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We analyze two different systems, which show spatio-teaipdnraos. One is spiral-defect
chaos 8DC) in thermal convection, a well established complex pattatnich competes with
stationary convection rolls near onset of convection. Aesimple two—dimensional model
for SDC is provided by (generalized) Swift-Hohenbe®jl) equations, which are extensively
used in the literature for many other systems as well. Iriqdar we concentrate on the impact
of spatially periodic modulations of the main control paeden, which leed to a transition from
rolls to rectangles and in some cases to an interesting steexe between stripes and defect
chains. As a byproduct we describe a certain coarseningessoaf SDC towards a few big
spirals for long—time SH-simulations. This is in contrasekperiments and rigorous solutions
of the standard Boussinesq equations for convection amiliz®s possible limitations of the
SH-model. Our second pattern forming example addressedyt@mics of ionic channels
in biomembranes. For their description we propose a novelemavhich captures a Hopf
bifurcations in systems with conserved quantities and wbiows in fact surprising dynamical
coarsening phenomena and spatio—temporal chaos.

1 Introduction

Applying sufficient stress to a system in a uniform state jfigtance by a temperature or
a density gradient, will often result in spatial or tempguatterns. In particular striped
patterns are ubiquitous in nature and are found in physib&mical, and biological sys-
tems-2. The analysis of the communality between the patterns amditiderstanding of
universal aspects of pattern formation has been significanbmoted by the analysis of
two—dimensional model equations like the various typesiazurg—Landau and Swift—
Hohenberg®H) equation& 4 Their formulation reflects the spatial and temporal symme-
tries of the underlying systems and some gross featureg g@fattern forming mechanism.
While the patterns are typically well-ordered close to ttierbation they reveal increasing
spatio-temporal complexity when moving into the nonlinegime. The goal of this paper
is to exemplify the various types of such complex patterrteimdifferent systems, which
are both amenable to a description by 2d-models.

We will at first consider convection in a horizontal fluid layeated from below, known
as Rayleigh-Bénard convectioREC), which is one of the best studied examples of pattern
forming systems>€ Beyond a critical temperature difference between theobotind
top boundary of the convection cell shown in Fig. 1, conwettiolls occur. Cold and
warm regions alternate periodically at the upper surfackeyTare optically visualized
as a 2d-striped pattern by exploiting the temperature digreae of the refraction index.
The resulting intensity modulations are considered as dergoarameter. The system
is dissipative (heat diffusion, viscous flow) and the staddaodel equations resemble
generalized (nonlinear) diffusion equations.
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Figure 1. A sketch of a thermal convection cell. Beyond aaaittemperature differencAT between the lower
and the upper container boundary convection rolls biferéedm the heat conducting state. The temperature
difference may be also spatially periodic modulated withamation wavelengt\,,,, as indicated by the read
heat wires.

The fully rigorous three-dimensional description of thafrmonvection rests upon the
Boussinesq equation. One obtains in fact stable roll swigtin a fairly large regime of
the applied temperature gradient to the fluid layer and wamdaer of the roll patterns (the
"Busse balloon™}:>. Therefore, the recent observation of spiral-defect c&B) in a
parameter regime where it competes with the stable roliettir was rather surprisifdg.
The complex spatio—temporal dynamics of SDC involves nogedpirals, targets, disloca-
tions etc. that have been modeled first by numerical sinariatof so—called generalized
Swift-Hohenberg$H) equation¥*2 These simulations provided important insights into
the underlying mechanism of SDC, however, the generaliz¢dn®del implies approx-
imations with possible limitations. Therefore, the relidyp and the range of validity of
2d-models for RBC is of considerable interest. A check ohsmodels against rigorous
results is possible, because most of the characteristigepties of SDC are reproduced
with high precision by the standard Boussinesq equatiohs In fact the long—time dy-
namics of solutions of the SH equation, which is charactertzy small spirals coalescing
into a few big one¥, is in contrast to the experiments and rigorous Boussinelstiens
(see Sec. 2.1).

In addition we will take the opportunity to investigate thggact of spatial modulations
of the control parameter on SDC (see Sect.2.2). We will shawin this case rolls can
be substituted by rectangles at threshold. Further abaestbld instead of SDC defect
chains become favored against SDC. These features seemgienkeéc, since they are
observed in the modulated generalized SH model and the midiBoussinesq equations
as well”’.

As a second example we will study in Sect. 3 the dynamics efatting ion—channels
in biomembrané$. Their activity (measured at the outer 2d surface of the nmranmg)
can also display patterns that may vary in space and time.fadiethat the number of
ion channels is fixed, gives rise to a "conserved” order patamin contrast to the "non-
conserved” order parametet temperature field in RBC), and requires substantially dif-
ferent types of models. Thus, to describe the ion—chann&mycs we have constructed
a novel universal model equation for a conserved order patenmThey lead to complex
spatio-temporal patterns and coarsening mechanism, wliffeln substantially from those
observed in the complex Ginzburg-Landau equafigi, which is used as the universal
description of waves (Hopf-bifurcations) in the case of ananserved order parameter.
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2 Spiral-Defect Chaos and its M odulations

In this section we discuss simulations of the generalizedegidations in a parameter
range where SDC occurs. In this model the two real figlfis t) and((r, t) (see e.g.Ref.
9, 10) are coupled and we allow also a modulation of the cbpammeter by a spatially
periodic functionM (x) = 2G cos(kx) with k = 2w\,

[at +gmU-v}w - [s—l—M(m) —a +A)2}¢—¢3, (1)
[0 = P92 = )] AC = [(0,0)0. — (0:),] Av. (1b)

¥ (r,t) describes the planar spatial variations of convectionepadt (e.g. the tem-
perature field), which consist locally of convection-roktphes. ((r,¢) is a veloc-

ity potential determining the mean flolb = (9,(, —0.¢). The control parameter

e =278 (AT — AT.)/ AT, serves as a dimensionless measure for the applied tem-
perature differenc&T" across the fluid layer. The time is scaled in such a way thata ti
lapse oft = 5 in Egs. (1) corresponds to the common vertical diffusioreti) which is
about a few seconds in experiments.

Any curvature of the rolls produces a vertical vorticity iet A{(r, ) which increases
with decreasing Prandtl numb@¥ according to Eq. (1b). In contrast to the claims ex-
pressed in several papers by Gunton and coworkers (see &.g2%3, only the dominant
term~ c? on the left-hand side of Eq. (1b) can be directly traced badké Boussinesq
equations. The two other terms 7, n), respectively, are in principle phenomenological,
as discussed in some detail in Ref. 11. In Eq. (1a) the retevaf((r, ¢) is controlled by
the coupling constant,,. The value ofy,, can be calculated ag,, = 12.2 for ¢? = 2 and
P = 1 by comparison with the known zig-zag stability boundary afieection rollg2.

The coupling to the mean flow, which becomes more importaheeiat smallP or
largeg,, is crucial for persistent SDC. In the limit of large PrandtinmbersP, where¢
is hardly excited, the dynamics of becomes purely relaxational and approaches a low
dimensional stationary state of the corresponding Lyapuoactional®* Note, how-
ever, that any strongly disordered pattern before it elopaites generates virtually instan-
taneously a strong, long-range mean-flovaccording to Eq. (1b) and can thus easily lead
to a transient SDC-like dynamics.

2.1 Coarsening of SDC

In our numerical solutions of Egs. (1) without modulation$ () = 0) we have chosen
the same set of parameters as in the previous Wdfk&, namelyc? = 2, g¢,, = 50,

e =n=P =1, e =0.7. Mostly we consider an aspect ratiolof= L/2d = 32 where

L denotes the lateral extension of the convection cellaitsl thickness. At first we have
performed simulations in a square domain with periodic laauy conditions in order to
avoid an artificial bias from the sides. Starting from randoitial conditions yields a
typical snapshot as shown in Fig. 2(a)&abt,. This pattern compares well with those
already shown in Refs. 9,10 at the same time lapse. It regmnaltdo the characteristic
SDC snapshots observed persistently in experimiéris during numerical solutions of
the fundamental Boussinesq equatidngdowever, when continuing the runs over much
longer periods beyon&00t, the scenario changes qualitatively and the pattern cogrsen
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Figure 2. The the two dimensional solutigrir, ¢) of (1) for periodic boundary conditions is plotted at iniea
timest after starting with random initial conditioHs The parameters afeé = 32 (aspect ratio)s = 0.7,
gm =50,c> =2,n=1,P =1landr = 1.

@

t = 54000 t = 64000

towards a "big spiral” as shown in Fig. 2(c) and Fig. 2(d), ethrotates about a slowly
migrating center. Only at the boundaries of the big spira finds remnants of the pre-
vious persistent generation and annihilation of smallagir ForP =~ 1 the coarsening

to big spirals is neither observed in experiments nor dusimulations of the Boussinesq
equations. For more details about this coarsening we reft6 t26.

Though for many purposes generalized SH-models are clgrtaény valuable tools
to study 2d-patterns, however, our investigations of SD@stlearly that one has to be
aware that the long—time behavior of hydrodynamic systeightnot be adequately mod-
eled. Accordingly, their application to coarsening stetfi@r to the analysis of statistical
properties of SD& might be questionable.

2.2 Effectsof a Spatially Modulated Control Parameter

Spatially periodic modulations of spatially periodic [gatts can lead to commensurate—
incommensurate transitioffs?® or to surprising two-dimensional patte?fs$2 In other
cases spatial periodic modulations break in addition thallceflection symmetry and in-
duce time dependent patte?fis®. Spatial modulations of parameters may also be viewed
as a control technique in some analogy to temporal comptif unstable states in low
dimensional temporal chat§s®” or to the control of spatio-temporal complex phenom-
ena® 3%, SDC is intrinsically quasi two—dimensional and of rathifiedent nature than the
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Figure 3. In a) a rectangular pattern is shown, that occuesfatcing wavenumbek = 5go/4 and a forcing
amplitudeG = 0.3 immediately above threshold. Increasing the control patantoe = 0.7 a transition to
modulated rectangles takes place as shown in part b). Faghdlglsmaller modulatiorG = 0.2 the solution as
shown in c) is stable. When the modulation amplitude is frtieduced td7 = 0.077 the range of the vertical
stripes becomes unstable against spiral formation.

examples mentioned before. Hence controlling or forcintpisfexperimentally accessible
pattern is expected to lead to different and new phenomena.

The onset of pattern described by the model in Egs. (1) iscedifrome,. = 0 in the
case without modulations tQ = —2G with a finite modulation amplitudé’ and modula-
tion wavenumbek < 2qo. In this range the projection of the wavenumbgr= (g, q,)
of the pattern onto the—axis is in2 : 1—resonance with the modulation wave number
2q, = k. Especially in the rangk ~ ¢ rectangular pattern occur at threshold as shown in
Fig. 3a) fork = 5¢o/4 andG = 0.15. If the control parameter is further increased beyond
threshold a transition from rectangles to modulated regiestakes place, c.f. Fig. 3b).

If the effect of mean flow is taken into account with the conglconstantg,,, = 50
andP = 1, again at threshold rectangles occur at first. Howevergamging the control
parameter up te = 0.7, where SDC occurs in the absence of modulatidfg) = 0,
then one observes a transition from SDC to defect chainshndme similar to the pattern
shown in Fig. 3d). This coexistence between the horizontglespattern and the SDC
like pattern is due to an interplay between the mean flow fjéldy) and the modulation
M (z). This interplay stabilizes for stronger modulations atsmsurprising coexistence of
two orthogonal stripe pattern as shownde= 0.2 in Fig. 3c). For amodulation amplitude
of aboutG = 0.07 the vertical stripes shown in Fig. 3c) become unstable véipect to
SDC like pattern as given in Fig. 3d). Also this surprisingt@an persists forever. Close
to the transition from a pattern shown in Fig. 3c) to a pat@srshown in Fig. 3d) the
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embedded SDC like ranges are stationary. Reducing the taplir further, then the
SDC like pattern becomes time dependent, but the narrow 8@Cdnge in Fig. 3d) is
still stable in some range ¢f. However, after a further reduction 6fthe SDC like stripes
invade the range of the horizontal stripes andfor» 0 SDC patterns are met everywhere
as discussed in Sec*®2 From simulations of the Boussinesq equations with a maedla
temperature differencAT a very similar scenario is obtained, as described in moldet
elsewher?'.

3 Biomembranes

In a model describing the collective dissipative dynamit®aic channels in biomem-
branes, an oscillatory bifurcation has been fdtin8ince the ion—channels are neither cre-
ated nor annihilated, the ion—channel density is a condeguantity. Therefore, the Hopf
bifurcation in this system is rather different from commaueitiatory systents, where the
major fields are unconserved. Accordingly, the common cermainplitude equation with
complex coefficients (see e.g. Ref. 1,21), which describesionlinear solutions above
an oscillatory instability in systems with unconservedmitges, cannot be applied to a
description of the generic properties of the oscillating-iohannel density.

In a system with conserved fields, the equation for the coxnmider parameter field
A(z,y,t) beyond an oscillatory instability is as followfs

QA =-V?(n+ia+ (1+ib)V? — (1 +ic)|A]*))A
+(dy +1idy)V [(A*VA — AVA*) A]. 2)

This equation has been derived on the basis of general sympréiciples and conserva-
tion laws. Alternatively Eq. (2) has been derived from theibaquations of motion of the
ionic—channels by a generalized perturbation expansionnar the basic stat® In this
case the coefficients can be expressed in terms of the diffusinstants, the charge and
the mobility of the ion—channels.

The basic statel = 0 becomes unstable against small perturbations of the fbrsa
e7t+iQz if the growth rate , = R(a(Q)) becomes positive, with the complex dispersion

o(Q) = Q*(n+ia — (1 +1ib)Q%). ®3)

The growth rate 4 (Q) takes its maximum at the wavenumligy, = /n/2. Starting a
numerical simulation of Eqg. (2) in one spatial dimensiorhwéndom initial conditions, the
Fourier mode corresponding to the wave num®sgris indeed the fastest growing mode in
the initial state as can be seen at the bottom of Fig. 4a). Mesyvthe saturated nonlinear
right (left) traveling wave solutiond = F exp[i(Q2t — (+)Qmz)] of Eq. (2) are unstable
with respect to modulations with a wavenumbérand the original traveling—wave solu-
tion even changes its propagation direction in most casethefsame time the wavelength
(wavenumber) increases (decreases) and the resultingeriiag process can be observed
in the middle of the space—time plot of Fig. 4a). The resglshghtly modulated traveling
wave exists for a quite long transient period (that is ndyfshown) but it becomes again
unstable with respect to a short wavelength instabilitheseen in the middle of Fig. 4b).
In the late stage of the coarsening process the solutioroappes always a traveling wave
state with the largest possible wavelength set by the pieitpdenght L of the system (we
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Figure 4. The real pafR(A(z,t)) of a one-dimensional solution of Eq. (2) is shown as a spate-plot in
panels a) (initial state), b) (later stage). The coarseisingpvious. The corresponding two-dimensional solutions
are shown in panels c)-f) each at a fixed time. The followingpeeters in Eq. (2) have been used= 1, a =
04,b=1,¢c=-2,d1 =0.2,d> = —0.1.
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use periodic boundary conditions). If non-flux boundaryditians are used, the coarsen-
ing is essentially unchanged, but one has to deal with thesifgpropagation direction of
the traveling waves too.

Figure 5. In a) the real pai®(A(z, t)) of the one dimensional solution of Eq. (2) is shown. This ia parameter
regime with persistent spatio-temporal chaos. In b) thepaaf(A(z, y, to)) of the two—dimensional solution
is shown at a fixed timéy and in c) the modulugA(z, y, to)|. The parameters for these simulations in Eq. (2)
aren=1,a=05b=1,¢c=—1.73,d =04, dp = 1.1.

For the same parameters as in Fig. 4a) and in Fig. 4b) theardagsprocess in two
spatial dimensions is slightly different as indicated bgg-idc)-f). Fig. 4c) shows the real
part of the solution at an intermediate time. Slightly afterd, similar as in Fig. 4d), very
often a Zig-Zag like pattern occur, which itself becomestalble after a longer transient
period. During a further intermediate regime solutionsilsimas in Fig. 4e) occur, but
finally also in two spatial dimensions the traveling waveestas shown in Fig. 4f), is the
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preferred state. This scenario holds for a large range @fpeters in one and two spatial
dimensions. This dynamical coarsening is rather diffefloth the common coarsening
phenomer& 2" *1and more details will be described elsewhere. The durafitreovhole
coarsening process increases with the system/size

There are also parameter regimes with persistent spatipeteal chaotic solutions of
Eqg. (2). An example of this solution type in one spatial disien is given by a space-
time plot in Fig. 5a). In two spatial dimensions two shap shaitthis solution at the same
parameters are given in Fig. 5b) and Fig. 5¢), where the r@aR{ A(x, y) is shown in
part b) and the modulysi(z, y)| in part c). The blue dots in Fig. 5c) correspond to zeros
of the modulug A(x, y)| and therefore to defects of the complex fieldr, y). A more
complete characterization of these solutions is givermdised®.

4 Conclusions

We have shown, that certain 2-d models are very useful toridbesgeneric features of
spatio-temporal complex patterns. Nevertheless one hasdware of their possible short-
comings. Forthcoming experiments (E. Bodenschatz, CodméVverity) are dedicated to
test in particular our predictions regarding the influentepatial modulations on SDC.
This will certainly give rise to an interesting interplayttveen numerical and experiman-
tal investigations. Our investigations of the new modeltfe dynamics of ion-channels
have just started. In view of the intensive work on the com@@zburg-Landau equation
for oscillatory patterns with a non-conserved orderpatarfie certainly one of the most
studied nonlinear equations in physics, and the applicatio biophysics we are looking
forward to intensive studies of our model as well.
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