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Ferrofluid pipe flow in an oscillating magnetic field along the pipe axis is studied theoretically in a
wide range of the flow rate. The field-dependent part of viscositysit can be positive or negatived
reveals significant dependence on the flow vorticity, i.e., ferrofluids exhibit non-Newtonian
behavior. This is manifested in an alteration of the velocity profile—it ceases to be parabolic—and
deviation of the flow rate from the value prescribed by Poiseuille’s formula. The presented model
based on the conventional ferrohydrodynamic equations and an assumption of the ferrofluid
structure fits well experimental data recently obtained by Schumacher, Sellien, Konke, Cader, and
Finlayson f“Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an
oscillating magnetic field,” Phys. Rev. E67, 026308s2003dg. © 2005 American Institute of Physics.
fDOI: 10.1063/1.1863320g

I. INTRODUCTION

An increase of ferrofluid viscosity with the application
of a steady magnetic field was first revealed by McTague1 for
Poiseuille flow. During the next 35 years themagnetoviscos-
ity was an object of intensive theoretical and experimental
studies.2–9 The mechanism of magnetoviscosity has been ex-
plained in Refs. 2 and 3. Magnetic field tends to fix particle’s
own magnetic moments in the field direction. Thereby it im-
pedes free particle rotation in a vortex flow. Indeed, if the
field is off, each particle in, e.g., plane Couette flow freely
rolls along a corresponding shear plane, while in a suffi-
ciently strong magnetic field the particleslips along a shear
plane without rotation. In the latter case the liquid is forced
to flow round the particles. This leads to an extra dissipation
of kinetic energy of the fluid what is manifested in an
additional—so-calledrotational—viscosityhr.

Interestingly,hr becomesnegative10–12 if the field oscil-
lates in time with a high enough frequencyv satisfying the
inequalityvtB.1; heretB=3hV/ skBTd is the Brownian re-
laxation time,V is the particle volume, andh is the fluid
viscosity. Thenegative-viscosity effectprovides some in-
crease of the flow rate compared to the case when the field is
off. It is worth noticing that existence of such a negative
component of viscosity of course does not contradict thermo-
dynamic laws. Actually,hr ,0 simply means that some part
of energy of the oscillating magnetic field transforms into
kinetic energy of the fluid: high oscillating fieldspins the
particlesup and then accelerates the ferrofluid flow. Mean-

while in a steady magnetic field,hr is always positive. In-
deed, such a field may be created—even though in
principle—by means of permanent magnets whose magneto-
static energy certainly cannot be expended on a maintenance
of ferrofluid motion.

Predicted ten years ago by Shliomis and Morozov,10 the
negative viscosity effect was soon after observed and inves-
tigated by Bacriet al.11 in Poiseuille flow with an ac solenoid
wrapped around the pipe. Further, in a similar experiment,
Zeuner, Richter, and Rehberg13 extended the study11 to a
much larger range of magnetic field amplitude and fre-
quency. Both these experiments were limited to slow, lami-
nar flows satisfying the conditionVtB!1 whereV is the
azimuthal component of the flow vorticityV=s=3vd /2.

The magnetic torquem3H ,smHd, trying to align the
particle magnetic momentm along the fieldH is hindered by
the random torque,skBTd, and the regular viscous one,
s6hVVd. Above values in brackets have the torque dimen-
sionality and represent scales of the mentioned torques. Let
us introduce nondimensional magnitudes of the magnetic and
viscous torques:

j = mH/skBTd, 2VtB = 6hVV/skBTd. s1d

In the limiting case of low shear rates,VtB!1, only thermal
agitation impedes orientation of particle magnetic moments
along the field. Hence the rotational viscosityhrsjd is a func-
tion of the Langevin parameterj but does not depend on the
fluid vorticity V. In other words, the ferrofluid behaves in
this limit as a Newtonian fluid. Just such a behavior was
observed in experiments.1,11,13

For a particle of typical sized,10 nm settled in a fluid
with viscosity h,10−2 P the Brownian relaxation time
proves to be very short:tB,10−7–10−6 s. Therefore, for

adPermanent address: Institute of Molecule and Crystal Physics, Russian
Academy of Sciences, 450075 Ufa, Russia. Electronic mail:
Alexei.Krekhov@uni-bayreuth.de

PHYSICS OF FLUIDS17, 033105s2005d

1070-6631/2005/17~3!/033105/8/$22.50 © 2005 American Institute of Physics17, 033105-1

Downloaded 02 Nov 2011 to 132.180.92.65. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1863320


single particles the condition of Newtonian behavior,VtB

!1, is always satisfied in practice. Very often, however, fer-
rofluids turn out to be structured, i.e., consisted of aggregates
composed out of magnetic grains. The aggregation is pro-
vided by magnetic dipole interparticle interaction between
the grains. Owing to strong anisotropy of the interaction, its
excess over the energy of thermal fluctuations leads to for-
mation of chains out of head-to-tail aligned magnetic di-
poles. This surprising result of Monte Carlo simulations14–17

has been recently clarified by Morozov and Shliomis.18,19

Developing the association theory, they arrived at a natural
extension of basic concepts of polymer physics to the case of
magnetic dipolar chains and came to the conclusion that a
ferrofluid represents an ensemble of flexible chains. Each
chain takes conformation of statistical coil whose Brownian
relaxation time can reachtB,10−4–10−2 s depending on the
chain length. For such large magnitudes oftB the value of
VtB ceases to be small even for quite moderate flow vortic-
ity. Then hr becomes dependent on the flow rate which just
signifies non-Newtonian properties of ferrofluid. The first at-
tempt to explain these properties by the formation of long
rodlike clusterssstraight chainsd in a strong steady magnetic
field was performed by Kamiyama and Satoh.5,6,20

The dependence ofhr on VtB in an oscillating magnetic
field was found for the first time by Gazeauet al.21 in two
kinds of experiments: a ferrofluid filled either the inner mov-
ing cylinder of the Taylor machine and was rotatedas a
wholewith an angular velocityV or it filled the gap between
the outer and inner cylinders and was subjected to Couette
flow with a shear rateV. In both these experiments the ro-
tational viscosity turned out to be dependent onV. However,
in the case of rigid rotation the spectrum of relaxation times
remained invariable for any angular velocities, while experi-
mental data for Couette flow indicated that longest relaxation
times associated with the most long chains did not exist any-
more in the spectrum. This change of dynamical behavior
has been interpreted in Ref. 21 as a consequence of shear
inducedfracture of the chains.

Note, that Gazeauet al.21 dealt with auniform field of
vorticity: in rigid rotation the vorticityV—and hence the
rotational viscosityhr, too—are independent on spatial coor-
dinates. The same situation takes place in such a canonical
shear flow as plane Couette flow is. As the velocity profile is
linear from one constrained wall to the other, there areV
=const and thenhr =const, too. Therefore, with the applica-
tion of a magnetic field, the ferrofluid viscosityh is simply
replaced by its effective valueheff=h+hr. This leads to an
alteration of theflow rate sthe latter is risen or reduced de-
pending on the sign ofhrd but does not change the velocity
profile: it remains to be linear as it is in the absence of
magnetic field.

Meanwhile pipe flow, also called Hagen–Poiseuille flow,
and similar to it plane Poiseuille flow do not possess such a
property. In pipe flowV~ r: the vorticity reaches its largest
magnitudeV0 on the pipe wallr =R and vanishes at the pipe
axis r =0. As the result,V-dependenthr turns out to be de-
pendent onr, too. So, if V0tB is sufficiently large,hrs0d
differs significantly fromhrsRd and then the flow pattern
ceases to be parabolic.

Experimental results recently obtained by Schumacheret
al.22 give us a good possibility to test our predictions con-
cerning the shear dependence of the ferrofluid viscosity and
the pipe flow rate in a linearly polarized magnetic field os-
cillating along the axis of the pipe. Schumacheret al.22 con-
ducted an experiment similar to Bacriet al.11 and Zeuner,
Richter, and Rehberg.13 An important distinction: the
experiments11,13 were limited to slow laminar flows,V0tB

!1, while in Ref. 22 it was studied a wide range of laminar
and turbulent flow rates. On the border between these re-
gimes, the valueV0tB reached unity and so no wonder that
the reduced rotational viscosityhrsj ,V0tBd /h sreferred to in
Ref. 22 as the fractional pressure dropd displayed a strong
dependence on the flow rate. To describe the dependence
theoretically and numerically, authors of Ref. 22 made some
questionable simplificationsssee Sec. IV for detailsd and em-
ployed the magnetization relaxation time as a fitting param-
eter choosing its value for every flow rate and every fre-
quency of magnetic field oscillations.

The paper is organized as follows. In Sec. II we intro-
duce a complete set of ferrohydrodynamic equations for in-
compressible ferrofluids. Two formulations of magnetization
equation are employed and compared below: one of the two
was derived microscopically from the Fokker–Planck equa-
tion, while another one represents a generalization of the
Debye relaxation equation. In Sec. III we study effects of no
small flow vorticities upon the ferrofluid pipe flow taking as
an example the material parameters of a ferrofluid used ear-
lier in the experiments of Bacriet al.11 To describe well
experimental results obtained by Schumacheret al.,22 we
perform in Sec. IV numerical simulations of the full set of
ferrohydrodynamic equationsswithout any simplificationsd
under an assumption of existence of chainlike aggregates.
Finally, in Sec. V, we draw our conclusions.

II. BASIC EQUATIONS

We use here a conventional set of ferrohydrodynamic
equations for incompressible ferrofluids. It consists of the
equation of fluid motions2d derived by Shliomis,2,3 the mag-
netization equations3d derived by Martsenyuk, Raikher, and
Shliomis23 from the Fokker–Planck equation, and the Max-
well magnetostatic equationss4d:

r
dv

dt
= − = p + h¹2v + sM · = dH +

1

2
= 3 sM 3 Hd,

s2d

dM

dt
= V 3 M −

1

tB
FM −

3Lszd
z

xHG −
3x

2tBM2

3F1 −
3Lszd

z
GM 3 sM 3 Hd, s3d

= ·B = 0, = 3 H = 0 sB = H + 4pM d. s4d

These equations were discussed in detail in Refs. 4 and 24–
27. In the equationsd/dt=] /]t+v ·= is the total time deriva-
tive, r is the ferrofluid density,p is the pressure,h is the
shear viscosity,x is the initial magnetic susceptibility, andM
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is the ferrofluid magnetization. In a true equilibriumspos-
sible only in a quiescent fluid in a steady magnetic fieldHd
the magnetization is described well by the Langevin formula

M eq= MsLsjd
j

j
, j =

3xH

Ms
, Lsjd = cothj −

1

j
, s5d

whereMs is the saturation magnetization. For an ideal gas of
identical paramagnetic molecules of the number densityn
there areMs=nm andx=nm2/ s3kBTd, thus the Langevin pa-
rameter takes its well-known formj=mH/ skBTd. In a non-
equilibrium stateM andH are independent from each other:
a magnetization may existsthough not for very longd even in
the absence ofH. Nevertheless, one can considerM as an
equilibrium at any moment in a certainsso-calledeffectived
specially prepared magnetic fieldz. The instant nonequilib-
rium magnetization is expressed through the dimensionless
effective fieldz by the equilibrium formulas5d:

M = MsLszd
z

z
. s6d

In Eq. s3d we used also the notationM =MsLszd. In a true
equilibrium z coincides sure withj whereupon Eq.s6d is
transformed into Eq.s5d. Equationss3d ands6d determine the
dependenceM st ,r ;H ,Vd in an implicit form, where the ef-
fective field z is the parameter. Apart from Eq.s3d derived
microscopically,23 there are three phenomenological magne-
tization equations proposed by Shliomis2,8 and Felderhof and
Kroh.28 Each of these threefcited below Eq.s18d is one of
themg is much simpler than Eq.s3d. However, their applica-
tion is limited to small amplitudes of the oscillating magnetic
field and weak flow vorticities, whereas Eq.s3d delivers a
quite accurate description in a wide range of flow rates, mag-
netic field strengths and oscillation frequencies. Actually, this
equation provides a very good approximation to the results
of exact solution of the Fokker–Planck equation29 and the
computer simulation of the Brownian dynamics of magnetic
grains.30,31

Let us consider Poiseuille flow of a ferrofluid in an os-
cillating magnetic field applied along the pipe—the situation
studied in experiments of Bacriet al.,11 Zeuneret al.,13 and
Schumacheret al.22 In cylindrical coordinates with thez axis
along the axis of the pipe, this one-dimensional flow,

v = h0,0,vsr,tdj, V = h0,Vsr,td,0j, V = −
1

2
] v/]r ,

is caused by an imposed pressure gradient]p/]z=−Dp/ l
where Dp is the pressure drop over the tube lengthl. In
contrast to Felderhof32 we do not assume the pressure gradi-
ent to be small.

The term V3M in Eq. s3d provides an influence of
ferrofluid flow on its magnetization. In fact, interaction of the
azimuthal component of vorticityV with the axial compo-
nent of magnetizationMz sthe latter is formed directly by the
applied fieldHz=H0cosvtd gives rise to an off-axissradiald
component of the magnetizationMrsr ,td. But the presence of
Mr dependent onr entails immediately—due to the Maxwell
equation= ·sH +4pM d=0—an appearance of the counteract-
ing magnetic field componentHr =−4pMr. Felderhof32 truly

noticed that thedemagnetizing fieldwas omitted in Refs. 10
and 11 and on the spot he omitted in his turn the radial
component of the magnetic force density, sM ·= dHr

=−2ps]Mr
2/]rd, entering into the equation of fluid motion. In

an incompressible ferrofluid this force is automatically
equilibrated by the radial component of the pressure gradi-
ent, ]p/]r =sM ·= dHr, and then it does not play any role.
But Felderhof32 considered acompressiblefluid. In this case
the oscillating magnetic force should excite radially diver-
gentsound waveswith the fluid velocityvrsr ,td. One ought
to study this effect although it is probably weak and can
hardly be detected.

Thus, vectorsM , H, and=p have the structure

M = hMrsr,td,0,Mzsr,tdj,

H = h− 4pMrsr,td,0,H0cosvtj,

=p = h− 2ps]Mr
2/]rd,0,−Dp/lj. s7d

For small flow vorticities,uVtBu!1, the magnetization equa-
tion s3d can be solved in a perturbative way:11,32

Mr = VtBM1std + sVtBd3M3sr,td + ¯ ,

Mz = M0std + sVtBd2M2sr,td + ¯ . s8d

In the first-order approximation inVtB the flow pattern re-
mains parabolic and the flow rate

Q = 2pE
0

R

kvlrdr s9d

sherek.l means the time averaging over the period of mag-
netic field oscillationsd obeys the Poiseuille formula

Q =
pR4

8heff
SDp

l
D

with some effective viscosityheff dependent on the dimen-
sionless amplitudej0=3xH0/Ms and frequencyvtB of the
external magnetic field. Consider the origin ofheff a little
more detailed. Choosing for the units of lengthR, time tB,
and velocitysDp/ ldR2/ s4hd, we obtained from Eqs.s2d and
s3d three dimensionless equations coupling the axial velocity
vsr ,td with the radialzr and axialzz components of theef-
fective fieldz:

a−1]v
]t

= 4 +
1

r

]

]r
Fr

]v
]r

− rbsj0cosgt + 12pxL*zzdL*zrG ,

s10d

]

]t
sL*zrd = −

s

2

]v
]r

L*zz − s1 + 12pxL*dL*zr − s1 − 3L*d

3sj0cosgt + 12pxL*zzd
zrzz

2z2 , s11d
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]

]t
sL*zzd =

s

2

]v
]r

L*zr − L*szz − j0cosgtd + s1 − 3L*d

3sj0cosgt + 12pxL*zzd
zr

2

2z2 . s12d

HereL* ;Lszd /z and the magnetization componentsMr and
Mz are expressed throughzr andzz by the relations

Mr = MsLszd
zr

z
, Mz = MsLszd

zz

z
, z = Îzr

2 + zz
2.

Apart from the dimensionless strength of magnetic fieldj0

and the initial magnetic susceptibilityx, Eqs.s10d–s12d con-
tain four more nondimensional parameters:

a =
htB

rR2, b =
2Ms

2

3xR
S l

Dp
D ,

g = vtB, s = V0tB. s13d

The first represents the ratio of the magnetization time scale
tB to the hydrodynamic oneth=rR2/h. The second defines
the influence of a magnetic field on the ferrofluid flow. At
b=0 the steady solution of Eq.s10d satisfying the no slip
boundary condition at the pipe radius,vs1,td=0, yields the
common velocity of Poiseuille flow which in our notation
readsvsrd=1−r2. Finally, the last parameter,s ssometimes it
is called thePéclet numberd, is defined through the flow
vorticity at the pipe wallr =R in the absence of magnetic
field,

V0 =
R

4h
SDp

l
D , s14d

and measures the relative importance of viscous and Brown-
ian torques on the particle.

For a tube of radiusR,1 mm the characteristic hydro-
dynamic timeth is not smaller than 10−1 s so the inequality
a=tB/th!1 is usually satisfied. It means that the velocity
alters much slowly than the magnetization, which allows Eq.
s10d to be uncoupled from Eqs.s11d and s12d. Indeed, since
vsr ,td slowly varies for the time of the order oftB, the de-
rivative ]v /]r in Eqs. s11d and s12d can be considered as
independent on timesfrozend. Solutions of these equations,
zrsr ,td and zzsr ,td, one should substitute into Eq.s10d and
afterwards average this equation over the fastsmagnetiza-
tiond time.

If a!1 and besidess is also small, one can restrict
oneself to thelinear approximationin s. Then Eqs.s11d and
s12d yield fcf. Eq. s8dg

zr , ss]v/]rdj0, zz , j0. s15d

Substituting the components into Eq.s10d and averaging
over the fast time the equation of fluid motion takes the form

1 + bsfsj0,gd
r

]

]r
Sr

]v
]r
D = − 4. s16d

Thus, in this approximation all interplay between hydrody-
namic and magnetic phenomena reduces to a renormalization

of the ferrofluid viscosity; according to Eq.s16d its dimen-
sional value is

heff = hf1 + bsfsj0,gdg. s17d

As seen from definitionss13d ands14d, the productbs does
not contain the pressure dropDp and hence is independent
on the flow rate but represents the material constant:bs
=Ms

2tB/ s6hxd. For an ideal case of noninteracting magnetic
grains this constant reduces to 3f /2 wheref=nV stands for
the volume fraction of suspended magnetic grains. Thus Eq.
s17d for heff turns out to be similar to the Einstein formula
for viscosity of suspensions. The functionfsj0,gd in this
equation—it is positive or negative depending on values of
its arguments—has been calculated in Refs. 11, 13, and 32.

Having in mind to study the ferrofluid flow at finitesi.e.,
not necessarily smalld vorticities, we solved the set of Eqs.
s10d–s12d numerically. For comparison we also used the phe-
nomenological magnetization equation obtained by
Shliomis2 as a generalization of the Debye relaxation equa-
tion for the case of spinning magnetic grains:

dM

dt
= V 3 M −

M − M eq

tB
−

3xM 3 sM 3 Hd
2tBMs

2 , s18d

whereM eq is defined in Eq.s5d.
In numerical calculations the spatial derivatives were

represented by the central finite differences with uniform
meshdr =1/200 sthe accuracy of the resulting solution was
verified takingdr =1/400d. The system of first-order ordi-
nary differential equations was integrated in time using the
NAG Fortran Library routine with backward differentiation
formulas code. This approach allowed us to keep the relative
error of the solution less than 10−4 for a reasonable compu-
tation time. Starting with some initial conditions, the integra-
tion in time was performed until the solution converges to
the periodic one. Then the flow rates9d was calculated.

III. RESULTS AND DISCUSSION

Our calculations correspond to the experimental setup
and conditions taking place at the first observation of the
negative-viscosity effect by Bacriet al.11 The ferrofluid of
the densityr=2.2 g/cm3 and the shear viscosityh=0.77 P
represented a water-based colloidal dispersion of cobalt fer-
rite with the volume fraction of magnetic grainsf=0.2, the
relaxation timetB=1.6 ms, and the initial magnetic suscep-
tibility x=0.22 si.e., the magnetic permeability wasm=1
+4px.3.8d. The Poiseuille-like flow in a horizontal capil-
lary tube sR=0.5 mmd placed inside a solenoid was main-
tained by the gradient of pressure originated from the differ-
ence of the fluid levels between the inlet and outlet of the
tube. The flow rateQ was measured as a function of the
pressure dropDp and the amplitudej0 and frequencyvtB of
the magnetic field.

Results of our calculations are presented in Figs. 1–3. In
Fig. 1 the contour plots for the relative change of the flow
rate DQ/Q0 is shown in thesvtB,j0d plane for different
values ofV0tB. HereDQ=QH−Q0 is the difference between
the flow rates in the presencesQHd and the absencesQ0d of
magnetic field whileV0tB may be considered as the dimen-
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sionless pressure dropfsee definitionss13d and s14dg. The
main calculations were performed with the magnetization
equations3d, or, precisely, with its nondimensional compo-
nentss11d ands12d. Positive values ofDQ are caused by the
negative-viscosity effect, whileDQ,0 corresponds tohr

.0. For small flow vorticitysV0tB=0.01d the contour lines
DQ/Q0=const obtained from expansions8d in the linear ac-
curacy inV0tB practically coincide with the results of full
numerical simulations presented in Fig. 1sad. As seen from
the figure, the pattern of isolines weakly depends on the pres-
sure drop untilV0tBø1.5 but its alteration is quite visible at
V0tB=5—compare Figs. 1sad and 1sbd.

The dependence of the reduced flow rateDQ/Q0 on the
dimensionless pressure dropV0tB calculated for different
values of the magnetic field strengthj0 and the field fre-
quencyvtB is shown in Fig. 2. The calculations were per-
formed with the magnetization equationss3d derived micro-
scopically. For comparison, the results obtained by the use of
the phenomenological magnetization equationss18d are also
presented. One can see that Eq.s18d gives adequate descrip-
tion in weak magnetic fields,j0,1. As the field strength
increases, the difference between the results yielding by Eqs.
s3d and s18d increases too.

Figure 2 clearly demonstrates a nonlinear and nonmono-
tonic dependence ofDQ/Q0 on V0tB where the vorticityV0

is defined in s14d. Presented dependence reflects non-
Newtonian properties acquiring by ferrofluids in magnetic
fields and may be explained in terms of the shear-dependent
viscosity. To give the qualitative explanation we consider the
limit of weak applied field,j0!1. In this case one can ne-
glect the nonlinear relaxation termsfcontaining the double

vector productM 3 sM 3Hdg in Eqs. s3d and s18d and then
both the linearized magnetization equations yield the same
relationship for the rotational viscosity averaged over the
period of the field variation:

hr = hr
0 m2 + sV2 − v2dtB

2

fm + sV2 − v2dtB
2g2 + sm + 1d2v2tB

2 ,

FIG. 1. Contour plot of the relative change of the flow rateDQ/Q0 in the
svtB,j0d plane for values, successively from left to right, −0.168, −0.12,
−0.072, −0.024, 0, +0.024, +0.04, +0.056, +0.072. The flow vorticity
V0tB=0.01 ssolid linesd, 1.5 sdashed linesd sad andV0tB=5 sbd.

FIG. 2. The relative change of the flow rateDQ/Q0 vs flow vorticity V0tB:
sad j0=1, sbd j0=3, andscd j0=10. Solid lines—magnetization equations3d;
dashed lines—magnetization equations18d. The values of the magnetic field
frequencyvtB are given on top of each curve.

FIG. 3. The dependencehr /hr
0 on r for vtB=4 and different values ofV0tB

from Eq. s19d.
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hr
0 ;

xtBH0
2

8
=

Ms
2tB

72x
j0

2 ⇒
1

8
hfj0

2. s19d

Here the last value,hfj0
2/8, is coming in for noninteracting

magnetic grains. The vorticityVsrd of an axial-symmetric
flow equals zero atr =0 and reaches a maximum atr =R; for
Poiseuille flow we have in our unitsVtB=sr. In the New-
tonian limit,s!1, one can omit shear-dependent termsV2tB

2

in s19d whereupon this relationship reduces to the Felder-
hof’s expression,32

hruV→0u = hr
0 m2 − v2tB

2

sm2 + v2tB
2ds1 + v2tB

2d
. s20d

So, in the case of weak vorticity,hr is negative for a high
frequency magnetic field,vtB.m, and positive for a station-
ary or low frequency oscillating field,vtB,m. The negative
value of hr provides some decrease of the totalseffectived
viscosity which leads to an increase of the flow rate,DQ
.0. Actually, Fig. 2 has been drawn form=3.8 and hence
initial sat V0tB;s!1d values ofDQ/Q0 are positive for
vtBù4 and negative forvtBø3.

In the case of finite values ofs one should employ Eq.
s19d. It limits the frequency range of existence of the nega-
tive viscosity by the conditionv2tB

2 .m2+s2r2. Hence, if the
field frequency satisfies inequalitiesm,vtB,Îm2+s2, the
rotational viscosity changes its sign at a certainr*

=s−1Îv2tB
2 −m2,1. Figure 3 demonstrates the dependence

hrsrd for some values ofs.
As seen,hr is negative through the tube cross section for

sufficiently smalls while for strong vorticities it is negative
only near the tube axis. Thisr-dependence of viscosity re-
sults in a deviation of the velocity profile from parabolic one.
The total velocity of the fluid may be written asv=1−r2

+v1. The additionv1sr ,td oscillates with the double fre-
quency of the field variation. This function has been found
by numerical solution of Eqs.s10d–s12d and presented in Fig.
4 in different moments together with its mean valuekv1l
averaged over the period of oscillations.

Depending ons, the functionkv1l is positivefFig. 4sadg,
negativefFig. 4scdg, or has a nodefFig. 4sbdg. Correspond-
ingly, the field induced additional fluxDQ/Q0 shown in Fig.
2 turns out to be positive or negative. This flux tends to zero
in the limit V0tB@j0, i.e., when viscous torques acting upon
magnetic particles predominate over magnetic torques, so the
latter cannot create an orientational arrangement of the par-
ticle magnetic moments.

IV. THE CASE OF SHEAR DEPENDENT PARAMETERS

In recent work,22 Schumacheret al.studied the ferrofluid
pipe flow in an oscillating magnetic field at nonsmall values
of V0tB. The water based ferrofluid EMG-206sFerrotecd
with the density r=1.187 g/cm3 and viscosity h=3.855
310−2 P was pumped through the capillary tube of radius
R=1.5 mm. The reduced differencesDpH−Dp0d /Dp0 of the
pressure drops with and without magnetic field was mea-
sured for the fixed flow ratesQ at different values of mag-
netic field strength and frequency. ForQø800 ml/min the
ferrofluid flow was found to be laminar and the fractional

pressure drop was decreasing with increasing ofQ. For Q
.800 ml/min the flow was turbulent and the fractional pres-
sure drop remained nearly constant.

Schumacheret al.22 performed numerical simulations of
the ferrofluid flow on the base of a simplified version of the
magnetization equations18d. Namely, instead of expression
s5d for the instant equilibrium magnetization they used an
approximation of the “effective susceptibility,”M eq=x0H,
wherex0 is an unknown function ofH. The authors of Ref.
22 assumed thatx0 in the case with flow and an oscillatingH
is the sameconstantas in a nonflowing fluid and asteady
magnetic field. Under the assumption, there is no trouble in
doing time averaging of the magnetic torqueM 3H over the
period of magnetic field oscillations and obtaining an ana-
lytic expression for the torque and steady equations for the
fluid velocity and the magnetic particle’s spin. This approach
is valid, however, only in weak magnetic fields, i.e., when
j0!1. Then the Langevin function ofj=j0cosvt reduces to
j /3 and hence the effective susceptibilityx0=3xLsjd /j re-
duces to the constant initial susceptibilityx. But this is not
the case of Schumacheret al.:22 they applied pretty strong
magnetic fields—up toj0=4—so that theirx0 should cer-
tainly depend on time.

The Brownian relaxation timetB was treated in Ref. 22
as a fitting parameter whose magnitude decreases with in-

FIG. 4. Profiles of the velocityv1sr ,td at different moments of time and
kv1srdl for j0=3, vtB=4, andV0tB=0.5 sad, V0tB=1.8 sbd, andV0tB=3 scd.
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crease of both the flow rate and the field frequency. Such a
dependence oftB on Q looks quite reasonable. Actually, as
we pointed out in Sec. I, only big enough aggregates—most
probably chainlike ones—bring a noticeable contribution in
non-Newtonian features of ferrofluids. Hence, if such aggre-
gates really exist, the pipe flow with a high enough shear rate
should induce destruction of the chains leading thereby to
some decrease of their Brownian relaxation time.

Give a definition of the chain. Two neighboring mag-
netic grains are reputed to be bonded if their dipolar potential
for the head-to-tail dipole configuration at the distance of
closest approach exceeds the energy of thermal fluctuations,
i.e., when 2m2/d3ùkBT. In other words, the dimensionless
coupling parameterl=m2/ sd3kBTd should be sufficiently
large to form a long enough chain. The most informative
quantity of chain conformation is the “end-to-end” vector

R̂=oi=1
N−1r̂ i connecting centers of firstsi =1d and lastsi =Nd

particles in a chain. In the casel@1 there is

kR̂2l.Nld2—see Refs. 18 and 19. The magnetic moment of

a chainm̂ is determined analogously toR̂, i.e., m̂=oi=1
N mi

wheremi is magnetic moment of a grain of the numberi.

Hence km̂2l.Nlm2 so that x~l , Ms~l1/2, and tB, R̂3

~l3/2.
Make allowance for the shear dependence of the fluid

parameters in the frame of the following simple model. Let
us take into account that the regular viscous torques induced
by the shear flow lead—side by side with randomsthermald
torques—to some reduction of the coupling constantl.
Therefore one should replacekBT in the denominator ofl by
the sumkBT+6hVV=kBTs1+2VtBd fsee Eq.s1dg. Thus, one
ought to make the substitution

l ⇒
l

1 + 2VtB
. s21d

Then, in accordance with the pointed above scaling, the fol-
lowing dependence of the fluid parameters on the shear rate
should be assumed:

tB =
tB

0

s1 + b V0tB
0d3/2,

x =
x0

1 + b V0tB
0 ,

Ms =
Ms

0

Î1 + b V0tB
0

. s22d

The superscript “0” means here the limitV0→0 and the
fitting parameterb is expected to be of the order of unity.

We have performed numerical calculations of the frac-
tional pressure dropDpH /Dp0−1 employing the microscopi-
cally derived magnetization equations3d. To solve it for
given experimental values of flow rates, we have used the
expressionss22d and undertaken iterations of the pressure
drop by the secant method. Taking from Ref. 22 the whole
set of experimental data corresponding to the laminar flow
regime at the three frequencies of magnetic field,f =v /2p
=60, 400, and 1000 Hzs32 points in totald, we have found a

set of four parametersentering into relationshipss22d and
providing the best fit toall of the experimental data:

tB
0 = 252ms, x0 = 0.0034, Ms

0 = 0.924 G, b = 1.61.

The total saturation magnetization of the used in Ref. 22
ferrofluid EMG-206 wasMs,FF=11.94 G. Thus, only a small
amount of magnetic grains,Ms

0/Ms,FF<8%, was combined
with each other to form the chains. Those were the biggest
grains: their Langevin parameterj0;3x0H /Ms

0 reached
unity at alreadyH<91 Oe that corresponds to the diameter
of magnetite particled=12 nm whereas the mean diameter
of particles in EMG-206 is about 9 nm. The results of our
calculations together with experimental data of Schumacher
et al.22 are presented in Fig. 5. As seen, the fit is good
enough for the field frequenciesf =60 and 400 Hz. Forf
=1000 Hz and low flow rates it is a little bit worse since the
values of fractional pressure drop obtained experimentally22

at f =1000 Hz fthe five points in Fig. 5scdg are small and
hence do not give an appreciable correction into the fitting
procedure compared with the values at lower frequencies.
Another reason could be due to a large uncertainty in the
experimental determination of small values of fractional
pressure drop especially at lower flow rates.

FIG. 5. The fractional pressure drop as a function of flow rate and magnetic
field: sad f =60 Hz;sbd f =400 Hz;scd f =1000 Hz. Solid lines are the results
of simulations, points are the experimental data from Ref. 22.
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V. CONCLUSION

Effective viscosity of ferrofluids in an externally im-
posed magnetic field depends not only on the field amplitude
and frequency but also on the flow vorticity, which causes
non-Newtonian properties of the fluids. Their manifestations
are especially interesting at the pipe flow since its vorticity
Vsrd is not a constant in the pipe’s cross section but varies
from point to point. As a result, the velocity profile ceases to
be parabolic and the flow rate deviates from the Poiseuille
formula.

The non-Newtonian behavior becomes detectable when
the dimensionless characteristic vorticityV0tB exceeds unity
which is possible in practice if “elementary units” in a mag-
netic suspension represent not single particles but their ag-
gregates whose Brownian time of rotational diffusiontB is
sufficiently large. The replacement of magnetic grains by
their aggregates strongly complicates a theoretical descrip-
tion because the very parameters of these aggregates—such
as the initial magnetic susceptibility and the Brownian relax-
ation time itself—turn out to be dependent on the flow rate.
The dependence was established experimentally in a recent
work22 where the fluid parameter values were determined by
the fit. We propose a complementary description based on an
assumption of chainlike aggregates acted upon by the shear
stress. Our simple model has allowed us to fit quite satisfac-
tory experimental data of Schumacheret al.22
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