2), is in-  comparison with the predictions. For the standard CH equa-

go=
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100

f dk,S(0,k,, )k,
kpO)="—7—"". (46)

f dk,S(0,ky,t)

Numerical simulations of Eq.17) were performed using
again central finite difference approximation of the spatial
derivatives with fourth order Runge-Kutta integration of the
resulting ordinary differential equations in time. The typical
system size wak,=L,=256. Some test runs were made with
Ly=Ly=512 and 1024. We used a uniform mesh size
e A B 5 =8y=1 and time ste@t=2x 10"2. The accuracy of calcula-
tions was checked by choosingx=6y=0.5 and &t=2
% 1073, The dynamics of SD was computed over 6—7 de-

FIG. 3. Dynamics of the characteristic length scdigs and ~ cades in time, which allows monitoring the late stages of the
1,(t) without driving (a=0). System sizd.,=L,=256, e=1. phase separation process. Starting with random initial condi-

tions with|] <0.01, the characteristic length dynamics was
. . calculated by averaging over 100 runs.
tion the structure factor |s_|sotropE,:S(|_k|,t) and POSSesses  \without d)?iving (g:g) one has the typical scenario of
at long times the universal scaling behavi®k,t)  gningdal decomposition and there is no anisotropy in the
~I()?GLkI(t)] where the characteristic length of domains pepavior ofl, andl, (Fig. 3. Thus initially the fastest mode
I(t) ~t3 (for d=2) [1]. With the spatially periodic driving grows in amplitude. At~ 15 (not shown nonlinear satura-
we may expect an anisotropy of the structure factor. Theion becomes important and sharp domain boundaries form.
average domain length in theandy directions can be re- Then, att~ 30, the late stage coarsening starts where we
lated to the characteristic length scales, observe the well-known scalirig~ly~t1’3. In Fig. 4 snap-
shots of the phase separation process are presented for a
(1) = [k (T 1y(t) = [k, (45 particular run.
We have found that in the 2D case, similar to one dimen-
where sion, there exists a critical driving amplitudg above which
the SD ends up in the stationary periodic solution with the
f dk,S(ky, 0,t)k, period of the driving, i.e., striped structure. The critical am-
plitude turned out to be about-35 times larger than the one
' for one dimension. In particular, fay=67/L, with L,=256
J dkS(ky, 0,t) one has in two dimensiores.=0.014 whereas for one dimen-

=)

10, 1,(0)

(ko(t) =

FIG. 4. Snapshots of the phase separation process. The same parameters as in Fig. 3.
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100 100

Lo, L)
=

Lo, L)
=

10 10
t t
FIG. 5. Dynamics of the characteristic length scdigs and FIG. 7. Dynamics of the characteristic length scdlgs and
Iy(t) for the driving amplitudea=0.05 well above the critical. Sys- 1,(t) for the driving amplitudea=0.01 slightly below the critical.
tem sizel,=L, =256, €=1, q=67/L,. System sizd =L, =256, =1, q=67/L,.

siona,=0.0045. Thus, for two dimensions the upper curve in ) )
F|g 1 moves S||ght|y upwardas will be argued beIOW, the gl’OWth of the fastest mode wins, which leads to a drOQ(.Of
other curve remains unchanged Although at this time nonlinearities are already noticable, the
In Fig. 5 the dynamics of the characteristic length schles suppression of the effect of the forcing remains. Subse-
and|, is presented for the case=0.05>a, and in Fig. 6 quently, one has essentially isotropic coarsening lnsiaitu-
typical snapshots are shown. The peculiar nonmonotonic baates at 1¢. After this (t>500) the ordering in they direc-
havior of I, at early times can be understood as follows: intion becomes exponentially fast. Actually the late stage
the linear range the noise-initiated fastest mode grows expaemains essentially unchanged if the forcing is turned on as
nentially as ¢, exp(t/4) and the forced modulation with late ast~ 80 where the average domain size has reached half
wave numbeiq grows linearly asat (its exponential growth the driving period. At a later time a forcing amplituce
is smal); see Eq.(17). Thus shortly after the quench the =0O(1) is needed to generate the periodic state. In Figs. 7 and
fastest mode determines the average domain size. At a tin®& we also show the dynamics of the characteristic length
t1= (ol @) explty/4) ~ p/a=0.2 there is a crossover, beyond scales and snapshots for a driving amplitude slightly below
which the anisotropy becomes strong aprkaches a plateau the critical. One can see that &t 10° there is competition
that is controlled by the wave number of the forcing. Even-between the influence of the forcing and the coarsening pro-
tually, beyond t,=(¢,/a) expt,/4)~=18, the exponential cess, which finally wins.

=500 =10 =10*

() j - (e)l l l I (f)| I I |

FIG. 6. Snapshots of the phase separation process. The same parameters as in Fig. 5.
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Dk ©h ®
FIG. 8. Snapshots of the phase separation process. The same parameters as in Fig. 7.

V. DISCUSSION We now make connection with the polymer blends con-

We have determined analytically and numerically theSidered in Sec_. Il taking as an example the materi_al param-
forcing amplitudea; necessary to stabilize in the Cahn- €térs of polydimethylsiloxan55%/polyethylmethylsiloxan
Hilliard equation a periodic stripe pattern against coarsening45%) used in the experiments in Ref@,18: N,=219.4,

a, decreases rapidly with decreasing forcing wave nungber Ng=257.25, @=2.9x107%, B=3.22K, T.=313K, 0,
Interestingly, the destabilizing mode is of long-wave type,=0.583 nm, ¢5=0.64 nm (then K=0.084 nnd), D/|b|
whereas the fastest-growing mode in the absence of forcing(MKgTc)/v=0.75x 107 cn?/s, D=2x 107 cn?/(s K),

is of period-doubling type. This can be contrasted with phasand typical values for the temperature forcing amplitude
separation in systems with nonconserved order parameter déT,=0.2 mK reachable in the optical grating experiments.
scribed by the Allen-Cahn equation, where both processeSne finds that for the temperature quenth-T,=2.5K
are controlled by long-wave modulations. (then |b|=1.66x 107%) the dimensionless driving amplitude

Although the result was established in one dimension, Wén the experiments is aboat= ]_0'2, which is of the order of
expect it to hold also for a stripe pattern in two dimensionsthe critical amplitude found in our simulations for two di-
(i.e., a quasi-1D situatigrbecause a stripe pattern is presum-mensions. For a quench off,-Ty=2.5 K, taking v
ably not susceptible to transverse instabilii@g]. =4m(oal2)%13 andV=47rr3m/3 with r,=(K/|b|)*2, one ob-
~ In addition we have determined by extensive simulationgains for the dimensionless noise strength10. This is near
in one and two dimensions the grltlcql forcing amplituale  the border of the Ginzburg criterioil9) g< 16m/3.
necessary to produce a periodic stripe pattern from small |t would be interesting to verify our finding that stabiliza-
random initial conditionsa. depends only weakly on. It tjon of a sufficiently long-wave periodic structure, once it
essentially coincides with, for largeq, of the order of the a5 peen established, can be achieved with extremely small
fastest growing linear mode. For smallwhere the periodic  gmpjitudes. Also, the prediction that the forcing may be ap-
pattern consists of an array of kinka, is much larger than  pjied with a time delay up to about 8@fter the quench may
tial conditions appropriate to generate a periodic state by 04 s, so a delay of 3 s should be allowed. Combining the
front propagation. In this way a critical amplitude only two facts one concludes that tiielatively) high-amplitude
slightly smaller thana, was found. We also noted that a forcing can probably be restricted to a rather short time in-
small amount of (permanent noise actually reduce®:  terval. We plan to investigate the problem of optimal control
slightly. _ _ of a prescribed pattern by determining the minimal light en-

The situation considered should be applicable to experigrgy deposition required for its realization. This may involve
ments on spinodal decomposition in sufficiently thin polymergisg an optimization of the spatial profile of the forcing.
films with small periodic temperature modulation created by
means of optical grating technique. Then, for polymer blend ACKNOWLEDGMENTS
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g y g ISk,t) _, MkeT,

ot (= K[21b] + KRSk 1) + 2MkaTok?

APPENDIX
(A2)

Here we derive the Ginzburg criterion in terms of the
dimensionless noise strengitior Eq.(11) (in the absence of
the forcing. In the two-phase region the Ginzburg criterion v
is ([g(r ,1)]2) < ¢Z., Wherede(r,t) gives the fluctuations SK Yo = b2+ 20’ (A3)
of the order parameter ang..,=+(|b|/u)¥? is the mean-
field value of the order parameter. The mean-square ampland finally, under the assumptiop> ¢, for the mean-square
tude of the fluctuations can be calculated by averaging th@mplitude of the fluctuations
Fourier back transform of the structure fact&Kk,t) v
=(|6¢(k,1)|?) over a coarse-graining volumé~rd, {[Se(r,H)> = E|b|‘l. (A4)

one finds

f dkS(k,t)ek". (A1)  Actually, for the purpose of estimates this expression can be
taken down ta ,,= £. Then the Ginzburg criterion in terms of
the dimensionless noise strengjlyives

(o0l 0P =1 f dr 5

Note that(d¢?) is necessarily sensitive to the consistent
choice of the coarse-graining lengtp or, equivalently, to g < 4V(K/|b|)™92, (A5)
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