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We study the homogeneous and the spatially periodic instabilities in a nematic liquid crystal layer subjected
to steady plane Couette or Poiseuille flow. The initial director orientation is perpendicular to the flow plane.
Weak anchoring at the confining plates and the influence of the external electric and/or magnetic field are taken
into account. Approximate expressions for the critical shear rate are presented and compared with semiana-
lytical solutions in case of Couette flow and numerical solutions of the full set of nematodynamic equations for
Poiseuille flow. In particular the dependence of the type of instability and the threshold on the azimuthal and
the polar anchoring strength and external fields is analyzed.
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I. INTRODUCTION

Nematic liquid crystals �nematics� represent the simplest
anisotropic fluid. The description of the dynamic behavior of
the nematics is based on well established equations. The de-
scription is valid for low molecular weight materials as well
as nematic polymers. The coupling between the preferred
molecular orientation �director n� and the velocity field leads
to interesting flow phenomena in nematics. The orientational
dynamics of nematics in flow strongly depends on the sign of
the ratio of the Leslie viscosity coefficients �=�3 /�2.

In typical low molecular weight nematics � is positive
�flow-aligning materials�. The case of the initial director ori-
entation perpendicular to the flow plane �spanned by the pri-
mary flow velocity and its gradient� has been clarified in
classical experiments by Pieranski and Guyon �1,2� and the-
oretical works of Dubois-Violette and Manneville �for an
overview see Ref. �3��. An additional external magnetic field
could be applied along the initial director orientation. In
Couette flow and low magnetic field there is a homogeneous
instability �1�. For high magnetic field the homogeneous
instability is replaced by a spatially periodic one leading to
rolls �2�. In Poiseuille flow, as in Couette flow, the homoge-
neous instability is replaced by a spatially periodic one
with increasing magnetic field �4�. All these instabilities are
stationary.

Some nematics �in particular near a nematic-smectic tran-
sition� have negative � �non-flow-aligning materials�. For
these materials in steady flow and in the geometry where the
initial director orientation is perpendicular to the flow plane
only spatially periodic instabilities are expected �5�. These
materials demonstrate also tumbling motion �6� in the geom-
etry where the initial director orientation is perpendicular to
the confined plates that make the orientational behavior quite
complicated.

Most previous theoretical investigations of the orienta-
tional dynamics of nematics in shear flow were carried out

under the assumption of strong anchoring of the nematic
molecules at the confining plates. However, it is known that
there is substantial influence of the boundary conditions on
the dynamical properties of nematics in hydrodynamic flow
�7–11�. Indeed, the anchoring strength strongly influences the
orientational behavior and dynamic response of nematics un-
der external electric and magnetic fields. This changes, for
example, the switching times in bistable nematic cells �7�,
which play an important role in applications �12�. Recently
the influence of the surface anchoring on the homogeneous
instabilities in steady flow was investigated theoretically
�9,11�.

In this paper we study the combined action of steady flow
�Couette and Poiseuille� and external fields �electric and
magnetic� on the orientational instabilities of the nematics
with initial orientation perpendicular to the flow plane. We
focus on flow-aligning nematics. The external electric field is
applied across the nematic layer and the external magnetic
field is applied perpendicular to the flow plane. We analyze
the influence of weak azimuthal and polar anchoring and of
external fields on both homogeneous and spatially periodic
instabilities.

In Sec. II the formulation of the problem based on the
standard set of Ericksen-Leslie hydrodynamic equations �13�
is presented. Boundary conditions and the critical Fréeder-
icksz field in case of weak anchoring are discussed. In Sec.
III equations for the homogeneous instabilities are presented.
Rigorous semianalytical expressions for the critical shear
rate for Couette flow �Sec. III A�, the numerical scheme for
finding threshold for Poiseuille flow �Sec. III B�, and ap-
proximate analytical expressions for both types of flows
�Sec. III C� are presented. In Sec. IV the analysis of the
spatially periodic instabilities is given and in Sec. V we dis-
cuss the results. In particular we will be interested in
the boundaries in parameter space �anchoring strengths,
external fields� for the occurrence of the different types of
instabilities.*Deceased.
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II. BASIC EQUATIONS

Consider a nematic layer of thickness d sandwiched be-
tween two infinite parallel plates that provide weak anchor-
ing �Fig. 1�a��. The origin of the Cartesian coordinates is
placed in the middle of the layer with the z axis perpendicu-
lar to the confining plates �z= ±d /2 for the upper or lower
plate�. The flow is applied along x. Steady Couette flow is
induced by moving the upper plate with constant velocity V0
�Fig. 1�b��. Steady Poiseuille flow is induced by applying
constant pressure difference �P= P2− P1 along x �Fig. 1�c��.
An external electric field E0 is applied along z and a mag-
netic field H0 along y.

The standard set of the nematodynamic equations �13�
consists of the director equation

�1��t + v · ��n = �1� � n + �
=

��− �2A
=

n + h� , �1�

where �1 ,�2 are rotational viscosities,

�1 = �3 − �2, �2 = �6 − �5 = �3 + �2, �2�

and Eqs. �5� and �7� below. Here �k denote the Leslie vis-
cosity coefficients and we have used the Parodi relation. In
Eq. �1� �= ���v� /2 is the local fluid rotation, �ij

�=�ij

−ninj is the projection tensor which imposes the normaliza-
tion of n �n2=1�, Aij = �vi,j +v j,i� /2 is the hydrodynamic
strain, and h is the force on the director derived from the
orientational free energy density

hi =
�

�xj

�F

�ni,j
−

�F

�ni
�3�

�, j denotes the partial derivative with respect to the spatial
coordinate xj� where F is

F =
1

2
�K11�� · n�2 + K22�n · �� � n��2 + K33�n � �� � n��2

− �0�a�n · E0�2 − �0	a�n · H0�2� . �4�

Here Kii are the elastic constants, �a is the anisotropy of the
dielectric permittivity, and 	a is the anisotropy of the mag-
netic susceptibility.

The Navier-Stokes equation �momentum balance� has the
form


��t + v · ��vi = − p,i + �Tji
v + Tji

e �,j , �5�

where 
 is the mass density of the NLC, p is the pressure,
and the viscous and elastic parts of the stress tensor are

Tij
v = �1ninjAkmnknm + �2niNj + �3njNi

+ �4Aij + �5ninkAkj + �6njnkAki,

Tij
e = −

�F

�nk,i
nk,j , �6�

where N= ��t+v ·��n−��n. In addition we have the in-
compressibility condition

� · v = 0. �7�

The basic state is given by the stationary homogeneous
solution of Eqs. �1�, �5�, and �7�:

n0 = �0,1,0�, v0 = �v0x�z�,0,0� ,

p0 = �0, for Couette flow,

��P/�x�x , for Poiseuille flow,
� �8�

where for Couette flow

v0x = V0�1/2 + z/d� , �9�

and for Poiseuille flow

v0x = − ��P/�x��d2/�4��1/4 − z2/d2� . �10�

In order to investigate the stability of the basic state �8�
with respect to small perturbations we write

n = n0 + n1�z�e�teiqy, v = v0 + v1�z�e�teiqy ,

p = p0 + p1�z�e�teiqy . �11�

Guided by the experimental observations we assume that the
wave vector of the destabilizing modes, if not zero, is per-
pendicular to the flow plane. The case q=0 corresponds to a
homogeneous instability. Here we analyze stationary bifurca-
tions, thus the threshold condition is �=0.

It follows from the director normalization n2=1 that n1y
	0 in linear approximation. The linearized equations �1�,
�5�, and �7� are

�K22�z
2 − K33q

2 − �0	aH0
2�n1x − �2v0x,zn1z − iq�2v1x = 0,

�12�

�K11�z
2 − K33q

2 + �0�aE0
2 − �0	aH0

2�n1z − �3v0x,zn1x − �3�zv1y

− iq�2v1z = 0, �13�

− 
v0x,zv1z + ��3�z
2 − �1q2�v1x + iq��1 − �3�v0x,zn1z = 0,

�14�

− iqp1 + ��2�z
2 − ��4 − �3 − �5�q2�v1y

− ��3 − �2��z�v0x,zn1x� = 0, �15�

FIG. 1. Geometry of NLC cell �a�. Couette �b� and Poiseuille �c�
flows.
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− �zp1 + ���3 + �5��z
2 − �1q2�v1z − iq�5v0x,zn1x = 0,

�16�

iqv1y + �zv1z = 0, �17�

where �1= ��4+�5−�2� /2, �2= ��3+�4+�6� /2, �3=�4 /2,
�4=�1+�1+�2, �5=−��2+�5� /2.

The anchoring properties of the director are characterized
by a surface energy per unit area Fs, which has a minimum
when the director at the surface is oriented along the easy
axis �parallel to the y axis in our case�. A phenomenological
expression for the surface energy Fs can be written in terms
of an expansion with respect to �n−n0�. For small director
deviations from the easy axis one obtains

Fs =
1

2
Wan1x

2 +
1

2
Wpn1z

2 , Wa  0, Wp  0, �18�

where Wa and Wp are the “azimuthal” and “polar” anchoring
strengths, respectively. Wa characterizes the surface energy
increase due to distortions within the substrate plane and Wp
relates to distortions out of the substrate plane. The boundary
conditions for the director perturbations can be obtained
from the surface torques balance equation

±
�F

�n1i,z
+

�Fs

�n1i
= 0, �19�

with “±” for z= ±d /2 and i=x ,z. Taking into account Eq.
�18� the boundary conditions for the director perturbations
�19� can be written as

±K22n1x,z + Wan1x = 0, ± K11n1z,z + Wpn1z = 0, �20�

with “±” for z= ±d /2. It is convenient to introduce dimen-
sionless parameters as ratios of the characteristic anchoring
length �Kii /Wi� over the layer thickness d,

�a = K22/�Wad�, �p = K11/�Wpd� . �21�

In the limit of strong anchoring, ��a ,�p�→0, one has n1x

=n1z=0 at z= ±d /2. For torque-free boundary conditions,
��a ,�p�→�, one has n1x,z=n1z,z=0 at the boundaries. From
Eq. �21� one can see that by changing the thickness d, the
dimensionless parameters �a and �p can be varied with the
ratio �a /�p remaining constant.

The boundary conditions for the velocity perturbations
�no-slip� are

v1x�z = ± d/2� = 0, �22�

v1y�z = ± d/2� = 0, �23�

v1z�z = ± d/2� = v1z,z�z = ± d/2� = 0. �24�

The symmetry properties of the solutions of Eqs.
�12�–�17� under the reflection z→−z is shown in Table I. We
will always classify the solutions by the z symmetry of the x
component of the director perturbation n1x �first row in
Table I�.

In the case of positive �a, for some critical value of the
electric field the basic state loses its stability already in the

absence of flow �Fréedericksz transition�. Clearly the Frée-
dericksz transition field depends on the polar anchoring
strength Wp. There is competition of the elastic torque
�K11�z

2n1z� and the field-induced torque ��0�aE0
2n1z�. The so-

lution of Eq. �13� with n1x=0, v1y =0, q=0, and H0=0 has
the form

n1z = C cos���z/d�, � = EF
weak/EF, �25�

where EF
weak is the actual Fréedericksz transition field and

EF= �� /d�
K11/ ��0�a� is the critical Fréedericksz field for
strong anchoring. After substituting n1z into the boundary
conditions �20� we obtain the expression for �,

tan���/2� = 1/����p� . �26�

One easily sees that �→1 for �p→0 and �→
2/�p /� for
�p→�. For �p=1 one gets EF

weak=0.42EF.

III. HOMOGENEOUS INSTABILITY

In the case of homogeneous perturbations �q=0� from
Eqs. �14�, �16�, and �17� and boundary conditions �22�–�24�
we deduce v1x=0, v1z=0, and p1=0. In order to simplify
equations for n1x ,n1z, and v1y we use dimensionless variables
as in Ref. �9�

z̃ = z/d, q̃ = qd ,

N1x = �n1x, N1z = n1z, V1y = �2�23
�d

d
v1y ,

S̃ = ��dv0x,z, �2 = �32k21�32, �d =
�− �2�d2

K22
, �27�

where �ij =�i /� j, �ij =�i /� j, kij =Kii /Kjj. This leads to the
following equations �tildes are omitted�

��z
2 − h�N1x + SN1z = 0, �28�

��z
2 + e − k21h�N1z + �23SN1x + �zV1y = 0, �29�

�z
2V1y − �1 − �23��z�SN1x� = 0, �30�

where h=�2H0
2 /HF

2 , e=sgn��a��2E0
2 /EF

2 , and HF

= �� /d�
K22/ ��0	a�, EF= �� /d�
K11/ ��0��a�� are the critical

TABLE I. Symmetry properties of the solutions of Eqs.
�12�–�17� under �z→−z�.

Couette flow Poiseuille flow

Perturbation “odd” “even” “odd” “even”

n1x odd even odd even

n1z odd even even odd

v1x odd even odd even

v1y even odd odd even

v1z odd even even odd

p1 even odd odd even

ORIENTATIONAL INSTABILITIES IN NEMATIC … PHYSICAL REVIEW E 72, 051706 �2005�

051706-3



Fréedericksz transition fields for strong anchoring. For the
shear rate S one has, for Couette flow,

S = a2, a2 =
V0�d

d
� �31�

and for Poiseuille flow,

S = − a2z, a2 = −
�P

�x

�dd

�3
� . �32�

The boundary conditions �20� and �23� reduced to

±�aN1x,z + N1x = 0, ± �pN1z,z + N1z = 0, for z = ± 1/2,

�33�

V1y�z = ± 1/2� = 0. �34�

A. Couette flow

For Couette flow the solution of Eqs. �28�–�30� can be
obtained semianalytically. For the “odd” solution one gets

N1x = C1sinh��1z� + C2sin��2z� ,

N1z = C3sinh��1z� + C4sin��2z� ,

V1y = C5cosh��1z� + C6cos��2z� + C7. �35�

Taking into account the boundary conditions �33� and �34�
the solvability condition for the Ci �“boundary determinant”
equal to zero� gives an expression for the critical shear rate
ac

2, at which the basic state �8� loses its stability,

�h + �2
2���a�1 + tanh �1

2
����p�2 + tan �2

2
�� − �h − �1

2�

���a�2 + tan �2

2
����p�1 + tanh �1

2
�� = 0, �36�

where

�1
2 =

b + 
c2 + 4ac
4

2
, �2

2 =
− b + 
c2 + 4ac

4

2
,

b = �1 + k21�h − e, c = �1 − k21�h + e . �37�

For the “even” solution one obtains

N1x = C1cosh��1z� + C2cos��2z� + C3,

N1z = C4cosh��1z� + C5cos��2z� + C6,

V1y = C7sinh��1z� + C8sin��2z� + C9z . �38�

The boundary conditions �33� and �34� now lead to the fol-
lowing condition �“boundary determinant”�:

� 1 h
h�k21h−e�−�23ac

4

2ac
4�1−�23�

− �a�2tan��2/2� + 1 �h + �2
2��− �p�2tan��2/2� + 1�

tan��2/2�
�2

�a�1tanh��1/2� + 1 �h − �1
2���p�1tanh��1/2� + 1�

tanh��1/2�
�1

� = 0, �39�

where �1 ,�2 are defined in Eq. �37�. Expressions �36� and
�39� allow us to determine the influence of anchoring condi-
tions ��a ,�p� and external fields on the critical shear rate ac

2.

B. Poiseuille flow

In the case of Poiseuille flow the system �28�–�30� with
S=−a2z admits an analytical solution only in the absence of
external fields �in terms of Airy functions� �9�. In the pres-
ence of fields we solve the problem numerically. In the
framework of the Galerkin method we expand N1x ,N1z, and
V1y in a series,

N1x = �
n=1

�

C1,nfn�z�, N1z = �
n=1

�

C2,ngn�z� ,

V1y = �
n=1

�

C3,nun�z� , �40�

where the trial functions fn ,gn, and un satisfy the boundary
conditions �33� and �34�. For the “odd” solution we write

fn�z� = �n
o�z;�a�, gn�z� = �n

e�z;�p�, un�z� = �n
o�z� ,

�41�

and for the “even” solution

fn�z� = �n
e�z;�a�, gn�z� = �n

o�z;�p�, un�z� = �n
e�z� .

�42�

The functions �n
o�z ;�� ,�n

e�z ;�� ,�n
o�z�, and �n

e�z� are given in
Appendix I. In our calculations we have to truncate the ex-
pansions �40� to a finite number of modes.
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After substituting Eq. �40� into the system �28�–�30� and
projecting the equations on the trial functions fn�z� ,gn�z�,
and un�z� one gets a system of linear homogeneous algebraic
equations for X= �Ci,n� in the form �A−a2B�X=0. We have
solved this eigenvalue problem for a2. The lowest �real� ei-
genvalue corresponds to the critical shear rate ac

2. According
to the two types of z symmetry of the solutions �and of the
set of trial functions� one obtains the threshold values of ac

2

for the “odd” and “even” instability modes. The number of
Galerkin modes was chosen such that the accuracy of the
calculated eigenvalues was better than 1% �we took ten
modes in case of “odd” solution and five modes for “even”
solution�.

C. Approximate analytical expression for the critical
shear rate

In order to obtain an easy-to-use analytical expression for
the critical shear rate as a function of the surface anchoring
strengths and the external fields we use the lowest-mode ap-
proximation in the framework of the Galerkin method. By
integrating Eq. �30� over z one can eliminate �zV1y from Eq.
�29� which gives

��z
2 + e − k21h�N1z + SN1x = K , �43�

where K is an integration constant. Taking into account the
boundary conditions for V1y one has

K = �1 − �23��
−1/2

1/2

�SN1x�dz . �44�

We choose for the director components N1x ,N1z the one-
mode approximation

N1x = C1f�z�, N1z = C2g�z� , �45�

where f�z� and g�z� are given in Table II and Appendix I.
Substituting Eq. �45� into Eqs. �28� and �43� and projecting
the first equation on f�z� and the second one on g�z� we get
algebraic equations for Ci. The solvability condition gives
the expression for the critical shear rate

ac
2 = 
c1c2/c3, �46�

with

c1 = �f f�� − h�f2� ,

c2 = �gg�� + �e − k21h��g2� ,

c3 = �fsg���fsg� − �1 − �23��g��sf�� , �47�

where �¯� denotes a spatial average �projection integral�

�¯� = �
−1/2

1/2

�¯�dz . �48�

The values for the integrals �¯� are given in Appendix II.
Expression �46� can be used for both Couette and Poiseuille
flow by choosing the function s�z� �for Couette flow s�z�
=1 and for Poiseuille flow s�z�=−z� and the trial functions
f�z� and g�z� with appropriate symmetry.

In comparison with the rigorous calculations for the ma-
terial parameters of MBBA at 25 °C �14� in the case of Cou-
ette flow the one-mode approximation �46� for the “odd”
solution has an accuracy that varies from 2.5% to 16% when
H0 /HF varies from 0 to 4. The “even” solution has the accu-
racy of 1–8 % for 0�H0 /HF�3 and of 1–12 % for 0
�E0 /EF�0.6.

For Poiseuille flow for odd solution the accuracy is 30%
in the absence of fields. For the even solution the accuracy is
12–15 % for magnetic fields 0�H0 /HF�0.5.

For both Couette and Poiseuille flow the accuracy of the
formula �46� decreases with increasing field strengths.

IV. SPATIALLY PERIODIC INSTABILITY

For spatially periodic perturbations �q�0� eliminating v1y

from Eq. �13� by use of the incompressibility condition �17�
and the pressure p1 by taking z derivative of Eq. �15� one
obtains the equations for n1x ,n1z ,v1x, and v1z. We used again
the renormalized variables �27� with

V1x = �
�d

d
v1x, V1z = �2�23

�d

d
v1z, �49�

which gives

��z
2 − k32q

2 − h�N1x + SN1z + iqV1x = 0, �50�

iq��z
2 − k31q

2 + e − k21h�N1z + iq�23SN1x

− ��z
2 + �23q

2�V1z = 0, �51�

−
�v

�d
��2�23�−1SV1z + ��z

2 − �13q
2�V1x + iq��13 − 1�SN1z = 0,

�52�

��z
4 − �42q

2�z
2 + �12q

4�V1z + iq��1 − �23��z
2 + �53q

2��SN1x� = 0,

�53�

and dimensionless shear rate S is defined by Eqs. �31� and
�32�. The convective term in Eq. �52� is proportional to the
ratio of the viscous relaxation time �v=
d2 /�3 to the director
relaxation time �d= �−�2�d2 /K22 and can therefore safely be
neglected since for the typical NLC material parameters �

�103 kg/m3, �3��−�2��10−1 Pa·s, K22�10−11 N� one
has �v /�d�10−6.

We have the boundary conditions for the director �33� and
for the velocity

V1x�z = ± 1/2� = 0,

V1z�z = ± 1/2� = V1z,z�z = ± 1/2� = 0. �54�

TABLE II. Trial functions for the homogeneous solutions.

Couette flow Poiseuille flow

Function “odd” “even” “odd” “even”

f�z� �1
o�z ;�a� �1

e�z ;�a� �1
o�z ;�a� �1

e�z ;�a�
g�z� �1

o�z ;�p� �1
e�z ;�p� �1

e�z ;�p� �1
o�z ;�p�
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The system �50�–�53� with boundary conditions �33� and
�54� has no analytical solution. Thus we solved the problem
numerically in the framework of the Galerkin method

N1x = �
n=1

�

C1,nfn�z�, N1z = �
n=1

�

C2,ngn�z� ,

V1x = �
n=1

�

C3,nun�z�, V1z = �
n=1

�

C4,nwn�z� , �55�

where the trial functions fn ,gn ,un, and wn satisfy the bound-
ary conditions �33� and �54� �see Table III and Appendix I�.
After substituting Eq. �55� into the system �50�–�53� and
projecting onto corresponding trial functions fn�z� ,
gn�z� ,un�z� ,wn�z� we get a system of linear homogeneous
algebraic equations for X= �Ci,n�. This system has the form
�A�q�−a2�q�B�q��X=0. Truncating the expansion �55� we
have solved the eigenvalue problem numerically to find the
neutral curve a0

2�q�. The minimum of a0
2�q� yields the critical

wave number q=qc and the critical shear rate ac
2=a0

2�qc�. The
number of Galerkin modes was chosen such that the accu-
racy of the calculated ac

2 and qc was better than 1% �ten
modes for odd solution and five modes for even solution�.

In order to get an approximate expression for the thresh-
old we use the lowest-mode approximation in the framework
of the Galerkin method. We used the same scheme described
above for the single mode �n=1 in expansion �55�� and get
the following formula for the critical shear rate

ac
2 = 
m1m2/�m3m4� , �56�

with

m1 = �f f�� − �k32q
2 + h��f2� ,

m2 = �gg�� − �k31q
2 − e + k21h��g2� ,

m3 = �fsg� + ��13 − 1�q2�usg��fu�/r1,

m4 = �fsg� + ��gw�� + �23q
2�gw��

���1 − �23��w�sf��� + �53q
2�wsf��/r2,

r1 = �uu�� − �13q
2�u2� ,

r2 = �ww�4�� − �42q
2�ww�� + �12q

4�w2� . �57�

The values of the projection integrals �¯� are given in Ap-
pendix II. Expression �56� can be used for both Couette and
Poiseuille flow by choosing the function s�z� �for Couette
flow s�z�=1 and for Poiseuille flow s�z�=−z� and the trial
functions f ,g ,u, and w with appropriate symmetry. Minimi-
zation of Eq. �56� with respect to q gives the critical wave
number qc.

In the case of Couette flow and strong anchoring an ap-
proximate analytical expression for ac

2 was obtained in Ref.
�15� using trial functions that satisfy free-slip boundary con-
ditions for the velocity. The formula �56� is more accurate
because we chose for V1z Chandrasekhar functions that sat-
isfy the boundary conditions �54�.

For the calculations we used material parameters of
MBBA at 25 °C �14�. Compared with the rigorous calcula-
tions the accuracy of Eq. �56� is better than 1% for Couette
flow and better than 3% for Poiseuille flow. Note that Eq.
�46� for the homogeneous instability is more accurate than
Eq. �56� for q=0 because Eq. �56� was obtained by solving
four equations �50�–�53� by approximating all variables,
whereas Eq. �46� was obtained by solving the reduced equa-
tions �28� and �43� by approximating only two variables.

V. RESULTS AND DISCUSSION

For the calculations we used material parameters of
MBBA at 25 °C �14�. Calculations were made for the range
of anchoring lengths �a=0–1 and �p=0–1. For strong an-
choring �a=�p=0, whereas �a=�p=1 correspond to very
weak anchoring when the characteristic anchoring lengths
are equal to the NLC layer thickness.

A. Couette flow

We found that in the case of Couette flow without and
with an additional electric field the critical shear rate ac

2 for
the even type homogeneous instability �EH� is systematically
lower than the threshold for other types of instability. Note
that in the presence of the field the symmetry with respect to
the exchange �a↔�p is broken.

In Fig. 2 contour plots for the critical shear rate ac
2 vs

anchoring lengths �a and �p for different values of the elec-
tric field are shown. The difference between ac

2 obtained
from the exact, semianalytical solution �39� and from the
one-mode approximation �46� is indistinguishable in the
figure.

In Fig. 3 contour plots of ac
2 �thin dashed lines� and the

boundaries where the type of instability changes �the thick
solid lines are obtained numerically, the thick dashed lines
are from Eqs. �46� and �56�� are shown for different values of
magnetic field. For not too strong magnetic field in the re-
gion of weak anchoring the odd type homogeneous instabil-
ity �OH� takes place �Fig. 3�a��. In the region of strong an-
choring, ��a ,�p�→0, one has homogeneous instability of
opposite z symmetry �EH�. Note that the threshold for the
EH instability becomes less sensitive to the surface anchor-
ing �Fig. 3�a��. Increasing the magnetic field the OH region

TABLE III. Trial functions for the spatially periodic
solutions.

Couette flow Poiseuille flow

Function “odd” “even” “odd” “even”

fn�z� �n
o�z ;�a� �n

e�z ;�a� �n
o�z ;�a� �n

e�z ;�a�
gn�z� �n

o�z ;�p� �n
e�z ;�p� �n

e�z ;�p� �n
o�z ;�p�

un�z� �n
o�z� �n

e�z� �n
o�z� �n

e�z�
wn�z� �n

o�z� �n
e�z� �n

e�z� �n
o�z�
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FIG. 2. Contour plot of the critical shear rate ac
2 vs �a and �p for

Couette flow. �a� E0=0; �b� E0=EF
weak, �a�0; �c� E0=EF

weak, �a

0. EF
weak=0.42EF.

FIG. 3. Contour plot of the critical shear rate ac
2 vs �a and �p for

Couette flow with additional magnetic field. �a� H0 /HF=3; �b�
H0 /HF=3.5; �c� H0 /HF=4. Boundaries between different type of
instabilities are given by thick solid lines �full numerical� and thick
dashed lines �one-mode approximation�.
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expands toward stronger anchoring strengths. Above H0
�3.2 a region with lowest threshold corresponding to the
even roll mode �ER� appears. This region has borders with
both types of the homogeneous instability �Fig. 3�b��. With
further increasing magnetic field the region of spatially peri-
odic instability ER expands �Fig. 3�c�� and above H0 /HF
=4 the ER instability has invaded the whole investigated
range of ��a ,�p�. For strong anchoring and H0 /HF=3.5 the
critical wave number of ER instability is qc=5.5. It increases
with increasing magnetic field and decreases with decreasing
anchoring strengths.

Leslie has pointed out �using an approximate analytical
approach� that for strong anchoring a transition from a ho-
mogeneous instability without transverse flow �EH� to one
with such flow �OH� as the magnetic field is increased is not
possible in MBBA because of the appearance of the ER type
instability �16�. This is consistent with our results. We find
that the EH-OH transition in MBBA is possible only in the
region of weak anchoring �Figs. 3�a�–3�c��.

In Fig. 4 neutral curves for different values of the mag-
netic field and fixed anchoring lengths are shown �solid line
for ER and dashed lines for OR�. There are always two
minima for the even mode; one of them at q=0 that corre-
sponds to the homogeneous instability EH. For small mag-
netic field the absolute minimum is at q=0 �line a�. The
neutral curve for the odd mode OR is systematically higher
than for ER. With increasing magnetic field the critical am-
plitude for the EH instability �q=0� increases more rapidly
than the one for the ER instability �q�0� so that for
H0 /HF3.4 the ER solution is realized �lines b and c�. In a
small range of q �dashed lines� a stationary ER solution does
not exist but we have OR instead.

For the EH instability under Couette flow and strong an-
choring in the absence of fields we find ac

2=12.15 �from the
semianalytical expression �39� as well as from the one-mode
approximation �46� and also Eq. �56� with q=0�. The avail-
able experimental value for the critical shear velocity in
MBBA at 23 °C is V0c=11.5 �m/s for a sample of thickness
200 �m �1�, that gives ac

2=6.3 for the material parameters
�14�. We suspect that the lower experimental value is due to

failure of the strong anchoring limit and deviations of the
initial director orientation from the direction perpendicular to
the flow plane. In addition, the difference in the material
parameters of the substance used in the experiment and that
of “standard” MBBA can also lead to the discrepancy.

B. Poiseuille flow

In Fig. 5 the contour plot for ac
2 �thin dashed lines are

from the full numerical calculation, dotted lines are from the
one-mode approximations �46� and �56�� and the boundaries
for different types of instabilities �thick solid line: numerical;
thick dashed line: Eqs. �46� and �56�� are shown. In Poi-
seuille flow the phase diagram is already very rich in the
absence of external fields. In the region of large �a �weak
azimuthal anchoring� one has the EH instability. For inter-
mediate anchoring strengths rolls of type OR occur �Fig.
5�a��. Note that even in the absence of the fields there is no
symmetry under exchange �a↔�p, contrary to Couette flow.
The one-mode approximations �46� and �56� do not give the
transition to EH for strong anchoring. From the full numeri-
cal calculations follows that in the region of strong anchor-
ing, ��a ,�p�→0, the difference between the EH and the OR
instability thresholds is only about 5%. By varying material
parameters �increase �2 by 10% or decrease �3 by 20% or �5
by 25% or K33 by 35%� it is possible to change the type of
instability in this region.

Application of an electric field leads for �a�0 ��a0� to
expansion �contraction� of the EH region �Figs. 5�b� and
5�c��. At E0 /EF=1 and �a�0 rolls vanish completely and the
EH instability occurs in the whole investigated area of
��a ,�p�. For �a0 the instability of OH type appears in the
region of large �p �weak polar anchoring�. In this case, in-
creasing the electric field from EF

weak to EF causes an expan-
sion of the OH region. Note that for �p1, which is in the
OH region, the Fréedericksz transition occurs first.

An additional magnetic field suppresses the homogeneous
instability �Fig. 6�. Above H0 /HF�0.5 the spatially periodic
instability OR occurs for all anchoring strengths investi-
gated.

The critical wave number qc in the absence of fields is
1.4. Application of an electric field decreases qc whereas the
magnetic field increases qc. The wave number decreases with
decreasing anchoring strengths.

In the absence of fields and strong anchoring we find for
the EH instability ac

2=102 �Eq. �46� gives 110 and Eq. �56�
with q=0 gives 130�. The experimental value for the critical
pressure gradient in MBBA is �Pc /�x=245 Pa/m for a
sample of thickness 200 �m �17,18�, that gives ac

2=130 for
the material parameters �14�. Thus theoretical calculations
and experimental results are in good agreement. Note that in
the experiments �17,18� actually not steady but oscillatory
flow with very low frequency was used �f =5�10−3 Hz�.

In summary, the orientational instabilities for both steady
Couette �semianalytical for homogeneous instability and nu-
merical for rolls� and Poiseuille flow �numerical� were ana-
lyzed rigorously taking into account weak anchoring condi-
tions at the confining plates and the influence of external
fields. Easy-to-use expressions for the threshold of all pos-

FIG. 4. Neutral curves a0
2 vs q for Couette flow with additional

magnetic field, �a=0.1, �p=0.1. �a� H0 /HF=3; �b� H0 /HF=3.4; �c�
H0 /HF=4.
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sible types of instabilities were obtained and compared with
the rigorous calculations. In particular the regions in param-
eter space �anchoring strengths, external fields� where the
different types of instabilities occurred were determined. The
results can be used for the experimental measurements of the
polar and azimuthal anchoring strengths in one single
experiment.
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APPENDIX A: TRIAL FUNCTIONS

In the calculations we used the following set of trial func-
tions for the director perturbations:

�n
o�z;�� = sin�2n�z� + 2n�� sin��2n − 1��z� ,

�n
e�z;�� = cos��2n − 1��z� + �2n − 1��� cos�2�n − 1��z� ,

and for the velocity perturbations

�n
o�z� = sin�2n�z�,�n

e�z� = cos��2n − 1��z� ,

�n
o�z� =

sinh��2nz�
sinh��2n/2�

−
sin��2nz�
sin��2n/2�

,

�n
e�z� =

cosh��2n−1z�
cosh��2n−1/2�

−
cos��2n−1z�
cos��2n−1/2�

,

where �n
o�z� and �n

e�z� are the Chandrasekhar functions and �n

are the roots of the appropriate characteristic equations re-
sults from �n�±1/2�=�z�n�±1/2� �19�.

FIG. 5. Contour plot of the critical shear rate ac
2 vs �a and �p for

Poiseuille flow. �a� E0=0; �b� E0=E0
weak, �a�0; �c� E0=E0

weak, �a

0. EF
weak=0.42EF. Boundaries between different types of instabili-

ties are given by thick solid lines �full numerical� and thick dashed
lines �one-mode approximation�.

FIG. 6. Contour plot of the critical shear rate ac
2 vs �a and �p for

Poiseuille flow with additional magnetic field H0 /HF=0.4.
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APPENDIX B: PROJECTION INTEGRALS

Couette flow

Odd solution: �f f��=−2�2�3+20�a+3�2�a
2� /3, �f2�= �3

+32�a+12�2�a
2� /6, �gg��=−2�2�3+20�p+3�2�p

2� /3, �g2�
= �3+32�p+12�2�p

2� /6, �fsg�= �3+16��a+�p�
+12�2�a�p� /6, �sf�= �g�=0, �usg�= �3+16�p� /6, �fu�= �3
+16�a� /6, �gw��=−27.257−32.441�p, �gw�=0.690 43
+3.2870�p, �w�sf���=−27.257−32.441�a, �wsf�=0.690 43
+3.2870�a, �uu��=−2�2, �u2�=1/2, �ww�4��=3803.5,
�ww��=−46.050, �w2�=1.

Even solution: �f f��=−�2�1+4�a� /2, �f2�= �1+8�a

+2�2�a
2� /2, �gg��=−�2�1+4�p� /2, �g2�= �1+8�p

+2�2�p
2� /2, �fsg�= �1+4��a+�p�+2�2�a�p� /2, �sf�= �2

+�2�a� /�, �g�= �2+�2�p� /�, �usg�= �1+4�p� /2, �fu�= �1
+4�a� /2, �gw��=−6.8828, �gw�=0.697 38+2.6102�p,
�w�sf���=−6.8828, �wsf�=0.697 38+2.6102�a, �uu��=
−�2 /2, �u2�=1/2, �ww�4��=500.56, �ww��=−12.303, �w2�
=1.

Poiseuille flow

Odd solution: �f f��=−2�2�3+20�a+3�2�a
2� /3, �f2�= �3

+32�a+12�2�a
2� /6, �gg��=−�2�1+4�p� /2, �g2�= �1+8�p

+2�2�p
2� /2, �fsg�=−�16+9�2��a+�p�+72�2�a�p� / �18�2�,

�sf�=−�1+8�a� / �2��, �g�= �2+�2�p� /�, �usg�=−�16
+9�2�p� / �18�2�, �fu�= �3+16�a� /6, �gw��=−6.8828, �gw�
=0.697 38+2.6102�p, �w�sf���=−0.876 73−22.615�a,
�wsf�=−0.102 92−0.498 16�a, �uu��=−2�2, �u2�=1/2,
�ww�4��=500.56, �ww��=−12.303, �w2�=1.

Even solution: �f f��=−�2�1+4�a� /2, �f2�= �1+8�a

+2�2�a
2� /2, �gg��=−2�2�3+20�p+3�2�p

2� /3, �g2�= �3
+32�p+12�2�p

2� /6, �fsg�=−�16+9�2��a+�p�
+72�2�a�p� / �18�2�, �sf�= �g�=0, �usg�=−�16
+9�2�p� / �18�2�, �fu�= �1+4�a� /2, �gw��=−27.257
−32.441�p, �gw�=0.690 43+3.2870�p, �w�sf���=4.4917,
�wsf�=−0.122 06−0.596 94�a, �uu��=−�2 /2, �u2�=1/2,
�ww�4��=3803.5, �ww��=−46.050, �w2�=1.
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