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Traveling—stripe forcing of oblique rolls in anisotropic systems
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Abstract. The effects of a traveling, spatially periodic forcing are investigated in a system with axial
anisotropy, where oblique stripe patterns occur at threshold in the unforced case and where the forcing
wavenumber and the wavenumber of stripes are close to a 2 : 1 resonance. The forcing induces an interac-
tion between the two degenerate oblique stripe orientations and for larger forcing amplitudes rectangular
patterns are induced, which are dragged in phase by the forcing. With increasing forcing velocity a tran-
sition from a locked rectangular pattern to an unlocked superposition of a rectangular and oblique stripe
pattern takes place. In this transition regime, especially when the ratio between the wavenumber of the

forcing and that of the pattern deviates from the 2

: 1 ratio, surprisingly stable or long living complex

patterns, such as zig-zag patterns and patterns including domain walls are found. Even more surprising is
the observation, that such coherent structures propagate faster than the stripe forcing.

PACS. 47.20.-k Hydrodynamic stability — 47.54.+r Pattern selection — 89.75.Kd Patterns

1 Introduction

External forcing of patterns is a powerful method for in-
vestigations of the response behavior of nonlinear pat-
terns and of the inherently nonlinear mechanisms of self—
organization. The effect of spatially periodic forcing on
patterns has been investigated rather early in the context
of thermal convection [1] and electroconvection in nematic
liquid crystals [2,3]. Further on, the response of stationary
patterns with respect to static periodic forcing in one or
two spatial dimensions has been explored [2-9], as well as
temporal forcing of traveling waves in hydrodynamics sys-
tems [10-12] and of temporally oscillating chemical reac-
tions [13,14]. Recently, this branch of nonlinear science has
been continued by a combination of spatial and temporal
forcing in model systems [15-17], and by the introduction
of light intensity modulation techniques in chemical re-
actions [13-20] and in electroconvection in nematic liquid
crystals [21]. This suggests further interesting applications
of spatiotemporal forcing, one of which is described in this
work.

Here, the effects of a traveling, spatially periodic mod-
ulation of the control parameter,

M(z,t) = 2@ cos[2(kmz — D1)] (1)
are investigated in a system, where oblique stripe patterns
occur at the primary instability. Examples for such a sys-
tem are thermal- or electroconvection in nematic liquid
crystals [22-26]. In Eq. (1) G is the modulation amplitude,
2k, is the modulation wavenumber and 7 determines the
phase velocity v, = ©/ky, of the forcing. The effects of
this forcing are analyzed in terms of symmetry adapted

amplitude equations close to the threshold of the pattern
forming instability.

The orientation of striped convection pattern in elec-
troconvection or thermal convection in planarly aligned
nematic liquid crystals may be either normal or oblique
to the preferred direction [22—26]. The oblique stripe pat-
tern at threshold can be written as follows [24,7,8]

u(z,y,z,t) = ee® [Alei”“y + A2e*"”cy] Ug(z) + cc., (2)

where cc. means complex conjugate, A; » are the ampli-
tudes and q¢ = (%q., £p.) is the wavenumber. u(z, y, 2, t)
describes the physical variables, such as the spatiotem-
poral variation of the velocity field and the temperature
modulation in convection or the optical birefringence of
the pattern. Uy includes the variation of those fields across
the fluid layer and for a vanishing wavenumber p, = 0 the
expression in Eq. (2) describes so—called normal stripes.

The case of a static and spatially resonant forcing with
a modulation wave vector 2k, = (2ky,,0) = (2q. + 2dg4,0)
nearly twice the z—component ¢, of the wave vector char-
acterizing the oblique rolls q¢ = (+q., £p.) has been stud-
ied in previous works [7,8]. Here g4 is the detuning and it
has been found that spatially periodic forcing of the two
degenerated oblique stripe states leads either to a rectan-
gular pattern or to a superposition of a rectangular and an
oblique stripe pattern. Here we investigate how the travel-
ing stripe forcing given by Eq.(1) changes the bifurcation
scenario of oblique stripes.

In Sec. 2 we describe equations for the two amplitudes
A1 5 of both oblique stripe states and the change of the
threshold induced by the traveling stripe modulation is
determined in Sec. 3. Two types of nonlinear solutions are
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calculated analytically in Sec. 4 and their linear stability
properties are given in Sec. 5. A selected number of nu-
merical solutions are presented in Sec. 6 and the article is
finished with concluding remarks in Sec. 7.

2 Amplitude equations

In anisotropic systems, such as electroconvection (EHC)
and Rayleigh-Bénard convection (RBC) in planarly aligned
nematic liquid crystals, the concept of amplitude equa-
tions [27-29] is a very successful approach for the descrip-
tion of patterns close to their onset [24,26]. This approach
relies on the basic assumption that the spatial variation of
the amplitude A(z,y,t) of a periodic pattern is small on
the scale of the wavelength 27 /¢, or 27 /p, of the pattern.

In the absence of external spatial modulations, the cou-
pled equations for the amplitudes A; and A, of the two
degenerated oblique stripe-states have been already de-
rived in Ref. [24]. Generalizing these equations in a man-
ner that includes the traveling and spatially periodic near
2 : 1 resonant forcing of the control parameter, the follow-
ing equations for the two amplitudes are obtained:

700 A1 = €A1 + (§10; + 0, + 20£1620:0,) A1
n Ge2i(qdw7ﬂt)—'4; —a (|A1|2 + b|A2|2) A,
(3a)
004 As = eAs + (202 + 5%6; —20£1£20,0,) Ay

+ Ge?laae=P) gx g1 (| As|® + b|A?) A, .
(3b)

€ measures the distance from the threshold of oblique rolls
and the frequency 7 is assumed to be of the order of the
inverse relaxation time 79 of the pattern. & and & are
the coherence lengths in z—direction and y—direction, re-
spectively. The parameter a is a measure how the principal
axes of the neutral surface are oriented with respect to the
z and y-axis. The coefficient g; determines the amplitude
of a stripe solution and together with the nonlinear inter-
action coefficient b, which is in most cases larger than one,
it determines the amplitudes of rectangles and more com-
plex patterns. The modulation function given by Eq. (1)
breaks the translational symmetry along the z—axis, but
one has still a translational invariance along the y—axis
and invariance with respect to reflections y — —y.

A rescaling of time and space coordinates, given by ¢t =
Tot', x = &', y = &y, yields a rescaled detuning ¢4 =
Ga&1 and frequency v = 1. Together with a rescaling of
the amplitudes by A; = A}/\/g1 (i = 1,2) this results in
the following two coupled equations:

Op Af = e Al + (9% + 0} + 200,10, A}
+GEM T () — (| 47 P +b| 4y ) A
(42)
6tl Alz = EAlz + (agl + 6;: - 2a(9zr 6y')AIZ
+GeHaa ) (AN (| Ay [P +b | A ?) AY
(4b)

These coupled amplitude equations for a traveling spa-
tially periodic 2 : 1 forcing are of a similar form as the
equations given in Refs. [7,8].

In order to compare the results gained from the rescaled
equations with real experiments, one has to determine ex-
perimentally the numerical values of 79 and & 2 of the
considered system. A dimensionless velocity v’ obtained
for instance for a domain wall etc. in terms of Egs. (4)
translates into the velocity v = & /79 v' in the real space of
the periodic pattern u(z,y,t). This is important for com-
parison with real patterns. In Sec. 6 the solutions are also
given in terms of the real field u, which are determined by
the amplitudes A; » via Eq. (2) and for the related trans-
formations we use in this work for reasons of simplicity
7o = &1,2 = g1 = 1, especially in Sec. 6.

The frequency v and the detuning g4 in the exponential
function of the forcing term may be removed by the sim-
ple transformation A}, = Ay s exp[i(gaz’ — vt')], which
transfers both parameters into the linear coefficients of
the equation. Then one obtains the two coupled equations

Oy Ay = [e +iv + (iga + 0w ) + 02 + 2a(iqq + 000y ] Ay
—(|Ai]> + 0|42 Ay + G A3, (5a)
Oy Ay = [e +iv + (iqq + 0pr)* + 02 — 2a(iqq + Op' )0y ] As
—(|A2® +b| A1 |H) Ay + GAT (5b)

which are investigated in this work.

3 Threshold

At first we investigate, how the threshold is modified by
a traveling stripe forcing as given by Eq. (1). For this
purpose we solve the linear parts of Egs. (5) by the ansatz

Al -F ea’t'—i—i(Qw'—i—Py') ’ Az o ea’*t'—i(Qw'—l—Py') (6)

with constant and complex coefficients F; and F5. The
solubility condition of the resulting two linear and homo-
geneous equations for Fj 5 gives the dispersion relation

c=c—A+VB2+G?>— 12— 2ivB (7)

wherein the two abbreviations
A=q3+Q*+ P? + 2aq4P, (8a)
B =2Q(qq + aP) (8b)

are used. From the neutral stability condition Re(o) = 0
one obtains the expression for the neutral surface £0(Q, P)

c0(Q,P) = A— \/M +V M? + 1232
B?+G? -2
2 7
below which the basic state is linearly stable. The imagi-
nary part of the dispersion relation at the surface £0(Q, P)
determines the frequency wg = I'm(c) with
vB
A—¢e’

with M= 9)

Wo = — (10)



S. Schuler, M. Hammele and W. Zimmermann: Traveling—stripe forcing of oblique rolls in anisotropic systems 3

w I T T T T
Cc - —
T~ a)
0.4r Sl
N
S
VoM L
of L
A
//, e
///"'/
0.4 = 1

wave vector

04 0.6
modulation G

0 0.2

0.8 1.0

Fig. 1. This figure includes as a function of the modulation
amplitude G the threshold &, in part c), the critical wavenum-
bers Q. and P, in part b) and the frequency wc in part a) for
the parameter value a = 0.3, a detuning g4 = 0.2 and a driv-
ing frequency v = 0.6. The dashed line in part ¢) describes the
analytical expression for the threshold .(Q = 0) as given by
Eq. (12) for G? > v* and by Eq. (15) for G* < v?, whereby the
dashed lines in part a) and b) represent the respective analyti-
cal formulas for the position of the extreme value at P. = —aqy
(Qc = 0) and the critical frequency w. = £vv? — G2. The
two dash—dotted lines in part b) describe Q. as obtained by
a numerical search for the extremum of the expression given
by Eq. (9). The solid lines in part b) and c) represent the
corresponding values of P, and .. The line types of the two
numerical branches of w. (dash—dotted lines in a)) correspond
to the two branches of Q.. The dotted line separates the two
regions G < v and G > v.

Equation (9) is valid for B2 > 0. The case B = 0 has
to be examined more carefully, because in this case the
expression under the square root in Eq. (9) is positive
only for G? > v2.

Case G? > v%: The first partial derivative of £¢(Q, P) as
given by Eq. (9) vanishes at its extremal value at Q = 0
and it may be factorized as follows, dgeo = Q f(Q, P).
The neutral surface has a minimum at @@ = 0 if its sec-
ond derivative 9%¢/0Q?|go is positive, which happens
in some range for G beyond |v| as described below. In this

case for Q. = 0 the neutral curve with respect to P is
described by

eo(P) = @3 + P? + 2aqqP — /G? — 12 (11)

and takes its minimum at P, = —agq. So the threshold for
G > v and Q. = 0 is finally given by

6C(G7 qd;’/) = q?[(]- - a2) i V/ G? — 12,

However, the second derivative 8%¢0/0Q?|g—0,P=—aq, 18
only positive if the inequality

(12)

(G°

_ 1/2)3/2
G2

is fulfilled. The value G at the point L in Figs. 1-3 is
determined for the case that left hand side and right hand
side of Eq. (13) are equal. As long as the minimum of
the neutral curve is located at ). = 0, the corresponding
frequency w, vanishes according to Eq. (10) and Eq. (8b).

However, Q = 0 does not correspond always to the
minimum of the neutral surface. Below G, which is de-
termined by Eq. (13), one has a negative second derivative
0%¢0(Q, P)/0Q* g=0,P=—aq, and the critical wavenumber
Q. # 0 is nonvanishing. It has to be determined by a nu-
merical minimization of £9(Q, P) with respect to @ and P.
For G — G and G < G, the critical wavenumber ). — 0
tends continuously to zero and therefore the point L at G,
in Figs. 1-3 is a so—called Lifshitz-point [22,23,30].

> 2¢3(1 —a?)? (13)

Case G2 < v?: In this range the imaginary part of o(Q, P)
is always finite and for () = 0 the dispersion relation is of
the simple form

o=¢—q3—P?—2aq4P +iVv2 - G? .

The real part of this expression for ¢ becomes maximal at
P. = —aqy and for this value the neutral surface ¢(Q, P)
following from Re(o) = 0 takes its minimum at

(14)

ec(@ = 0, P = —aqq) = g(1 — a®) . (15)
The nonvanishing frequency at threshold is
we = V2 — G2 (16)

However, similar as in the range |v| < G < G above,
the neutral surface takes in the whole range G? < v? its
minimum at a finite value of Q. # 0 and P, # —agqq,
where both are obtained by a numerical determination of
the minimum of the expression in Eq. (9).

Q. and P, as well as €. and w, are plotted as func-
tions of G in Fig. 1 and Q. tends continuously to zero for
G — G, as described above. The G-dependence of the
threshold and of the critical frequency w. at @ = 0, cf.
Eq. (15) and Eq. (16), have been included for comparison
and are described by the dashed lines.

The numerical results given in Fig. 1 suggest P, ~ 0
and ¢, ~ 0 for small values of the modulation amplitude
G. In this case one approximately gets from the dispersion
relation in Eq. (7) w. ~ +v for the critical frequency and
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Q. ~ £qq for the corresponding critical wave vector in z-
direction, which are described in Fig. 1 by the dash-dotted
lines. At threshold, the pattern propagates with a velocity
v x v — |w|, as discussed in more detail in Sec. 4. In the
limit G — 0 this velocity vanishes and the solutions of
Eq. (5) describe stationary stripes in y—direction (P, = 0)
with a wave vector that is shifted by g4.

4 Analytical expressions for two nonlinear
solutions

Analytical solutions of the nonlinear Eqs. (5) are traveling
waves as given by

A, = F, ¢l@'+Py—at)=it

AQ = F2 6_i(le+PyI_Qt,) . (17)

The two real and constant amplitudes F7 2, the nonlinear
frequency {2 and the relative phase shift 1) are determined
by the real parts and the imaginary parts of the two equa-
tions

[e—(qa+Q)* = P?>—2a(qa+ Q)P +i(v+ 2)F
+G e¥F, — F} —bF2F, =0, (18a)
[e — (s — Q)% — P? — 2a(qqs — Q)P +i(v — N)|F;

+GeYF —F} —bFiF, =0. (18b)
In the case @ = 0 and P = —agqy these equations may
be solved analytically. In the range G* > v? one has a
analytical solution with equal amplitudes |F;| = |F3| and

vanishing frequency {2,

=102 2
Popp = STVE S gy,
1+5b
14

iny =—— 19
siny ek (19)

where the abbreviation € = ¢ — ¢3(1 — a?) has been intro-
duced.

With unscaled coordinates this solution describes a
moving rectangular pattern (MREC) in physical space

u « Fj cos (kwx — vt — %) Cos (kyy - %) fJo(Z,(Ic,Pc)

with ky = ¢+ da, ky =pc —ada, (20)
propagating with the phase velocity v, = 7/(¢g. + ¢4) in
z—direction that is identical with the phase velocity of the
forcing.

The second analytical solution has unequal amplitudes

Fy # F5 and a finite frequency {2 with

Ff,Q_g(uﬁ), 0=—Hv,
v =
i = —=vV1-H?
sin ¢ G ,
- 4G?
= - 21
and H \/1 4% + 22(1 - b)? (21)

H is always real for G < v. In the range G > v it is only

real if
2v/G? — 12

(22)
holds. This solution with unequal amplitudes F; # F» de-
scribes in physical space a superposition of a moving rect-
angular and a moving oblique stripe pattern (MOREC),
as can be seen by the representation in terms of u(z,y,t)

u o Up(z) |:2F2 cos (kza: —vt— %) cos (kyy -0t - %)
+ (Fy — F») cos (kwa: +ky— 0+ )t + ¢)] , (23)
with £2 = (275. The first part in this expression cor-

responds to the rectangular contribution, which propa-
gates in z—direction with the same velocity as the trav-
eling stripe forcing, v, = 7/(g. + 4q¢). However, it prop-
agates also in y—direction with a different velocity v, =
2/ (p.—ady), which tends to zero at the continuous transi-
tion line between MREC and MOREC solutions, i.e. along
the dashed line in Fig. 2 and in Fig. 3, where both ampli-
tudes become equal, Fi = F5. The second part in Eq. (23),
the oblique stripe contribution, propagates in an oblique
direction. However, close to the transition line between
the MREC and MOREC solution the amplitude of the
oblique stripe part of the MOREC solution tends to zero
and the propagation in an oblique direction becomes in
some sense irrelevant.

In the limit of small values of G — 0, the MOREC so-
lution becomes an oblique stripe pattern, where the prop-
agation velocity to an oblique direction tends to zero, as
indicated by the formula in Eq. (23) and the analytical
expression for {2 given in Eq. (21). Roughly speaking, the
MREC solutions are locked to the traveling stripe mod-
ulation and the MOREC solutions interpolates between
these locked solutions and the unlocked ones in the limit
G — 0.

5 Linear stability of MREC and MOREC
solutions

In certain parameter ranges, the nonlinear analytical so-
lutions as given in Sec. 4 are linearly unstable with re-
spect to small perturbations. The stable regime depends
on the modulation amplitude, the control parameter, the
wavenumber detuning and the propagation velocity of the
forcing, as shown in this section. For this purpose the
ansatz

Al — (Fl + 'UA(.’L'I,yI,tl)) ei(Qz'—l—Py'—Qt')—iw’

Ay = (B +vp(a',y' 1) e (@ HPV=00 1 (29)

for any small perturbations with |va,g| < |F1,2| is chosen
and Egs. (5) are linearized with respect to v4 and vp. The
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Fig. 2. The nonlinear analytical MREC solution given by
Eq. (19) and the MOREC solution given by Eq. (21) are lin-
early stable for the parameter values a = 0.5, b =3, g4 = 0.2,
v = 0.6 in the range denoted by MREC and MOREC, re-
spectively. Each of them becomes linearly unstable along the
respective dash—dotted line. The solid line describes the thresh-
old .. The dotted line separates the two regions G > v and
G < v and the dashed curve marks the continuous transition
between these two types of nonlinear solutions.

resulting coupled equations for both fields are solved by
the ansatz

VA =y ea’t'+i(Kav'+Ly') + vy ea*t’—i(Kz’+Ly’) ,
vE = U3 eat'—i—z’(Ka:'—i—Ly') +y ea*t'—i(K:c'—i—Ly') (25)
with constant amplitudes v; (i = 1,2,3,4). The resulting
set of linear and homogeneous equations has solutions for
nonvanishing amplitudes v; only if the determinant of the
coefficient matrix vanishes. This solubility condition gives
an equation for the eigenvalue o that may be determined
mainly numerically. The stability boundary of the respec-
tive solution is then given by the condition Re(c) = 0
after an extremalization with respect to K and L.

Case gg # 0: For a finite wavenumber detuning gq # 0
there are three major ranges beyond the threshold (solid
line) in Fig. 2. For G > G, one has above threshold stable
moving rectangles (MREC) in a finite e-range, which is
bounded from above by the lower dash—dotted line. The
width of this wedge like domain increases with G.
Beyond the upper dash—dotted line in Fig. 2 MOREC
solutions are linearly stable. In the limit G — 0 the dash-
dotted line terminates at the control parameter value € =
g2(1 —a?)b/|1 —b| for b < 3/2 and at € = 3¢3(1 — a?) for
b > 3/2, where both values of € are determined analyti-
cally. Between both dash—dotted lines neither the MREC
nor the MOREC are linearly stable. In this range more
complex solutions, corresponding to finite values of @), are
preferred, as discussed in more detail in Sec. 6.

-0.8

0 0.2 04 06 0.8 1.0
modulation G

Fig. 3. Stability map for MREC and MOREC solutions in the
case ¢¢ = 0 for a = 0.5, b = 3 and v = 0.4. The solid line shows
the threshold e. and the dotted line separates the two regions
G > v and G < v. For ¢ > 0 and G > |v| along the dashed
line, given by Eq. (22), a continuous transition between the
MREC and MOREC solutions takes place. In the present case
for g4 = 0 the transition coincides with the stability boundary
for MREC. Below the dash—dotted line the MOREC solutions
become linearly unstable with respect to small perturbations.

Limiting case g; = 0: The threshold in this limiting case
is described by the solid line in Fig. 3. In a wide range
G < |v| the threshold vanishes, i.e. . = 0, and beyond
the point L ( G > Gp) the threshold decreases according
to Eq. (12) as a function of the modulation amplitude G
as described by the expression

G2 -2 . (26)

Ee = —

However, in a finite range G~ < G < |v| the threshold
becomes negative and the wavenumber () minimizing the
threshold becomes finite. This is also the case in a small
range |v| < G < Gr. In both cases, at the point L* in
Fig. 3 at G~ and at the point L at G in the same fig-
ure the wavenumber () decreases continuously to zero and
therefore one has in addition to G, also at G+ a Lifshitz—
point.

The transition line between the two nonlinear solu-
tions MREC and MOREC is given by Eq. (22) and it is
described by the dashed line in Fig. 3. It starts at G = v
and € = 0 and coincides in a wide range with the upper lin-
ear stability limit for MREC solutions. The dash-dotted
line in the same figure is the linear stability boundary for
MOREC solutions. The solutions occurring between the
dash—dotted and the dashed line are similar to the solu-
tions found for the case ¢4 # 0 in the region II of Fig. 2.

6 Numerical simulations

Here we investigate the nonlinear differential equations (5)
by numerical simulations with a pseudo spectral method.
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Fig. 4. Snapshots of one component of u(z, y,t) and for ¢4 =
0. The left part shows a snapshot of MREC comoving with
the traveling stripe forcing and the right part shows one for
a MOREC solution. For MREC the further parameters are
a=05b=3,¢=0.1,v=04, G=0.5 and for MOREC two
parameters were changed to G = 0.6 and € = 0.6. For both
cases p. = q./4 has been used.

If not stated otherwise, the range in the z — y plane is
a square with periodic boundary conditions and with a
edge length of 40\, where Ao = 27/¢, is the wavelength
of the pattern in z-direction. We focus especially on the
behavior of the solutions in the parameter range where
the analytical MREC and MOREC solutions are linearly
unstable.

6.1 Special case g; =0

For a vanishing wavenumber detuning g; = 0 the MREC
and the MOREC solutions are linearly stable nearly ev-
erywhere in the ¢ — G plane, besides a small region near
G ~ v, as indicated by the stability diagram in Fig. 3. In
Fig. 4 snapshots of both solutions in their respective stable
ranges are given in terms of a component of the real field
u(z,y,t), which is determined by the amplitudes A; » via
Eq. (2) with the ratio g./p. = 4. The edge length of each
section is nearly one third of the total size of the system.
The MREC solutions are locked in a frame comoving with
the traveling stripe forcing and parts of the MOREC so-
lutions travel slower and in a different direction according
to Eq. (23) (see also the discussion behind this equation).

There is a continuous transition between a MREC and
a MOREC, as shown analytically in Sec. 4 and Sec. 5.
This is also confirmed by numerical simulations for ¢; = 0,
where the simulation has been started in the MREC range
of Fig. 3 with a solution given by Eq. (19) and followed
by an continuous increase of the control parameter up to
the MOREC range in Fig. 3.

Beyond the dash—dotted line in Fig. 3, the MOREC
solutions are linearly stable for g4 = 0 and by decreasing
the modulation amplitude G the amplitude of one of the
two modes A; decreases too. While the MREC solutions
are locked to the traveling stripe forcing the MOREC be-
come more and more unlocked by decreasing the modula-
tion amplitude G, being in agreement with the analytical
results above.

6.2 General case ¢; # 0

In the more general case we investigate the effects of a
deviation g4 from the 2 : 1 ratio between the spontaneous
wavenumber ¢. and the modulation wavenumber 2k,,, i.e.
2k = 2(q. + §q)- In this case one expects a richer variety
of solutions of Eqs. (5), especially in the transition range
between MOREC and MREC solutions.

Solutions in the range of stable MREC in Fig. 2: In the
MREC range of Fig. 2 the comoving and locked rectan-
gles, given by Eq. (19) and Eq.(20), are linearly stable.
An example of this solution is shown in Fig. 5a), c) and
e) for parameters corresponding to the point S1 in Fig. 2.
Starting with random initial conditions this analytical so-
lution is always the attracting one in the MREC parame-
ter range in Fig. 2. The corresponding field u(z,y,t) has
the wavenumber ¢. + (gq + Q)/& in z—direction and a
wavenumber p. + P/&; in y—direction with Q = 0 and P =
—aqq on the level of the amplitude function A4;(2',y',t'),
which is shown in Fig. 5¢). In part a) of this figure a sec-
tion of a snapshot of this MREC pattern is shown in terms
of u(z,y,t). Part e) shows that the Fourier amplitudes of
the two amplitudes A; and A, of the MREC pattern have
the same modulus.

Solutions in the range of stable MOREC in Fig. 2: A
MOREC pattern as given analytically by Eq. (21) and
by Eq. (23) has amplitudes A4; »(z',y') that are periodic
in y—direction with the wavenumber P = —aq; and con-
stant along the z—direction, i.e. = 0. This pattern is
also linearly stable in the range denoted by MOREC in
Fig. 2. However, MORECs are only stable with respect
to tiny perturbations. Starting in simulations of Eqgs. (5)
with a MOREC solution that is superposed by larger, but
still small perturbations, then the MOREC pattern with
wavenumber () = 0, P = —aqy becomes unstable and
solutions with wavenumbers ) # 0 and P # —aqq are
preferred, similar as for the example shown in Fig. 5d).

Starting a simulation of Eqs. (5) with random ini-
tial conditions, long living transients occur that include
a larger number of defects, where most of them are an-
nihilated in the course of time. Such a transient is shown
in Fig. 6, which includes two remaining defects. Near the
defects, the typical MOREC pattern of oblique rolls with
a superimposed rectangular structure is deformed by a
kind of interstitial lattice line with endpoints at the two
defects. Both defects will annihilate each other soon af-
ter the snapshot in Fig. 6 and finally a state of oblique
stripes is reached, similar to that one given in Fig. 5d),
but now with |@| ~ 0.3 and |P| ~ 0.1. It is remarkable
that |Q] ~ 0.3 is larger than the detuning gg4.

After starting with random initial conditions in the
MOREC range of Fig. 2 our simulations never terminate
in a final state with wavenumber () = 0, P = —agqy for the
MOREC solution. Obviously, states with finite wavenum-
bers @ # 0 and P # —agqq, where the specific values of
@ and P depend on the parameters, have a much larger
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Fig. 5. The left parts describe a stable solution in the MREC
region, as obtained after starting simulations with random ini-
tial conditions for the parameters a = 0.5, b = 3, g4 = 0.2,
v =10.6,G = 0.8, ¢ = —0.3. Part c) shows the sum Re(A1+A>),
which is periodic in y-direction with a wavenumber P = —aqq.
Part e) is the power spectrum of it and in part a) a snapshot
of this MREC is given in terms of u;(z,y,t) with p. = gc/4,
cf. Eq. (20). The right column gives the respective results for a
MOREC solution after starting with random initial conditions
for modified values ¢ = 0.8 and G = 0.7. Part d) shows the
real part of A; + A», part ) the power spectrum of it and the
top part gives u;(z,y,t) according to Eq. (23) with p. = ¢./2.

basin of attraction than the analytical MOREC solution
with ) = 0, P = —agy. The moduli of the two amplitudes
A; and As of such a MOREC solution differ remarkably
for the parameters used for example in Fig. 5d), as indi-
cated in part f) of the same figure.

In the region of linearly stable MOREC solutions in
Fig. 2, solutions that include domain walls also persist
over a long time. Often there are pairs of straight domain
walls parallel to the y—direction that propagate in terms
of 14_11,2 slowly in the z—direction. A transformation to the
spatially periodic pattern u(z,y,t) changes the phase ve-
locity of the periodic pattern, but the velocity of the do-
main wall is the same in both representations. For example
for a modulation amplitude of G = 0.4, a control param-
eter € = 0.4 and all other parameters as in the right part
of Fig. 5, a simulation resulted in a state of the system

o

Fig. 6. The left part shows Re(A; + A») for a transient state
including a defect pair that is obtained in simulations started
with random initial conditions and for parameters correspond-
ing to the point S3 in the MOREC range in Fig. 2, i.e. a = 0.5,
b=3,94=02,v=0.6, G=0.7, ¢ = 0.8 In the right part a
component of the corresponding real field u(z,y,t) is plotted
in the neighborhood of the defect pair with p. = ¢./2.

M\\\ ':?if :5:5"2:15:'::15:15:..iii,,

X

X

Fig. 7. The left part shows Re(A; + A2) as obtained by simu-
lations of Egs. (5) after starting with random initial conditions
for parameters at the point S2 in Fig. 2, i.e. a = 0.5, b = 3,
qa = 0.2, v = 0.6, G = 0.8, ¢ = 0.3. The right part shows
u;(z,y,t) in a region near the lower left corner of the system
including the two domain walls. This pattern is an interme-
diate transient that evolves further to a rather stable zig-zag
pattern shown in Fig. 8a).

with two nearly equally sized domains, where the domain
boundaries are parallel to the y—direction and move in z—
direction with a velocity of about 10% of the forcing ve-
locity v, = ?/(g. + G4) in unscaled units that corresponds
in our example with & = 1 and 79 = 1 also to the veloc-
ity in scaled units of length and time v, = v/(q. + ¢a)-
There are also solutions with domain walls parallel to the
z—direction, but without any evidence for a movement of
the domain walls perpendicular to their orientation.

Nonlinear solutions in region | of Fig. 2: The MREC
solution as given by Eq. (19) and with the wavenumber
@ = 0 and P = —agqq is linearly unstable in range I of
Fig. 2. Starting in this range numerical simulations of
Egs. (5) with random initial conditions one usually reaches
states that include at intermediate stages domain walls as
shown for example in Fig. 7. Such domain walls move per-
pendicular to their orientation and very surprisingly, the
propagation velocity of this domain wall in Fig. 7 prop-
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Fig. 8. The figure shows Re(A; + A2) of two stable solu-
tions obtained in simulations for the same parameters as in
Fig. 7 but in part b) for a different initial solution. The re-
sulting zig-zag like final state in b) has evolved from a slightly
perturbed and inclined stripe pattern with the wave vector
(@, P) = (0.05,—0.1), whereas the pattern in part a) evolved
from that in Fig. 7.

Fig. 9. The figure shows u;(z,y,t) in a range corresponding
to the lower half of the system shown in Fig. 8a).

agates 1.2 times as fast as the velocity v, of the trav-
eling forcing. Remember that we have with & = 1 and
7o = 1 the same velocity in scaled and unscaled units
v = & /10 v' = 1.2v,. During the course of time such do-
main walls as shown in Fig. 7 may annihilate each other
and the final state may consist of oblique stripes, similar
as in Fig. 5d).

Sometimes one may end up with a stable final state
that is composed of two regions with different stripe ori-
entations, similar to that in Fig. 7. However, more often
patterns as in Fig. 7 occur only as a transient on the route
to other stable complex patterns that are similar in the
long time limit to the two examples in Fig. 8. In both ex-
amples the domains move with a velocity of about 1.5 v,
also faster than the periodic forcing.

One component of the field u(z,y, t), corresponding to
the stable solution in Fig. 8a), is shown in Fig. 9, whereby
DPe = ¢c/2 has been used during the transformation. The
snapshot in Fig. 9 covers the lower half of the area shown
in Fig. 8a). Similar to the case of the stable MREC solu-
tions, the nearly horizontal stripes in the amplitude rep-
resentation in Fig. 8a) generate a MREC-like pattern for
the u—field. Due to the small deviation from exact horizon-
tal stripes in Fig. 8a), these are not perfect rectangles and
they are slightly inclined. In the bulk of the horizontally

striped region, the wave vectors and the phase velocity of
the u—field nearly coincides with that of the exact MREC
solutions.

The vertical striped range in Fig. 8a) transforms into
a MOREC-like structure for the u-field, whose velocity
differs from that of the MREC-like pattern. As mentioned
above, the boundaries of this MOREC-like region move
synchronous with a larger velocity in z—direction than the
inclined rectangles that are locked to the phase velocity of
the periodic forcing.

For the parameters as in Fig. 7, the time evolution of
the spatially averaged quadratic modulus of the ampli-
tudes, [dz'dy’ |A;(2',y',t")]?, is shown in Fig. 10a). At
the time marked with ¢) in Fig. 10a) the snapshot that is
shown in Fig. 7 has been taken. This averaged quantity
[ dz'dy' |Ai(z',y',¢')|? is a measure for the global dynam-
ics of a pattern and for the parameters as used in Fig. 7
and Fig. 8 it becomes constant for long times, as can be
seen in Fig. 10a). The pattern corresponding to this con-
stant behavior at this plateau in Fig. 10a) is the zig-zag
pattern shown in the left part of Fig. 8. This constant
behavior is a strong indication for the surprising stability
of the zig-zag pattern in Fig. 8a). In the case of a static
forcing, this pattern is unstable, i.e. it is only stabilized
in region I by a finite forcing velocity. Actually, the sim-
ulations shown in Fig. 10a) have been continued up to
t' = 8 x 10* without any change of the constant behavior
of [da'dy' |Ai(z',y',t')? for the zig-zag pattern.

The time evolution of |4, (z}, yh,t')|* at a fixed spatial
point (zg, yg) is shown in part b) and part ¢) of Fig. 10 at
the times marked by b) and c) in part a) of the same figure.
Both curves indicate that the overall periodicity is deter-
mined by the propagating velocity of one of the domain
walls. However, while the signal in Fig. 10c), correspond-
ing to the pattern in Fig. 7, is already nearly periodic,
the signal in Fig. 10b), corresponding to a transient pre-
decessor, shows stronger deviations from periodicity. This
local signal shows a perfect periodicity for the zig-zag pat-
terns in Fig. 8a). The fact that one has a periodic behav-
ior of |A;(zh,yh,t')|?, but a time-independent behavior
in Fig. 10a) at long times, confirms that the pattern in
Fig. 8a) moves as a whole everywhere with the same ve-
locity and that it is stable. The periodic behavior of the
local signal |A;(z{,yh,t')|* as well as the constant behav-
ior of [ da'dy' |Ai(z',y’,¢')|? for the pattern in Fig. 8a)
depends very much on the used periodic boundary condi-
tions. For completeness it should be mentioned that the
lifetime of the transient state of domain walls grows with
the system size.

Instead of starting with a random initial solution, one
can directly start with oblique stripe solutions, slightly
disturbed by adding a small random perturbation, and
test their stability. In this case, the simulations show that
only solutions with a not too small z-component @ of
the wave vector will remain stable. For a starting solution
with e.g. @ = 0.05 and P = —0.1 the right part of Fig. 8
shows the resulting final state of the system. This state
did not show further changes even in rather long lasting
simulations and can also be considered as a stable pattern.
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Fig. 10. Part a) shows the time evolution of the spa-
tially averaged amplitudes [ dz'dy’ |A1(z,y,¢')|” (black) and
Jda'dy' |Ax(2,y',t')|? (gray). Close to the two times marked
in part a) by b) and c¢) the time-dependence of the squared
modulus |A:(zh, y6,t')|* of each propagating pattern is shown
in part b) and part c). The state in Fig. 7 corresponds to the
state in part a) marked by c). The pattern corresponding to
the plateau at large times in part a) is the zig-zag pattern in
Fig. 8a).

Many simulations in the region I suggest, that the fi-
nal state is not unique and it depends very much on the
initial conditions, as for instance the difference of the two
patterns in Fig. 8 shows. The difference between two fi-
nal states resulting from two different realizations of the
initial conditions may be even more drastic.

In region I in Fig. 2, the system may also end up in
a state of two equally spaced domains with walls parallel
to the y-direction, filled with oblique stripes of different
wave vectors, or in a pure state of oblique stripes.

Nonlinear solutions in the range Il of Fig. 2: Simula-
tions starting with a slightly perturbed MOREC solution,
cf. Eq. (21), as initial solution confirm the instability of

these solutions in region II of the phase diagram in Fig. 2.
Starting with random initial conditions one often termi-
nates in a state with two moving domain walls, which
separate regions of oblique stripes, similar as in Fig. 7a).
In contrast to the case of unstable MREC solutions, here
the width of these domains remains always constant and
this state including domain walls is a stable one in this
region. Furthermore, stable final states consisting of one
type of oblique stripes in terms of A(xz',y’,t') are also pos-
sible. More complex stable patterns similar to that in in
Fig. 8 found in region I of Fig. 2, have not been seen in
region II.

7 Summary and conclusions

In this work we have generalized an earlier investigation
about the effects of spatially periodic static forcing on
a stationary bifurcation to an oblique stripe pattern in
anisotropic systems, cf. Refs. [7,8]. Here we investigate,
how a propagating spatially periodic forcing, as given by
Eq. (1), acts on the bifurcation to oblique stripes. For
this we have restricted our study to a forcing wavenumber
2k,, in z—direction, which is roughly two times as large
as the wavenumber g. in z—direction of the pattern, i.e.
2k, = 2(ge + §q)- This corresponds to a 2 : 1 resonance,
but allows a small detuning §g.

For fairly large modulation amplitudes we found at
threshold moving rectangles (MREC), a snapshot of them
is given in Fig. 4. The MREC solution is locked to the
forcing and propagates with the velocity of the periodic
forcing along the a—direction, v, = /(g + dq)- If the con-
trol parameter is increased further beyond threshold or
if the velocity of the forcing is increased, a MREC pat-
tern becomes unstable. If the wavenumber detuning gy
vanishes, there is a continuous transition to a moving su-
perposition of rectangles and oblique stripes (MOREC),
whereby in this case the propagation velocity does not co-
incide anymore with the forcing velocity. Moreover, with
increasing values of the control parameter or decreasing
values of the modulation amplitude, the propagation ve-
locity of the MOREC decreases continuously.

For a finite detuning gy # 0 interesting and new stable
complex patterns occur in the transition regime between
MREC and MOREC patterns. These are for instance pat-
terns that include stable domain walls or patterns where
domain walls are coming and going during long lasting
transients, which may finally terminate in periodic pat-
terns but with @, P # 0. Or they relax, especially in the
range I of Fig. 2, to zig—zag patterns such as shown for
example in Fig. 8. Zig-zag pattern of this type are very
stable, as indicated in Fig. 10, but they are unstable out-
side the range I in Fig. 2 and they are also unstable for
nonpropagating spatially periodic forcing. Therefore, such
zig—zag patterns are a characteristic response behavior of
oblique rolls with respect to a nearly 2 : 1 resonant travel-
ing forcing. Moreover, and an even more surprising behav-
ior is the propagation velocity of such zig—zag domains.
They propagate for the parameters as chosen in Fig. 8
about 1.5 times as fast as the propagating stripe forcing.
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The patterns as well as the various transition scenarios
as described in this work are expected to be observable in
experiments similar as in Refs. [21,9] with a material as
used in Ref. [23].

Interesting discussions with M. Hilt and F. Ziebert are very
much appreciated.
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