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Abstract. The scaling-down of devices to the atomistic scale lets them operate close to their ballistic limit. At
these dimensions the resistance of the entire system is dominated by the contacts. In this paper we describe a
simulation tool by which the metal-nanotube heterostructure is modeled atomistically in its entirety, so that contact
properties and the associated contact resistances can be explored for different contact materials. We show results for
a self-consistently calculated current-voltage (I-V) for an armchair tube with its open ends contacted to gold-[111]
surface.
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1. Introduction

The study of transport through molecules attached to
surfaces, and nanoscale devices such as metal-nanotube
heterostructures is of high technological and funda-
mental interest. Since the size of the devices are con-
tinuously shrinking to atomistic scales, quantum me-
chanical effects dominate and control the performance
of the device. On these scales the physical and chem-
ical properties of the interface region between the de-
vice and the contacts become particularly important,
especially when the central device operates close to
its ballistic limit. Under these conditions the effective
resistance of the entire system is dominated by the in-
terface, which extends only a few atomic layers.

Near-ballistic transport of carbon-nanotube FETs
(CNT-FETs) has been experimentally reported at low
temperatures, where CNTs show Schottky-barrier type
behavior. On the other hand, ohmic behavior has also
been reported, with Pd contacts, for example [1]. It is
therefore important to develop an atomistic description
of the metal-CNT interface.

To understand transport through metal-nanotube
contacts on an atomistic scale, different modeling and
simulation techniques, each well-established in sepa-
rate communities, have to be merged. One has to ac-

count for the electronic structures of both the metal
and the tube, along with the local bonding chemistry,
charge transfer and bandlineup at their interfaces, the
3D electrostatics, and finally non-equilibrium quantum
transport under bias—all at the same time.

In this article we describe a self-consistent Poisson-
NEGF scheme that accounts for the above using
Extended-Hückel-theory (EHT) [2] to model the metal-
nanotube system atomistically, cf. Fig. 1.

2. Choice of Model Hamiltonian

The first step within the modeling process is to spec-
ify an appropriate Hamiltonian for each sub-system,
namely for the device (tube) and the contacts. For an
atomistic description we choose EHT, which is a non-
orthogonal, semi-empirical electronic structure scheme
well-known in quantum chemistry [2], and which has
been extended to describe bulk-properties of solids
such as bandstructures [3].

In contrast to empirical tight-binding, where the
Hamiltonian matrix elements are directly used as fitting
parameters, in EHT only the diagonal (onsite) matrix
elements of the Hamiltonian H and the orbital basis-
functions are fitted. The prescription to construct the
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Figure 1. Sketch of a typical device geometry for a CNT connected
to metallic contacts such as gold in [111]-orientation. Heff corre-
sponds to the effective device Hamiltonian incorporating the Hamil-
tonian of the isolated device Hdev, and the self-consistent potential
Uscf . The self-energy matrices �S,D are introduced to account for
the device-contact couplings. VS , VD , and VG are the source, drain,
and gate terminal potentials, respectively.

EHT-matrix elements is

Hµµ = Eµµ (fit), (1)

Hµν = 1

2
Keht Sµν(Hµµ + Hνν), (2)

Sµν =
∫

d3rφ∗
µ(r)φν(r), (3)

where Sµν is the overlap matrix between the atomic
wavefunction φµ,ν of orbital µ and ν, respectively [2].
Keht is an additional fitting parameter, typically set to
1.75 for molecules and 2.3 for solids [2,3].

Employing the parametrization due to Cerda et al. [3]
ensures, that the choosen model Hamiltonian repro-
duces the correct bulk physics by means of the E − k
relation, cf. Fig. 2. This is an important step within the
benchmarking of the individual sub-systems, since the
bulk-bandstructure of the contacts enter indirectly into
the self-energy �, which accounts for the open bound-
ary condition of the device Green’s function, as will be
discussed further below.

3. Laplace Potential

The Laplace equation, ��L (r) = 0 is solved using the
Finite Element Method employing Dirichlet boundary
conditions for the potential at the source, drain, and
gate. The source is taken as reference and is grounded.
The Laplace solution at each carbon-atom position {Ri }
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Figure 2. Calculated bulk-bandstructure for gold within Extended-
Hückel theory using the parametrization due to Cerda [3].

is obtained using linear superposition

�L (Ri ) = VD �L ,D(Ri ) + VG �L ,G(Ri )

+ VS �L ,S(Ri ), (4)

where we set �L ,S(Ri ) = 0 by grounding the source.
We solve for �L ,D and �L ,G separately using ��(r) =
0 with unit voltage applied only to the corresponding
plate and grounding the rest. The electrostatic energy
is then given by UL (Ri ) = −q�L (Ri ) with q = |e| the
charge of the electron.

4. Poisson Potential in CNDO

In order to obtain the electrostatic potential due to the
charge distribution in the device, we solve the integral
form of Poisson’s equation in orbital space. The inter-
action energy between electrons is given by [2,4]

H ee
σδ =

∑
αβ

ραβ

[
(σδ|αβ) − 1

2
(σα|δβ)

]
, (5)

where (σδ|αβ) is the two-center integral for electron-
repulsion, and ρ is the density-matrix. The second term
to the right of Eq. (5) is the Fock-(exchange) term,
which we will discard. The first term describes the clas-
sical Coulomb (Hartree) interaction.

The two-center electron-integrals can be calculated
within the CNDO-approximation (Complete Neglect
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of Differential Overlap). Within this scheme the two-
center integral is approximated by (σδ|αβ) = 0 except
for (σσ |δδ) = γσδ . A further simplification can be
made if the integrals for all valence orbitals of the same
atom are identical, γσδ ≡ γi j , ∀σ ∈ i, δ ∈ j , where
i, j are atomic indices [4]. This means that electron-
electron interactions are not orbital resolved. In this
case the electrostatic energy at site Ri is given by the
Poisson term

Ui,P = γi iρi +
∑
j �=i

ρ jγi j , with (6)

ρi =
∑

σ

ρi
σσ , (7)

γi j = e2

/(
4πε0 Ri j + 2e2

γi i + γ j j

)
, (8)

and Ri j the distance between atom i and j . The electro-
static interaction between two electrons located at atom
i and j , respectively, is calculated via Eq. (8) within
the Mataga-Nishimoto approximation [4].

The values for the one-center two-electron integrals
γi i are taken from experimental data for the ionization
energies and electron affinities for each atom species
i . Due to non-orthogonality, the atomic Poisson-term
also contains an off-diagonal contribution Ui j,P =
1
2 Si j (Ui,P + U j,P ) with Si j the overlap between atom i
and j .

5. Non-Equilibrium Transport

The transport of electrons through the nanotube un-
der bias is described by means of the Non-Equilibrium
Green’s Function formalism (NEGF) [5–7]. The central
quantity within this formalism is the retarded Green’s
function G which formally corresponds to the retarded
response due to a local excitation.

Within the coupled Poisson-NEGF solver the re-
tarded Green’s function of the device is given by

G = (E S − Hdev − Uscf (ρ) − �S − �D)−1 (9)

which includes the matrix elements S, H of the isolated
device, the effective self-consistent potential Uscf =
UL + UP (ρ) consisting of the Laplace and Poisson
potentials, and the self-energy matrices �S,D .

The self-energy matrices account for the open
boundary conditions for the device region due to the
source and drain contacts. Each contact is assumed to
be in equilibrium, characterized by the Fermi-Dirac

distribution fi (E) = 1/(1 + exp [β(E − µi )]), i =
S, D and β = (kB T )−1 with kB the Boltzmann con-
stant, T the temperature, and µi the chemical poten-
tial of contact i . The self-energy matrices are given
by � = τGsτ

†, where τ corresponds to the cou-
pling matrix describing the chemical bonding between
the tube and the gold-[111] surface. Gs is the surface
Green’s function of the contacts, which is energy de-
pendent, and contains all information about the bulk-
bandstructure of the leads projected on the gold-[111]
surface. The contacts are assumed to be semi-infinite
leads along the transport axis, and infinite in the trans-
verse direction. As described in [8] the surface Green’s
function can be calculated iteratively along the trans-
port axis using periodic boundary conditions in the
transverse direction.

Figure 3 shows the bulk (DOS) and surface (SDOS)
density of states of the gold-contact modeled in EHT.
The Fermi-energy is at EF = −10.0 eV and the DOS
per atom per spin is roughly ≈ 0.18 eV−1, which agrees
very well with the published data for the total DOS of
≈ 0.34 eV−1 including spin [9]. The non-equilibrium
part enters into the formalism when calculating the
correlation function G< [7], which specifies the non-
equilibrium occupancy of the device states. The state
filling is determined both by the contact chemical po-
tentials and their couplings strength to the device.

The strength of the coupling is determined by the
broadening matrices �S,D = i(�S,D − �

†
S,D), which

characterizes the life-time of an electron in each de-
vice state. The electron correlation and the respective
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Figure 3. Calculated bulk (green) and surface density-of-states
(blue) for gold-[111] determined by means of the recursive tech-
nique as described in Ref. [8].
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density matrix at energy E are given by [7]

G<(E) = iG( f1�1 + f2�2)G† (10)

ρ = i

2π

∫ ∞

−∞
d E G<(E) . (11)

The calculation has to be done self-consistently, since ρ

depends on U (ρ) through the retarded Green’s function
G. The self-consistently converged Green’s function
is used to calculate the bias-dependent transmission,
T (E) = T r [�SG�DG†], and the source-drain current,
I = 2e

h

∫ ∞
−∞ d E T (E) [ fS(E) − fD(E)] [7].

6. Results and Discussion

We now apply the above scheme to calculate the I-V
characteristics for a metallic, armchair (5,5)-tube con-
nected to a gold-[111] surface, cf. Fig. 4. The I-V
is linear within the bias voltage range of ±1 V. For
ideal CNT-CNT junctions, we get a conductance of
2G0 = 4e2/h coming from two degenerate valleys
and a factor of 2 due to spin. With Au-contacts,
however, the conductance of the CNT is reduced to
G ≈ G0 = 2e2/h, implying that only one of the
two metallic bands conducts around the Fermi level.
This agrees with equilibrium ab-initio calculations of
Palacios et al. [11], who considered different metals
such as Al and Au. Choi et al. [10] argued that the
decrease of the conductance from 2G0 to G0 can be
explained in terms of the different coupling strengths
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Figure 4. Self-consistently calculated I-V as function of the bias
voltage VB for a metallic (5,5)-CNT connected to bulk-Au contacts.

of the extended π and π∗ states of the tube due to their
different angular momenta. At present, it is not clear
if this is the operating mechanism in our calculations,
and the theory therefore needs further investigation.

7. Summary

We have described a self-consistent solution scheme
based on NEGF within Extended-Hückel theory. This
theory is capable of capturing the bulk-contact physics
as well as the chemical bonding at the interface. The
scheme was applied to calculate the I-V for a metallic
tube connected to Au-[111] surface, where the conduc-
tance was reduced to G ≈ G0, consistent with other
calculations.
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