
DOI 10.1140/epje/i2005-10029-3

Eur. Phys. J. E 18, 41–54 (2005) THE EUROPEAN

PHYSICAL JOURNAL E

Nonlinear competition between asters and stripes in
filament-motor systems

F. Ziebert and W. Zimmermanna

Theoretische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany and
Theoretische Physik, Universität Bayreuth, D-95440 Bayreuth, Germany

Received 17 January 2005 and Received in final form 5 May 2005 /
Published online: 7 October 2005 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2005

Abstract. A model for polar filaments interacting via molecular motor complexes is investigated which
exhibits bifurcations to spatial patterns. It is shown that the homogeneous distribution of filaments, such
as actin or microtubules, may become either unstable with respect to an orientational instability of a finite
wave number or with respect to modulations of the filament density, where long-wavelength modes are
amplified as well. Above threshold nonlinear interactions select either stripe patterns or periodic asters.
The existence and stability ranges of each pattern close to threshold are predicted in terms of a weakly
nonlinear perturbation analysis, which is confirmed by numerical simulations of the basic model equations.
The two relevant parameters determining the bifurcation scenario of the model can be related to the
concentrations of the active molecular motors and of the filaments, respectively, which both could be easily
regulated by the cell.

PACS. 87.16.-b Subcellular structure and processes – 47.54.+r Pattern selection; pattern formation –
89.75.-k Complex systems

1 Introduction

In eukaryotic cells the polar filaments actin and micro-
tubules interacting with motor proteins play a crucial role
in intracellular organisation and transport as well as for
the static and dynamical structure of the cytoskeleton [1,
2]. Most prominently, microtubules and kinesin are in-
volved in highly connected dynamical structures, such as
the mitotic spindle in cell division [3,4], while the motility
of the cell as a whole is governed by acto-myosin com-
plexes [5,6]. The dynamical behavior of such assemblies
depends on the available biological fuel ATP (Adenosine-
triphosphate), which is consumed during the motion of
motor proteins along the filaments. Vesicles for instance
are transported across a cell by motors moving along the
tracks defined by microtubules, or —which is the scope of
this work— oligomeric motor proteins that attach to two
or more filaments induce relative motion between neigh-
boring filaments and cause dynamical networks. The latter
process is vitally important in cells, since the cytoskeleton
constituted of the filaments has to be self-organized and
even actively reorganized not only during cell-locomotion
but also in order to react to outer stimuli (chemotaxis).
During mitosis, microtubules attach to the chromosomes,
which are then divided and the two halves finally are
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transported by the motor-induced filament sliding into the
two evolving daughter cells.

Since the situation is very complex in a living cell,
well-designed in vitro experiments are the agent of choice
for controlled explorations of prominent aspects of cellu-
lar systems. Recent experimental progress yielded indeed
important insights into organization and dynamical prop-
erties of the cell, which in turn call for modeling activi-
ties to foster their deeper understanding. These experi-
ments comprise investigations of self-organization in fila-
ment-motor mixtures of microtubules in the presence of a
single type of motor protein [7–9] and more recently also in
actin-myosin networks [10,11] as well as assays where two
types of motors interact with microtubules [12]. Even in
such model systems, simple compared to a living cell, there
has been found a great variety of different two-dimensional
patterns, such as stripe patterns, asters, vortices and ir-
regular arrangements.

Works on modeling active filament-motor systems
comprise molecular-dynamics simulations [8,12,13] and
mean-field approximations for spin-like models display-
ing stripe-like patterns [14]. More recently, a phenomeno-
logical model of a motor density interacting with a phe-
nomenological vector field has been considered which is
able to reproduce asters and vortex-like solutions [15,16]
as well as models for bundle contraction in one spatial
dimension [17–19].
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Here we follow a more microscopic approach starting
from the Smoluchowski equation for the spatial and an-
gular distribution of rigid rods [20], which approximate
the rather stiff microtubules and with limitations also the
actin filaments. It is well known since Onsager’s theory
that an ideal rigid-rod system exhibits a nematic liquid
crystalline order beyond some critical rod density [21,22]
which is still present in generalizations for semiflexible
polymers, albeit at a slightly higher filament density [23],
and has been observed in vitro for both kinds of biopoly-
mers [24,25]. To use Onsager’s equilibrium argument of
excluded-volume–induced transitions in a nonequilibrium
system like the cell, one can formulate phenomenologi-
cal models as done recently to describe how nucleation
and decay of the filaments in a cell at a density close
to the isotropic-nematic transition may give rise to spa-
tially periodic patterns [26]. Alternatively, one can use the
aforementioned Smoluchowski equation for rigid rods [20],
which is an approach widely used in polymer and colloidal
science and has recently been supplemented by active cur-
rents to describe filament-motor systems [27] in a way in-
spired by a macroscopic model for filament bundling in one
spatial dimension [18]. In this approach one makes use of
the fact that the small motor proteins diffuse much faster
than the filaments. Hence the density of the motors can be
assumed to be homogeneous and —as well as properties
like the mean velocity and the duty ratio of the motors—
enters into the model only via the coefficients. The phe-
nomenological description of the active currents can be de-
rived by symmetry considerations and includes three ma-
jor contributions, whereof in this work we focus on the ef-
fects on pattern formation of only two of them. Since most
of the experimental assays are quasi-two-dimensional, we
restrict our analysis also to two spatial dimensions.

The filament-filament interactions induced by the mo-
tors as well as by excluded-volume effects are nonlocal,
thus they can be approximated by a gradient expansion.
Since in vitro aster-like patterns evolve at much lower fila-
ment density than the isotropic-nematic transition, a mo-
ment expansion of the probability density function can be
truncated to derive a closed set of equations for the physi-
cal observables, which are the density and the orientation
field of the filaments. After a detailed linear stability anal-
ysis of the homogeneous filament distribution, the major
goal of this work is a characterization of the weakly non-
linear behavior of patterns beyond their threshold. For
this purpose we employ, on the one hand, numerical sim-
ulations of the coupled equations for the filament den-
sity and the orientational field. On the other hand, we
use the powerful method of amplitude expansion, where
equations of motion for the amplitudes of the spatially
periodic pattern are derived close to the pattern-forming
instability [28–30].

The generic patterns in two-dimensional systems close
to threshold are stripes, squares or hexagonal patterns and
for the amplitudes of these patterns generic nonlinear am-
plitude equations may be derived [28,31]. In our numerical
simulations we found in the range of small modulations
of both the homogeneous filament density and the ori-

entation either stripe or square patterns. The absence of
hexagonal structures in the simulations is confirmed by
the perturbational calculation and therefore we focus on
the amplitude equations for stripe and square patterns (as
described by Eq. (27) below), which are of the form [28,32]

τ0∂tX = εX − g1|X|
2X − g2|Y |

2X , (1a)

τ0∂tY = εY − g1|Y |
2Y − g2|X|

2Y . (1b)

Here ε denotes the deviation of the control parameter from
its value at the threshold of pattern formation, while X
and Y describe the amplitudes of a spatially periodic pat-
tern in one (stripe) or two orthogonal directions (square),
namely the x- and y-direction. These amplitude equations
are universal for all pattern-forming systems of a given
symmetry and the specific information of each system is
only encoded in the coefficients, namely τ0, g1, g2, which
are functions of the parameters of the underlying sys-
tem under consideration. The nonlinear analysis of equa-
tions (1) is worked out analytically and by this advantage
a whole phase diagram for the various patterns close to
threshold is presented. In contrast, such an investigation
would be very cumbersome and time consumptive using
numerical simulations of the model equations. The solu-
tion |X| = |Y | corresponds to a square pattern of the
small-amplitude modulation of the filament orientational
field which resembles very much a structure of periodically
arranged asters.
The work is organized as follows. The underlying mi-

croscopic model for the filament distribution is presented
in Section 2 and in the same section we derive also the
coupled equations for the density and orientation of the
filaments, whereby the technical parts are moved to the
appendices. The thresholds of the pattern-forming insta-
bilities and its dependence of the parameters are deter-
mined in Section 3, where we find an instability leading
to density modulations, an orientational instability as well
as a liquid-crystalline isotropic-nematic (I-N) transition.
With regard to the formation of asters, the orientational
instability is the most interesting one and its nonlinear be-
havior, namely the nonlinear stripe solutions and the peri-
odic lattice of asters and inverse asters as well as their sta-
bility are investigated in more detail in Sections 4 and 5.
We compare our analysis to available experimental results
in Section 6 and the work is finished with a summary and
outlook.

2 The model

The probability of finding a rod (with fixed length L) at
the position r with the orientation u (with |u| = 1) at
time t is described by the distribution function Ψ(r,u, t) 1

and the governing so-called Smoluchowski equation [20] is
just the continuity equation for the probability

∂tΨ +∇ · Jt +R · Jr = 0 . (2)

1 In the following we will write Ψ(r,u) for reasons of
brevity and Ψ(r,u, t) only if we want to emphasize the time
dependence.
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Homogeneously distributed molecular motors are sup-
posed to interact with the rods inducing active currents
on them. The total translational and rotational currents
are given in Cartesian coordinates by

Jt,i = −Dij [∂jΨ + Ψ∂jVex] + Ja
t,i , (3a)

Jr,i = −Dr [RiΨ + ΨRiVex] + Ja
r,i . (3b)

The terms with an upper index a are the motor-mediated
active currents proposed in reference [27], the translational
diffusion matrix reads

Dij = D‖uiuj +D⊥ (δij − uiuj) ; (4)

Dr is the rotational diffusion constant and the operator of
rotational diffusion is given by

R = u× ∂u . (5)

Vex describes the excluded-volume interaction

Vex(r,u) =

∫

du′

∫

dr′ W (r−r
′,u,u′)Ψ(r′,u′) (6)

between rods, where the interaction kernel is expressed in
terms of the so-called Straley coordinates ζ and η in two
dimensions [33]:

W (r−r
′,u,u′) = |u×u

′|

L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη δ (r−r
′+uζ+u

′η) . (7)

This expression takes into account that there is only an in-
teraction between rods with coordinates (r,u) and (r′,u′)
in the case of a finite overlap, i.e. if the connection vector
r−r

′ can be constructed by a linear combination uζ+u
′η

of the rod orientations with −L/2 < ζ, η < L/2. The ac-
tive currents induced by the homogeneous motor density
are

J
a
t= Ψ(r,u)

∫

du′

∫

dr′v(r−r
′,u,u′)W (r−r

′,u,u′)Ψ(r′,u′) ,

J
a
r= Ψ(r,u)

∫

du′

∫

dr′ω(u,u′)W (r−r
′,u,u′)Ψ(r′,u′), (8)

where the translational and rotational velocity can be
written following reference [27] as

v(r−r
′,u,u′) =

α

2

r− r
′

L

1 + u · u′

|u× u′|
+

β

2

u
′ − u

|u× u′|
, (9)

ω(u,u′) = γ(u · u′)
u× u

′

|u× u′|
, (10)

respectively. The active currents are normalized to the in-
teraction volume and they fulfill both, the conservation of
translational and rotational momentum in the absence of
external forces and torques, as well as translational and
rotational invariance (cf. Ref. [27] and App. A).
According to its functional dependence 1 + u · u′, the

first term in equation (9) contributes at maximum to the

filament transport for a parallel orientation, which identi-
fies it as the leading pattern-forming mechanism in coun-
teraction with the diffusive motion. It arises from a dif-
ference in motor activity between the filament center and
the filament endpoints, where motors stall for some finite
time τf , which has been recognised as a crucial condition
for aster formation [34]. It depends also on the relative
filament separation r− r

′, hence no relative motion is ob-
tained if the motor connects two filaments having the same
centers of mass.
The second term in equation (9), proportional to β,

causes filament translations along u
′−u and therefore be-

comes maximal for antiparallel filament orientations. The
contribution in equation (10) causes rotational currents.
In this work we focus mainly on active currents caused by
the α-term and especially on its effects on pattern forma-
tion in two spatial dimensions.
Equation (2) together with the currents as defined by

equations (3) and (8) cannot be solved analytically for
Ψ(r,u, t) and even numerically, being a nonlinear integro-
differential equation, it would be rather intricate. How-
ever, these equations may be simplified by expressing the
distribution function in terms of its moments. For a rod
distribution, the zeroth, first and second moment with re-
spect to the orientation correspond to the filament density
ρ(r, t), the polar orientation t(r, t) and the nematic order
parameter Sij(r, t), which are defined by the following ex-
pressions:

ρ(r, t) =

∫

du Ψ(r,u, t) ,

t(r, t) =

∫

du u Ψ(r,u, t) ,

Sij(r, t) =

∫

du uiuj Ψ(r,u, t) . (11)

In contrast to a usual lyotropic liquid crystal [21], here the
filaments are polar with respect to the motor action which
breaks the ±u-symmetry and therefore the first moment
may become finite.
The critical filament density of the homogeneous iso-

tropic-nematic (I-N) transition can be determined by the
stability of the second moment of the rotational diffu-
sion contribution, i.e. where −Dr

∫

uαuβR [RΨ + ΨRVex]
changes its sign. This condition yields the critical density

ρIN =
3

2
π (12)

in two spatial dimensions where the I-N transition is of
second order.
In order to obtain a closed set of equations of motion,

the distribution function Ψ(r,u, t) may be expanded with
respect to the leading moments as given by equations (11).
In the parameter range well below the homogeneous I-N
transition, where aster formation is observed in vitro and
on which we concentrate in this work, the first two mo-
ments are sufficient and the distribution function may be
represented in terms of ρ(r, t) and t(r, t) (for more details
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we refer to App. C)

Ψ(r,u, t) =
1

2π

(

ρ(r, t) + 2u · t(r, t)
)

. (13)

To get rid of the integral kernel in equation (7), a gradient
expansion can be performed as described in more detail
in Appendix B. After a rescaling of variables via

t′ =
D‖

L2
t , x′ =

1

L
x , ρ′ = L2ρ , t

′ = L2
t ,

α′ =
L

D‖
α , D′

r =
L2

D‖
Dr , D =

D⊥

D‖
, (14)

where we have introduced the ratioD of the diffusion coef-
ficients, we obtain in two spatial dimensions the following
coupled equations for the density and the two components
of the polar orientation field ti (i = x, y) of the filaments:

∂tρ =
1 +D

2
∆ρ+

[

1 +D

π
−

α

24

]

∇ · (ρ∇ρ)

−
α

48
∂i

[

ti∂jtj + tj∂itj + tj∂jti

]

−
α

C1

{

38∇ · (ρ∇∆ρ) + 11∂i (tj∂i∆tj)

+ 16∂i

[

ti∆∂jtj + 2tj∂j∂i∂ltl + tj∂j∆ti

]}

, (15a)

∂tti = −Drti +
3D + 1

4
∆ti +

1−D

2
∂i∇ · t

+
3D + 1

2π
∂j (ti∂jρ) +

1−D

2π

[

(∂j(tj∂iρ) + ∂i(tj∂jρ))

]

−
α

96
∂j

[

3ti∂jρ+ tj∂iρ+ ρ(∂itj + ∂jti)

]

−
α

96
∂i

[

tl∂lρ+ ρ∂ltl

]

−
16α

C2
∂i

[

ρ∆∂ltl + tl∂l∆ρ

]

−
α

C2
∂j

[

ρ

(

11∂j∆ti + 16∂i∆tj + 32∂j∂i∂ltl

)

+ 16tj∂i∆ρ+ 32tl∂l∂i∂jρ+ 44ti∂j∆ρ

]

+
1

48

[

γ

4
−
4

π
Dr

]{

tj∂j∂iρ−
1

2
ti∆ρ

}

(15b)

with C1 = 23040 and C2 = 2C1.
The contributions to equations (15) that include also

fourth-order derivatives are indispensible for the determi-
nation of the instabilities evolving from the homogeneous
filament distribution and the nonlinear patterns in the fol-
lowing sections. They were not taken into account in [27]
and their importance was pointed out recently [35]. It
should be noted that fourth-order derivatives proportional
to the translational diffusion have been neglected here
because they are overcompensated by the fourth deriva-
tives resulting from the active current and therefore influ-
ence the presented results only quantitatively by a small
amount (but considerably complicate the equations).

The instabilities of the homogeneous filament distri-
bution caused by the α-contribution to the active current,
cf. (9, 10), and the nonlinear solutions are determined in
the following sections. The active current proportional to
β leads to additional effects, which are responsible, e.g.,
for propagating modes in the system and for the breaking
of the unexpected t→ −t symmetry of equations (15). To
remind the reader, we have allowed t to become nonzero,
so we allowed the breaking of the ±u-symmetry of equa-
tion (2), but our model equations (15) nevertheless have a
±t-symmetry, since terms like t

2 appear in the equation
for t only due to the β-contribution of the current. These
effects are determined elsewhere [36] and the correspond-
ing contributions to equations (15) are not shown for the
sake of brevity. The active rotational current proportional
to γ is nonlinear and therefore influences only the non-
linear behavior of pattern selection beyond threshold as
shown briefly in Section 4.

3 Threshold for density and orientational

instabilities

Having defined the model, the first issue in the field of pat-
tern formation is the determination of possible instabili-
ties. As calculated in this section by a linear stability anal-
ysis, in a certain parameter range the homogeneous basic
state, which consists here in a constant filament density ρ0

and a vanishing polar orientation t = 0, becomes unstable
with respect to inhomogeneous perturbations ρ̃(r, t) and
t(r, t). For this purpose, by the ansatz ρ(r, t) = ρ0+ ρ̃(r, t)
we separate the constant part ρ0 of the filament density
from the spatially inhomogeneous one, ρ̃(r, t), and lin-
earize equations (15) with respect to small inhomogeneous
contributions ρ̃(r, t) and t(r, t). Accordingly a set of three
coupled linear equations is obtained:

∂tw(r, t) = L0w(r, t) =







L
(0)
11 0 0

0 L
(0)
22 L

(0)
23

0 L
(0)
32 L

(0)
33






w(r, t) , (16)

for the three components of the vector

w(r, t) =





ρ̃
tx
ty



 (r, t) . (17)

The components of the linear operator L0 are given by
the expressions

L
(0)
11 =

[

1 +D

2

(

1 +
2

π
ρ0

)

−
αρ0

24

]

∆−
19 αρ0

11520
∆2 ,

L
(0)
22 = −Dr +

3D + 1

4
∆+

1−D

2
∂2
x −

αρ0

96
(∆+ 2∂2

x)

−
αρ0

46080

(

11∆2 + 64∆∂2
x

)

,

L
(0)
23 =

(

1−D

2
−

αρ0

48

)

∂x∂y −
αρ0

720
∆∂x∂y (18)
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and the two further components L
(0)
32 and L

(0)
33 may be

obtained by permuting ∂x and ∂y in L
(0)
23 and L

(0)
22 , re-

spectively. Naturally the mode ansatz

w(r, t) = E exp (σt+ ik · r) (19)

with the wave vector k = (q, p) and the eigenvector E

solves the linear homogeneous set of equations (16) and
the solubility condition provides a third-order polynomial
for the eigenvalue σ, which factorizes into a linear and a
quadratic polynomial describing different types of insta-
bilities. Considering moderate filament densities, for in-
termediate values of α, an orientational instability with a
finite wavelength is preferred, whereas the density mode
does not couple on the level of the linear equations. For
large values of α a further mode becomes unstable which
resembles a spinodal decomposition of the filament density
driven by the motor proteins.
The latter instability with respect to density fluctua-

tions is governed by L
(0)
11 and the eigenvalue

σd = −

[

1 +D

2

(

1 +
2

π
ρ0

)

−
αρ0

24

]

k2 −
19 αρ0

11520
k4 (20)

with k2 = q2 + p2. The term ∝ k4 is always stabilizing,
but the homogeneous basic state becomes unstable with
respect to density modulations for a positive coefficient of
k2 leading to the corresponding critical filament density

ρd =
1

α
12(1+D) −

2
π

(21)

providing that this value is positive, i.e. if α > 24
π (1 +D)

holds. The corresponding eigenvector is Ed = (1, 0, 0)T

and the dispersion is shown as the dotted lines in Fig-
ures 1a) and b) for subcritical and supercritical values,
respectively.
Of the remaining two eigenvalues, σI and σS , only the

first may become positive in a finite range of k as indicated
by the solid lines in Figure 1. It describes an instability
with respect to orientational fluctuations with the disper-
sion relation

σI = −Dr −
1

4
k2

(

3 +D −
αρ0

8
+
5

768
αρ0k

2

)

, (22)

while σS , shown as the dashed lines in Figure 1, is always
dampened and related to diffusion of orientational modes.
The two corresponding eigenvectors are

EI =





0
q
p



 , ES =





0
q
−p



 . (23)

It should be mentioned that the eigenvalues σd(k),
σI(k), σS(k) depend only on even powers of the wave num-
ber modulus reflecting the rotational symmetry of the ba-
sic state (ρ0, t). The restabilizing k4-term in equation (22)
was missing in reference [27], as pointed out recently [35].

− 0.2

− 0.1

0

0 0.4 0.8 1.2 1.6 2.0

0

0 0.4 0.8 1.2 1.6 2.0

k

λ a) b)

Fig. 1. The real parts λ(k) = Re[σ(k)] of the eigenvalue σd

corresponding to the instability with respect to density fluctu-
ations (dotted line) as well as the one with respect to orien-
tational fluctuations, σI (solid line), are shown as a function
of the wave number k for Dr = 0.15. The third eigenvalue σS

is always dampened as depicted by the dashed line. In part a)
we have chosen α = 21 and therefore ρc < ρ0 < ρd leading to
an orientational instability, whereas in part b) one has α = 26
and ρd < ρc < ρ0, hence both modes σd and σI have positive
real parts in a finite wave number range (see also Fig. 2).

However, only the interplay between the k2 and k4 con-
tribution as in equation (22) allows the identification of
a finite wave number instability. The extremal condition
together with the neutral stability condition

dσI

dk

∣

∣

∣

∣

kc

= 0 , σI(k = kc) = 0 , (24)

allow the determination of the critical filament density ρc
at the critical wave number kc, above which the orienta-
tional instability takes place:

ρc =
8

α



(3+D) +
5

12
Dr



1 +

√

1 +
24(3+D)

5Dr







 , (25)

kc = 4

(

12Dr

5αρc

)1/4

. (26)

Before going further, one has to specify the value of the
diffusion ratio D = D⊥

D‖
, which from the physical point of

view is not simply a parameter but distinguishes differ-
ent model classes or modelling regimes: If the rods were
isotropically diffusing, D equals one. In reality, a rod can
diffuse much easier in the direction parallel to its orienta-
tion than perpendicular to it. A hydrodynamic calculation
accounting for the rod-like shape [20] yields D = 1/2. One
can also consider the case D = 0 meaning that D⊥ = 0
which applies for semi-dilute solutions, where the so-called
tube approximation holds and D‖ dominates the diffusion
behaviour [20,37]. Very recently [38], a microscopic consid-
eration of the molecular motors established that if D 6= 1,
i.e. D⊥ 6= D‖, there is not only relative filament motion
as accounted for in (8), but also a net motion of the cen-
ter of mass of the considered filament pair. Nevertheless,
performing the weakly nonlinear and the numerical cal-
culations of the following paragraphs, D mathematically
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D

Fig. 2. The critical densities ρc (solid line) and ρd (dashed line)
for the orientational and density instability, respectively, are
shown as a function of α and for Dr = 0.15. The dash-dotted
horizontal line is the critical density ρIN = 3

2
π, above which

the isotropic-nematic transition due to excluded-volume inter-
actions takes place. In the range referred to as N one has a
pure homogeneous transition to nematic order, in range O one
has a motor-driven spatially periodic orientational order and
in range D one has modulations of the filament density. The
region S denotes the parameter range where the homogeneous
solution is stable. In the following sections of the paper we
investigate the nonlinear behavior in the O-region.

is just a parameter which influences the behaviour only
quantitatively, and even only to a small amount. Hence
in the following we chose D = 1/2, which reflects the
anisotropic diffusion behaviour of the rods. Center-of-mass
motion may be however present, but for our analysis we
expect only minor changes.

Figure 1 displays the dispersions, i.e. the wave
number-dependent growth rates, σd(k), σI(k) and σS(k)
as dotted, solid and dashed lines, respectively. In Fig-
ure 2, the critical density ρd (dashed line) for an instability
with respect to inhomogeneous density fluctuations and ρc
(solid line) with respect to inhomogeneous orientational
fluctuations t(r, t) are shown as a function of motor activ-
ity α. The dash-dotted line describes the critical density
ρIN (12) above which the homogeneous isotropic-nematic
transition takes place. On the left side of the dotted line,
orientational fluctuations have lowest threshold, while on
the right side density fluctuations become unstable at first.
For increasing values of the rotational diffusion coefficient
Dr, which determines how negative the dispersions σI(k)
and σS(k) start from k = 0, the solid line is shifted up-
wards in Figure 2 decreasing the α-range wherein the ori-
entational instability has lowest threshold with ρc < ρIN .

Beyond some critical value of β, the β-contribution to
the active current, equations (8, 9), induces an oscillatory
bifurcation from the homogeneous filament distribution as
described in a forthcoming work, where also the nonlinear
behavior of the oscillatory patterns is discussed [36]. The
contribution of the rotational current equations (8, 10) to
equations (15) includes only nonlinear terms and therefore
does not influence the thresholds of the instabilities. Its

influence on the nonlinear behavior of stationary periodic
patterns is one of the issues discussed in the next section.

4 Nonlinear analysis of the orientational

instability

The amplitude of the linear solution in equation (19)
is limited by the terms in equations (15) that are non-
linear with respect to ρ̃ and t. Here we investigate the
weakly nonlinear behavior beyond the orientational insta-
bility, i.e. in the region referred to as O in Figure 2 where
ρc < ρ0 < ρd holds. This can be done numerically as ex-
emplified in the next section and even analytically if ρ0 is
only slightly beyond ρc defined in (25): for a supercritical
bifurcation, the amplitude of the mode initially growing
with σI(k) is small immediately above threshold and may
be determined in this range by a perturbative analysis,
the so-called amplitude equation [28], whose derivation is
sketched in Appendix D.
The generic form of amplitude equations depends

on the preferred pattern beyond a stationary supercrit-
ical bifurcation. In two spatial dimensions the pattern
is either spatially periodic in one direction (stripes), in
two (squares/rectangles) or in three directions (hexagonal
patterns) [28]. Numerical simulations of the basic equa-
tions (15) indicate, as described in Section 5, that stripe
and square patterns are favored immediately above the
threshold of the orientational instability. Moreover, hexag-
onal structures are not driven in this system due to the
overall up-down symmetry of equations (15) with respect
to t, cf. Appendix D as well.
Square patterns at threshold may be described analy-

tically by a superposition of two linear modes (i.e. stripes)
with orthogonal wave numbers which can be chosen with-
out restriction as k1 = (kc, 0) and k2 = (0, kc) with kc
given by equation (26) leading to the ansatz

w1 =





ρ1

t1x
t1y



 =





0
X
0



 eikcx +





0
0
Y



 eikcy + c.c. , (27)

where c.c. means the complex conjugate. In a small neigh-
borhood of the threshold ρc, measured by the dimension-
less control parameter

ε =
ρ0 − ρc

ρc
, (28)

the time-dependent amplitudes X(t) and Y (t) of the
square pattern are determined by two generic coupled non-
linear equations, the so-called amplitude equations [32,28]

τ0∂tX = εX − g1|X|
2X − g2|Y |

2X , (29a)

τ0∂tY = εY − g1|Y |
2Y − g2|X|

2Y . (29b)

The coefficients τ0, g1 and g2 are derived in Appendix D.
The specific system under consideration enters into the
description only in these coefficients via the parameters
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Fig. 3. The stability regions of stripes and asters are shown
as calculated by the amplitude expansion method near thresh-
old, i.e. for ρ0 & ρc(α,Dr). The two critical densities ρc and
ρd coincide along the solid line and beyond instabilities with
respect to density modulations are preferred which are not in-
cluded in our present nonlinear analysis. The dotted line is
given by g1 = g2 and separates the range of stable square pat-
terns (asters) from the range of stable stripe patterns. Along
the dash-dotted line one has g1 = 0 and the bifurcation to
stripes changes from supercritical (below) to a subcritical one
(beyond). Between the dashed line, which is determined by
g1 = −g2, and the dash-dotted line asters can still exist but
are unstable while the amplitudes of stripes cannot be deter-
mined by our lowest-order expansion. Beyond the dashed line,
also asters bifurcate subcritically.

of the basic equations (15), namely α, Dr and γ, while
equations (29) are universal for a whole symmetry class of
pattern forming systems.
Apart from the trivial solution X0 = Y0 = 0, reflecting

the stable homogeneous system, the coupled amplitude
equations (29) have also stationary finite amplitude solu-
tions. These are at first

X0 = ±

√

ε

g1
, Y0 = 0 , (30a)

X0 = 0 , Y0 = ±

√

ε

g1
, (30b)

which correspond according to equation (27) to stripes
periodic either in the x- or in y-direction. Secondly, there
is the stationary solution of equal amplitudes

X0 = Y0 = ±

√

ε

g1 + g2
, (31)

which constitutes a square pattern. In real space, this
square pattern in terms of the components of the vec-
tor field t(r, t) resembles the structures which are called
asters and found in numerous experiments [8] as will be-
come clear from the simulation pictures in Section 5.
As summarized in Appendix E, by a linear stability

analysis of the (nonlinear) stationary solutions given by
equations (30) and (31) one finds stable stripes as the
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Fig. 4. The same diagram as in Figure 3 but here the nonlin-
ear contribution of the active rotational current, equation (10),
is taken into account with γ = α. The region of stable stripes
considerably broadens while the regions of subcritical bifurca-
tions are moved to higher α and lower Dr values.

preferred solution in the range g2 > g1 > 0 of the non-
linear coefficients. In the parameter range |g2| < g1, the
square pattern is preferred [32].
These criteria for g1 and g2 may be translated accord-

ing to their parameter dependence into the Dr-α plane,
as shown in Figure 3 for γ = 0. The analytic calculations
presented here are valid below the solid line in Figure 3,
since above the density instability takes place. The dot-
ted line corresponds to the condition g1 = g2 > 0 which
separates the range of stable squares from stable stripe
solutions. Along the dash-dotted line in Figure 3 the bi-
furcation from the homogeneous basic state to the stripe
pattern changes its behavior from a supercritical (below)
to a subcritical one (above), so the expansion method is
no more effective.
Taking the (nonlinear) effect of the active rotational

current into account, the bifurcation behavior from the
homogeneous basic state is changed as shown in Figure 4
for γ = α. It can be seen that the range of stable stripe
patterns in the Dr-α plane is enlarged.
One may complement this outline of the bifurcation

behavior by a discussion of the two decisive model pa-
rameters, namely α and Dr, and analytical estimates for
them. Simple models for motor proteins [2,17,18,27] imply
that the rate α of the translational active transport grows
linearly with the active motor density ρm and with the
length of the filaments, i.e. α ∝ ρmL. Hence this rate
can be controlled by the cell in the most effective way by
the degree of motor activity (i.e. by regulating the ATP
concentration) as well as on a much larger timescale by
the density of the motors and the filament length.
For the rotational and translational diffusion coeffi-

cients in a dilute solution, calculations taking the hydrody-
namic interaction into account [20] propose the analytical
expressions

Dr =
3 ln(L/b)

πηL3
, D‖ =

ln(L/b)

2πηL
(32)
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with b the rod diameter and η the solvent viscosity. In our

scaled units this means D′
r =

L2

D‖
Dr = 6, lying far in the

range of squares (asters).
For semi-dilute solutions one can estimate [20,37]

Dr = 6D‖/(L
2(1 + crρ

′)2) or

D′
r =

L2

D‖
Dr =

6

(1 + crρ′)2
(33)

in scaled units, where cr ' 1 is a geometry factor from a
tube model calculation. Since stripes or bundle-like struc-
tures are stable for D′

r < 0.3–0.4, cf. Figures 3 and 4,
one needs a rather high (but possible) filament density for
such a one-dimensional ordering.
According to these estimates, asters are the most likely

pattern occurring above a stationary bifurcation in dilute
or semi-dilute two-dimensional motor-filament systems.
For bundle-like structures to emerge rather high fila-
ment densities are needed, which is physically intuitive
from the overlap nature of all the interactions, namely
excluded-volume and motor-induced filament-filament in-
teraction.

5 Results of numerical simulations

Besides the weakly nonlinear analysis described in the pre-
vious section, the basic equations (15) have been solved
numerically in order to check the validity range of the per-
turbation analysis and further explore the solution space.
For this purpose a Fourier Galerkin pseudo-spectral me-
thod has been used imposing periodic boundary condi-
tions on the system.
Since the validity range of the amplitude expansion

with respect to the control parameter ε is not known

0.01

0.02

0 0.002 0.004 0.006 0.008 0.010
ε

X 2

Fig. 5. A comparison of the amplitude of a stripe solution
as obtained in simulations (crosses) with the analytical calcu-
lation X0 = ±(ε/g1)

1/2 as given by equation (30) is shown.
The agreement remains well for higher values of ε, but in the
range between ε ' 0.006− 0.007 a secondary bifurcation takes
place rendering the high-ε solutions unstable. Parameters are
Dr = 0.5, α = 21 and γ = 0.
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Fig. 6. A simulation scenario is shown which numerically
confirms the predictions of our weakly nonlinear analysis. We
started with the aster (square pattern) displayed in a) with the
analytically calculated amplitude described by equation (31) at
a point in parameter space where stripes should be preferred
according to Figure 3, namely at α = 21 and Dr = 0.15 (and
ε = 5 · 10−4). Part c) shows now the temporal evolution of the
amplitudes X and Y of the polar orientation components tx
and ty as the dotted lines. One can clearly see that one of the
two modes building up the square pattern is dampened and
that the other mode grows to the analytically predicted value
descibed by equation (30) and displayed as the upper solid line.
Part b) shows the final stripe pattern.

a priori, in Figure 5 we compare the amplitude of a stripe
solution as obtained by a numerical solution of the ba-
sic equations (15) with the analytical results given by
equation (30). Close to threshold there is nearly perfect
agreement between both approaches. However, the valid-
ity range of the amplitude equations is actually restricted
to a range below ε ∼ 0.006 for the parameters used in
Figure 5. Around this value a secondary instability takes
place, which is not taken into account in the perturbation
expansion. The numerical simulations show that beyond
this secondary instability a pronounced accumulation of
the filaments to densities even higher than ρIN appear ac-
companied with high alternating orientations. These solu-
tions are numerically stable but nevertheless in an invalid
range of our model since the nematic order parameter,
cf. equations (11), has been neglected in the moment ex-
pansion which is not legitimate anymore —so we reject
showing pictures here.

In addition to the validity range with respect to ε, one
may also confirm numerically the stability of the nonlinear
solutions as predicted in Figure 3 by the weakly nonlinear
analysis. As an example, we start with a square solution
as shown in Figure 6a) at the point α = 21 and Dr = 0.15
in parameter space (and ε = 5·10−4) belonging, according
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Fig. 7. A simulation of equations (15) in the range of stable
stationary asters is shown as a superposed plot of the orienta-
tion field (arrows) and the filament density (dark color coding
low density, light color high density). Parameters are α = 21,
Dr = 0.5, ε = 5 · 10−5.

to Figure 3, to the region of stable stripe patterns. After
a slight perturbation, the simulated temporal evolution in
Figure 6c) shows that only one of the initially equal am-
plitudes remains finite in the long-time limit leading to
the predicted stationary stripe pattern displayed in Fig-
ure 6b). By several numerical runs we confirmed the ana-
lytically predicted stability diagrams in Figures 3 and 4.
In the parameter range of stable asters, a vector plot

of the orientation field superposed on the color-coded fila-
ment density is presented in Figure 7. The filament orien-
tation is indicated by arrows, the length being a measure
of the degree of orientation. The density is high in the
bright regions and low in the dark ones. At the right-hand
side in Figure 7, one can spot an aster with arrows point-
ing radially from a center with lowered filament density
opposing to an inverse aster top left with arrows point-
ing radially into the center (we remind the reader that
periodic boundary conditions are imposed). The centers
of the asters have lowered filament densities which can be
explained by the nonlinear analysis: in the derivation of
the amplitude equations in Appendix D one can clearly
see that the growing amplitudes of the orientation modu-
lations excite higher density modes —which then limit the
orientation amplitudes to render the system stable— and
therefore in the center of an aster, where the orientation
vanishes, there is no need for a high density. Both density
and the degree of orientation reach their maximum in be-
tween the asters and two saddle-like structures building
up a square with the two opposing aster centers complete
the repetitive structure of the pattern at threshold in the
motor-filament system.

6 Comparison to experiments

In this section we compare the results of our model anal-
ysis to the in vitro experiments. Taking intermediate pa-

rameter values, namely α ' 20 and Dr ' 0.3, the critical
wave number of the periodic modulation in scaled units is
kc ' 1.5 leading for filaments with a mean length of 5µm
to a wavelength of 20µm, which lies within the experi-
mental range. The motor contribution for a microtubule-
kinesin mixture can be estimated [38] and lies about
αL ' 1.2 · 10−12m2s−1, while filament diffusion is of

the order 10−13–10−15m2s−1, depending on the filament

length. Hence values of the scaled parameter α′ = αL
D‖
≈ 20

as used by us are sensible. Since even higher values of α
are possible, also the density instability, which occurs for
allDr if α is large enough, may be relevant in experiments.

For any comparison between the nonlinear behavior
of the filament density and orientational patterns as de-
scribed in this work and the experimentally observed in-
homogeneous filament distributions, one has to bear in
mind the following fundamental difference. In our work the
modulation amplitudes around the homogeneous filament
density as well as the emerging modulation of orientation
are small and periodic and the generic patterns in this sit-
uation can only be stripes, squares or hexagons [28], lead-
ing to a discrete rotational symmetry of the aster pattern.
In the experiments however, the modulation amplitudes
are rather strong, the pattern is irregular and most struc-
tures have a local continuous rotational symmetry. The
reason for this is simply that our analysis corresponds to
the so-called weakly nonlinear regime immediately above
the threshold of the pattern-forming instability, while the
experiments correspond to the strongly nonlinear regime
far beyond threshold. For the strong modulations as in
the experiments, where both motors and filaments accu-
mulate in the aster centers and the regions in between the
asters are nearly depleted, it is not surprising that the
pattern is not regular anymore and that the restriction
to the simple patterns possible at threshold is no more
valid. In spite of this however, from models and experi-
ments on pattern formation in driven fluid systems [28],
there are well-known examples that the small amplitude
expansion captures the qualitative behavior of patterns in
a considerable range beyond threshold.

With regard to this experience with other systems it is
very reasonable to compare the stability trends suggested
by the phase diagrams presented in Figure 3 and Figure 4
to experimental results as described for instance in refer-
ences [7–9]. The patterns occurring there in unconfined ge-
ometries for increasing motor concentration, are vortices,
mixtures of asters and vortices, asters and finally bundles
of microtubules for very high motor densities. The last
step, the transition from asters to bundles, is in agree-
ment with our calculations visualized in Figure 3, where
for increasing values of α, which is proportional to the
(homogeneous) density of motors, a transition from asters
to stripes takes place. We did not find vortices. This may
be either due to the omission of the β-contributions to
the active current or even more likely due to the fact that
at lower motor concentration the spatial variations of the
motor density may become a relevant dynamical degree of
freedom that has to be taken into account in the modeling.
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7 Conclusions and outlook

For a model of interacting biopolymers and motor pro-
teins, a nonlinear competition between the formation of
stripes and square patterns has been described for the
first time. The model is based on a nonlinear (and nonlo-
cal) Smoluchowski equation for the distribution function
of rigid rods extended by active currents [27] to account
for the motor-mediated relative motion of the filaments.
Under the assumption that the spatial variations are small
on the length scale of the filaments, this equation can be
approximated by a local equation of motion by performing
a fourth-order gradient expansion [35]. The linear stabil-
ity of the homogeneous basic state as well as the threshold
and the wave number of the evolving pattern are described
comprehensively. The homogeneous state may become un-
stable with respect to density, orientational and nematic
instabilities, but in different parameter ranges as shown in
Figure 2. The two crucial model parameters are the rate
of active translational transport and the rotational diffu-
sion coefficient which both can be regulated by the cell
by creating filaments, motor proteins and the fuel ATP as
discussed and estimated at the end of Section 4.
Our subsequent nonlinear analysis focuses on the ori-

entational instability, which may describe the early state
of the biological relevant aster-like structures as in the mi-
totic spindle which have also be seen in in vitro systems
recently [8,11]. This analysis is to a large extent analyti-
cally in terms of an amplitude expansion technique yield-
ing two coupled equations, namely equations (29), for the
(small) amplitudes of the spatial modulation of the ori-
entational field in x- and y-direction. These two coupled
equations determine the amplitudes of square (asters) and
stripe patterns and they provide also the stability bound-
ary between both solutions near threshold. Simulations
with a spectral code and periodic boundary conditions
confirmed these analytical results.
Estimates for the two model parameters α and

Dr of the basic equations (15), cf. end of Section 4,
suggest that asters are the most likely pattern occurring
above a stationary bifurcation in dilute or semi-dilute
two-dimensional motor-filament systems. Stripes may be
expected only for rather high filament densities which
can be traced back to the overlap nature of both present
interactions, namely excluded-volume and motor-induced
filament-filament interaction. Once again both the type of
the pattern, i.e. asters or stripes, as well as its wavelength
could be governed by the cell by creating filaments, motor
proteins and ATP.
The model analyzed here is a first step towards a more

complete description of the complex nonlinear structures
likely to occur in an active filament-motor system. The
effects of the contribution describing the active antipar-
allel filament transport within this model, cf. the β-term
in equation (9), on the onset and the nonlinear behav-
ior of the respective patterns will be worked out in ref-
erence [36]. With β beyond some threshold, the homo-
geneous filament distribution becomes unstable against a
finite-wavelength oscillatory instability [27,35]. This has
to be contrasted to the solitary propagating modes found

in the one-dimensional version of the model presented in
reference [15] and to the soliton solutions investigated
in more detail in the model of references [18,39], which
was the starting point of the two-dimensional generaliza-
tion [27]. Propagating modes may be relevant for vital
processes like cell spreading on a substrate as measured,
for instance, in reference [40].
There are several directions of an extension of the pre-

sented model to which forthcoming work may be devoted.
One direction is to extend the moment expansion scheme
one step further yielding an equation for the nematic order
parameter tensor as defined in equation (11). The inter-
play of the nematic order with the polar orientation in the
presence of motors, may give rise to an interesting model
system of a new symmetry class.
Experiments indicate that the spatially inhomoge-

neous distribution of the motor density may become a
further relevant degree of freedom [41]. So an unstudied
and worthwhile extension of the present model is the inclu-
sion of a field for the motor density in forthcoming works.
Another interesting question was raised by [38], which ac-
counted for the motor proteins upon coarse-graining and
gained new equations with some terms not present that
are however allowed by symmetry. A comparison of this
model and the present one in the nonlinear regime would
be desirable.
To tackle the problem of fully developed asters, es-

pecially the accumulation of filaments and motors in the
aster center, it could be fruitful not to start from the in-
stability and the nonlinear evolution of asters as in our
model but to use a complementary description as a defect
structure. A model describing the filament-motor system
as an active gel [42] could give an answer to this problem
when analyzed in combination with an equation for the
filament density.
The possibility of switching oligomeric motor clusters

from an active state into an inactive crosslinking state
opens further interesting scenarios of pattern formation,
as recently observed for actomyosin [11] and will be dis-
cussed elsewhere from a theoretical point of view in more
detail [36].

Appendix A. Symmetries of the

motor-mediated velocities

The explicit form of the motor-mediated translational and
angular velocities, namely equations (9) and (10), can be
obtained by writing down the simplest terms fulfilling the
conservation laws and symmetries of the system.
If one considers an interacting filament pair in the

absence of external forces and torques, both momentum
and angular momentum of the pair have to be conserved.
Hence the motor-mediated translational and angular ve-
locities, v = ṙ− ṙ

′ and ω = u̇− u̇
′, have to be odd under

the transformation (r,u; r′,u′) → (r′,u′; r,u). Transla-
tional invariance leads to f(r, r′) = f(r− r

′) for f = v,ω.
Together with the rotational invariance, v has to be odd
and ω even under the transformation (r − r

′;u,u′) →
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(r′ − r;−u,−u
′). The simplest terms fulfilling the above

conditions for v are proportional to r − r
′ or u − u

′ and
for ω proportional to u×u

′. One can thus write down [27]

v(r−r
′,u,u′) =

α

2

r− r
′

L

1 + u · u′

|u× u′|
+

β

2

u
′ − u

|u× u′|
, (A.1)

ω(u,u′) = γ(u · u′)
u× u

′

|u× u′|
. (A.2)

The term proportional to α is made orientation-dependent
(it could be generalized by allowing two different prefac-
tors) and the plus sign favours parallel alignment. In the
term proportional to γ, spatial dependence has been ne-
glected and the prefactor u·u′ models the tendency of mo-
tors to bind on two filaments which share an angle smaller
than π

2 . The common factor |u × u
′|−1 is just a normal-

ization to the interaction volume.

Appendix B. The gradient expansion of the

interaction integrals

The excluded-volume interactions, cf. equation (6), as
well as the motor induced rod-rod interaction, cf. equa-
tions (8), are defined by overlap integrals. Hence the equa-
tion of motion (2) for the probability distribution function
Ψ(r,u) is nonlocal and its solution is exceedingly difficult.
Assuming that spatial variations are small on the length
scale of a filament, in order to deal with a local equation
one can perform a systematic expansion of the integrals
with respect to gradients of the probability distribution
function, as described in this appendix.
The interaction kernel given by equation (7) can be

expressed in terms of Straley coordinates [33], which in
two dimensions are defined by

r− r
′ = uζ + u

′η , (B.1)

with the parameter constraint −L/2 < ζ, η < L/2 (L
the filament length) and the Jacobian |u × u

′|. Thus the
excluded-volume interaction, namely equation (6), is de-
termined by the four-dimensional integral

Vex(r,u) =

∫

du′

∫

dr′
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη |u× u
′|

· δ (r− r
′ + uζ + u

′η) Ψ(r′,u′) , (B.2)

which may be approximated by a Taylor series expansion
of the δ-function with respect to η and ζ 2. Performing
the η and ζ integration one finally obtains

Vex(r,u) = L2

∫

du′|u× u
′|

·

[

1 +
L2

24

{

(u · ∂r)
2
+ (u′ · ∂r)

2
}

]

Ψ(r,u′) , (B.3)

2 Equivalently, after performing the r′-integration the shifted
distribution function Ψ (r + uζ + u′η) may be expanded.

where terms up to second order in the spatial derivatives
have been taken into account. The prefactor L2 reflects
the two-dimensional excluded volume.
By a similar procedure, the contribution to the active

current proportional to α can be evaluated as

Ja
t,i = −

αL3

24

∫

du′Ψ(r,u) (1 + u · u′)

·

{

ui(u · ∂r)

[

1−
L2

16

(

2

5
(u · ∂r)

2
+
2

3
(u′· ∂r)

2
)]

+u′i(u
′· ∂r)

[

1−
L2

16

(

2

5
(u′· ∂r)

2
+
2

3
(u · ∂r)

2

)]}

Ψ(r,u′).

(B.4)

One should note that due to the ζ, η-integrations, odd
powers of ∂r vanish in both expressions, which is the
mathematical reason underlying the rotational symmetry
of equations (15).

Appendix C. The moment expansion method

The method for deriving the coupled equations (15) for the
density and the orientation field of the filaments from the
underlying Smoluchowski equation, equation (2), is simi-
lar to the calculations presented in reference [43], where
it has been used to obtain equations describing the ini-
tial stage of spinodal decomposition during the isotropic-
nematic transition of a three-dimensional hard-rod fluid.
In both cases, the starting point is an approximate de-
scription of the probability distribution function Ψ(r,u, t)
by its moments, but in contrast to a usual liquid crystal as
considered in reference [43], now the rods are polar with
respect to the motor action. Thus the ±u-symmetry is
broken and the first moment, namely the filament orienta-
tion field t, does not vanish here and cannot be omitted.
Hence one has to approximate Ψ(r,u, t) by its first two
moments,

Ψ(r,u, t) '
1

2π

(

ρ(r, t) + 2u · t(r, t)
)

, (C.1)

with the filament density ρ(r, t) and the orientation field
t(r, t), cf. equations (11).
The validity of the representation in equation (C.1)

can be seen immediately by using it to evaluate the first
moments which correctly yields

∫

du Ψ(r,u) = ρ(r) and
∫

duuΨ(r,u) = t(r). Inserting the currents as defined
by equations (3) and (8) as well as applying the gradi-
ent expansion given in Appendix B, then an integration
of equation (2) by

∫

du and
∫

duu yields two evolution
equations for ρ(r, t) and t(r, t), respectively, as given by
equations (15).
The remaining integrals involved are merely orienta-

tional averages. If one defines

〈A(u)〉u =

∫

du

2π
A(u) =

∫ 2π

0

dθ

2π
A(θ) , (C.2)
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where θ parameterizes the unit vector u in two dimensions,
the following formulas are useful and easily proven: All
mean values depending on odd powers of u vanish as well
as the mean values of any product of |u × u

′| and odd

powers of u or u
′, since |u×u

′| =
√

1− (u · u′)2 contains
only even powers of u,u′. For the even powers one gets

〈uαuβ〉u =
1

2
δαβ , (C.3)

〈uαuβuµuν〉u =
1

8
(δαβδµν + δαµδβν + δανδβµ) (C.4)

and

〈uαuβuµuνuσuτ 〉u =
1

48
{δαβδµνδστ + perm.} , (C.5)

perm. meaning that all permutations of {α, β, µ, ν, σ, τ}
generating different index combinations of the Kronecker
delta products are present. Furthermore one needs

〈|u× u
′|〉u′ =

∫

dθ′

2π
| sin (θ − θ′) | =

2

π
(C.6)

and

〈|u× u
′|u′αu

′
β〉u′ = −

2

3π
(uαuβ − 2δαβ) . (C.7)

The operator of rotational diffusion in two dimensions as
given by equation (5) can be expressed as

[R]i = [u× ∂u]i = δi3 (u1u
′
2 − u2u

′
1) (C.8)

and for the rotational terms, the following partial integra-
tion formula:

〈A(u)R [B(u)]〉u = −〈R [A(u)]B(u)〉u (C.9)

is crucial to simplify calculations.

Appendix D. Derivation of the amplitude

equations

Here we describe the scheme for the derivation of the two
coupled amplitude equations (29) from the three under-
lying nonlinear equations (15). First of all one assumes
small values for the amplitudes X and Y of the spatially
periodic deviations from the homogeneous basic state ρ0

and t = 0. At threshold, i.e. at ρ0 = ρc and for kc as cal-
culated in equations (25) and (26), these deviations are
either periodic in the x- or in y-direction as described by
the ansatz in equation (27).
Similar to Section 3, the nonlinear equations (15) may

be rewritten in terms of the deviations w = (ρ̃, tx, ty) from
the basic state w0 = (ρ0, 0, 0) as follows:

∂tw = L0w +N (ρ, t) (D.1)

with N (ρ, t) =





Nρ (ρ, t)
Nx (ρ, t)
Ny (ρ, t)



 . (D.2)

The linear operator is defined by equation (18) and the
nonlinear operator N includes all the nonlinear terms
with respect to ρ̃ and t on the right-hand sides of equa-
tions (15).
Naturally, as the small expansion parameter the rela-

tive distance from the threshold,

ε =
ρ0 − ρc

ρc
, (D.3)

is chosen. Close to threshold the dynamics of the linear
solution in equation (19) is slow and accordingly a slow
time scale

T = εt (D.4)

is introduced allowing the time derivatives in equa-
tions (15) to be replaced by

∂t → ε∂T . (D.5)

The solution w is expanded with respect to powers of ε1/2

w = ε1/2
w1 + εw2 + ε3/2

w3 + . . . , (D.6)

with w1 as in equation (27), as are the nonlinearities

N = εN1 + ε3/2
N2 + . . . . (D.7)

Sorting the contributions to equation (D.1) with respect
to powers of ε, one ends up with the following hierarchy
of equations:

ε1/2 : L0w1 = 0 , (D.8a)

ε : L0w2 = −Nρ(t1)eρ , (D.8b)

ε3/2 : L0w3 = ∂Tw1− L2w1−
∑

i=x,y

Ni(ρ2, t1)ei , (D.8c)

that has to be solved successively. We have introduced
eρ = (1, 0, 0), ex = (0, 1, 0), ey = (0, 0, 1) and

L2 =







L
(2)
11 0 0

0 L
(2)
22 L

(2)
23

0 L
(2)
32 L

(2)
33






(D.9)

with

1

ρ0
L

(2)
11 =

(

1 +D

π
−

α

24

)

∆−
19 α

11520
∆2 ,

1

ρ0
L

(2)
22 = −

α

96
(∆+ 2∂2

x)−
α

46080

(

11∆2 + 64∆∂2
x

)

,

1

ρ0
L

(2)
23 = −

α

48
∂x∂y −

α

720
∆∂x∂y . (D.10)

The remaining two matrix elements L
(2)
32 and L

(2)
33 follow

from L
(2)
23 and L

(2)
22 by permuting ∂x and ∂y.

The equation in O(ε1/2) is just the linear eigenvalue
problem already discussed as equation (16) in Section 3,
i.e. it is solved by ρ̃1 = 0 and

t1x = X(T )eikcx + c.c. , t1y = Y (T )eikcy + c.c.
(D.11)
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describing the orientational fluctuations.
At the next order O(ε) , the nonlinearity is only

present in the density equation, while L0 acting on the
t-subspace is nonsingular, leading to t2 = 0. The over-
all up-down symmetry of equations (15) with respect to t

prohibits hexagonal structures as can be seen in this order
in ε, where for hexagons to be driven a quadratic contri-
bution in the equations that are linearly unstable, i.e. in
the equations for the orientation fields tx and ty would be
needed [31]. Inserting t1 in Nρ(t1) yields an equation for
ρ2, whose solution is of the following form:

ρ2(X,Y ) = r1X
2e2ikx + r2Y

2e2iqy + r3XY ei(kx+qy)

+r4XY ∗ei(kx−qy) + c.c. (D.12)

with ri = ri(α,Dr, γ) for i = 1, . . . , 4. Here one can see
that the coupling of the orientational field to the density
is crucial for the physical stability of the system, since
the density ρ2 is responsible for the saturation of the am-
plitudes in the equation of the next order ε3/2, cf. equa-
tion (D.8c), while t2 = 0 and thus t can not limit the
amplitudes.
Instead of solving equation (D.8c) at the orderO(ε3/2),

one can use Fredholm’s alternative, which states that for
equation (D.8c) having solutions, there must not exist
terms on its right-hand side that lie in the kernel of L0,
i.e. no contributions proportional to the critical modes
exp(ikcx), exp(ikcy). Collecting the prefactors of these re-
spective modes, one gets the two equations (29), with an-
alytical but lengthy expressions for τ0, g1, g2 as functions
of α, Dr and γ.

Appendix E. Existence and stability of the

nonlinear stripe and square state

The range of existence as well as the range of linear stabil-
ity for roll solutions and for the squares can be easily in-
vestigated in terms of the amplitude equations. Stationary
single amplitude solutions as given in equations (30) exist
beyond threshold, i.e. for ε > 0, only when g1 > 0 holds.
The amplitudes for a stationary square, equation (31), fol-
low from equations (29) assuming equal amplitudes,

|X| = |Y | =

√

ε

g1 + g2
. (E.1)

Obviously, squares exist beyond threshold only in the pa-
rameter range g1 + g2 > 0.

Linear stability

For small perturbations δX and δY of the stripe and
square solutions respectively, one obtains by the ansatz
X = X0 + δX and Y = Y0 + δY and linearizing equa-
tions (29) with respect to δX and δY two coupled equa-
tions in both perturbations. Those may be solved by the

mode ansatz (δX, δY ) ∼ (δX̃, δỸ )eσt leading to a second-
order polynomial in σ providing two eigenvalues. One of
them is always negative while the second is either

σr = ε
g1 − g2

g1
(E.2)

for rolls or

σs = 2ε
g2 − g1

g1 + g2
(E.3)

for squares.
Thus stripes or squares are stable if σr or σs is neg-

ative, respectively. Accordingly, stripes are the preferred
solution in the range of the nonlinear coefficients g2 >
g1 > 0, while in the parameter range |g2| < g1 the square
patterns are preferred [32]. Since the nonlinear coefficients
g1 and g2 are functions of the rate of active translational
transport α and of the rotational diffusion coefficient Dr,
we are able to plot the stability ranges of the patterns as
depicted in Figures 3, 4.
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