PHYSICAL REVIEW E 72, 031709 (2005)

Pattern-forming instabilities in nematic liquid crystals under oscillatory Couette flow
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We consider instabilities, either homogeneous or periodic in space, which develop in a nematic liquid crystal
layer under rectilinear oscillatory Couette flow for planar surface alignment of the director perpendicular to the
flow plane. On the basis of a numerical and analytical linear stability analysis we determine the critical
amplitude of the oscillatory flow, the wave number, and the symmetry of the destabilizing mode and present a
comprehensive phase diagram of the flow instabilities. In particular it is found that by varying the frequency of
the Couette flow the instability changes its temporal symmetry. This transition is shown to be related to the
inertia effects of the nematic fluid, which become more important with increasing flow frequency. We also
show that an electric field applied perpendicularly to the nematic layer can induce an exchange of instabilities
with different spatial and temporal symmetries. The theoretical results are compared with experiments, when

available.

DOI: 10.1103/PhysRevE.72.031709

I. INTRODUCTION

Nematic liquid crystals (nematics) represent one of the
simplest anisotropic fluids [1]. In order to describe the mac-
roscopic dynamics of these materials made up from elon-
gated molecules one needs, in addition to the velocity and
pressure field, an additional hydrodynamic variable, the di-
rector field n, which is parallel to the direction of the pre-
ferred local molecular orientation. The strong coupling be-
tween the director and the velocity fields provides a number
of interesting pattern forming instabilities in nematics under
flow [2-5]. The flow behavior of a nematic strongly depends
on the geometry and material parameters, in particular on the
sign of the ratio of the Leslie viscosity coefficients a; and
a,. For materials with rodlike molecules «, is negative,
whereas the sign of a; is not restricted a priori. If the nem-
atic is initially oriented within the flow plane, i.e., within the
plane spanned by the velocity of the primary flow and its
gradient, then under rectilinear steady flow (of Couette or
Poiseuille type) in materials with a; <0 the director remains
within the flow plane. It includes an angle 6y
=arctan \ a3/ a, with the flow direction according to a well
known stationary homogeneous solution of the nematody-
namic equations [1,6]. This solution 6; (with appropriate
sign of the square root) is linearly stable in the case of steady
flows [6-8]. These nematics are called “flow aligning.” In
oscillatory flows the director tends to oscillate between the
angles +6;. With a nonlinear velocity profile, like in Poi-
seuille flow, this oscillatory solution can lose stability [9,10].

In contrast, for a3>0 under steady flow the stationary
solution @ does not exist and one has tumbled regime with a
director profile depending strongly on the shear rate [4].
Nematics with @3>0 are called “non-flow-aligning.”

The phenomena of orientational transitions becomes even
richer if the director is initially oriented perpendicular to the
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flow plane. This situation corresponds, for symmetry rea-
sons, to a stationary homogeneous solution of the nematody-
namic equations. In the classical work by Pieranski and
Guyon (PG), however, it was shown that in the absence of
additional torques from bounding surfaces or external fields
this solution is unstable for a3 <0 [11]. In confined geom-
etry, which sets a certain length scale in the system, the so-
Iution loses stability only above some critical value of the
shear rate via a stationary bifurcation [11,12]. Henceforth,
we concentrate on the case with negative «;. In steady Cou-
ette as well as Poiseuille flows the unstable mode is homo-
geneous in space, i.e., the critical wave number is ¢.=0.

The situation changes in the presence of external fields. In
steady Couette flow stabilizing magnetic field (for usual
nematics the anisotropy of the magnetic susceptibility is
positive) above critical strength applied along the initial di-
rector orientation changes the type of instability from homo-
geneous to spatially periodic (¢.# 0) leading to a roll pattern
[11]. In steady Poiseuille flow stabilizing magnetic field does
not affect the type of instability [12], but rolls can be ob-
served above a secondary instability [12].

In oscillatory Couette flow experiments of PG [11] in the
frequency range 0.5—2.5 Hz and recent experiments [13,14]
for frequencies f= 150 Hz show the appearance of a roll
instability with the critical shear rate depending on the flow
frequency. The temporal symmetry of the instability is influ-
enced by an applied electric field stabilizing the orientation
in the plane of nematic layer (negative anisotropy of the
dielectric permittivity) [11]. A theoretical treatment of the
problem [2,11,15,16] gives the mechanisms of the instability
and is in a good agreement with experimental results, includ-
ing the change in symmetry. For oscillatory Poiseuille flow
the situation is similar [17-19]. In all the theoretical treat-
ments [2,15,16] the inertia of the fluid is neglected, which is
reasonable for low frequencies of the applied shear flow, i.e.,
when the (circular) flow frequency w is much less than the
inverse of the viscous relaxation time 7,~ pd*/#n (p is the
nematic liquid crystal density, d is a thickness of nematic
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layer and 7 an effective viscosity of the nematic). In the
absence of an electric field one then has no changes in the
instability scenario with the flow frequency.

In the present work we investigate numerically as well as
analytically homogeneous and spatially periodic instabilities
induced by plane, oscillatory Couette flow with the director
prealigned perpendicular to the flow plane in a wide range of
the flow frequencies (up to w~ 7,', which is about 10* s™!
for typical thickness of the nematic layer d ~ 100 wm). Fur-
thermore, we study the influence of an electric field on the
flow instabilities for negative and positive anisotropy of the
dielectric permittivity of the nematic. Special attention is
given to the regimes with high flow frequencies (w7, ~ 1),
where the present experimental data lack precision. It is
worth noting that recent experiments [13,14] demonstrate
techniques to study the high-frequency range in detail and to
improve the experiments.

In Sec. II we present the formulation of the problem based
on the standard set of Leslie-Ericksen nematodynamic equa-
tions [1,6] and explain the numerical procedure used for lin-
ear stability analysis. In Sec. III the results of the stability
analysis are given and compared with available experimental
data. Finally, in Sec. IV we draw our conclusions and put the
results into perspective.

II. GOVERNING EQUATIONS AND STABILITY ANALYSIS

We consider a nematic layer bounded by two infinite par-
allel plates at z==+d/2 with the z axis perpendicular to the
plates. The upper plate (at z=d/2) is oscillated harmonically
along x with an amplitude A and a (circular) frequency w
=2mqf. The director is oriented (rigidly anchored) at the
boundaries along y axis. An additional electric field of
strength E can be applied along z axis. It is convenient to
introduce the dimensionless variables

F=rld, T=tw, a=Ald. (1)

Henceforward we omit the tildes.

For small amplitude A/d the system remains in the basic
state, i.e., the director is undistorted and the nematic behaves
like an isotropic fluid with the viscosity 7;=ay,/2, where «;
are the Leslie viscosity coefficients [1,6]. The basic state is
calculated as homogeneous solution of the standard set of
nematodynamic equations (Leslie-Ericksen equations [1,6])

n’=(0,1,0), v°=(%z1),0,0). (2)

The velocity profile can be found from Navier-Stokes equa-
tion

0_ 20
€,00, = &?vx,

=12=0. (3)

Here the notations d,=d/dt, d,=dl dz, (9f=(92/ Jz% and so on
are used and

Ug z=1/2 =0 COS t, Ug

7, = pd’l 7, 4)

with 7, the viscous relaxation time which is typically of or-
der 10™*s (for p~10°kg/m’, d~100 um and 7,
~107" N s/m?).

€, = WT,,
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In order to investigate the stability of Eq. (2) we linearize
the nematodynamic equations [1,6] around the basic state as
follows:

n=(0,1,0)+ (nn,n.),

v= (US,0,0) + (V,,0y,0,), (5)

where the perturbations n;=n/(y,z,1), v;=v/y,z,1), {i
=x,y,z} are small. Guided by the experimental observations
we assume that the wave vector of the destabilizing modes, if
not zero, is perpendicular to the flow plane.

It follows from the director normalization equation rn?
=1 that n,=0 in linear approximation. Eliminating v, by use
of the incompressibility condition d,v,=—d.v, and the pres-
sure by taking the curl of the Navier-Stokes equation one
obtains for (v,,v,,n,,n,)

(L, —L)v,=—¢ “&yvz + a0, &Zn + ( ay+ a5)v (92n
(6)
Por Lo 03 LY,
(e,L3— Ly)v, = E(az + as)vx!zﬁynx - 5(a3 + a6)o72(vx Ony)
+ aé(&i - )\ﬁf)ﬁ[ﬁynz, (7)
(1=N)(9,- edGl)n = v N+ O, (8)

(1- )(Ll—edGz)n —)‘sz T +((92 )\(92)0 9)

with vgsz=&zv2. The I:i and (A}[ are linear differential operators

Li=dd. Ly=a(nd+d). Li=4(f+7),

Ly=mdy+ (a) + m} + ;)&% + 7,32
él =k3(9§+k2(9§,

éz = &y[k3z9§ + &? +sgn(e,) 772E(2)] (10)
and

€= 1/(w7), T=pd 1K), vi=a3-a,

aj =ain, n =n/m, N=ala, Ey=EIER,

m=(ay+as—ay)2. (11)

Here 7, is the director relaxation time, k;=K;;/K;; with K;;
the orientational elastic constants (Frank moduli), Ep
=m/d\K,,/(&l€,|) is the Fréedericksz field, and €, is the
anisotropy of the dielectric permittivity.

We also introduce the quantity

Pp:Tv/szpKll/(n371)’ (12)

which represents the ratio of the Reynolds number to the
Ericksen number and which is of order 107 for ordinary

= (CY3 +a,+ a6)/2,
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nematics. The nematodynamic equations nondimensional-
ized with the help of Eq. (1) contain the dimensionless pa-
rameters €, and €, while all other quantities involve the
ratios of the viscosities and elasticities. According to Egs. (1)
and (3) the reduced amplitude a=A/d serves as the main
control parameter. It is obvious that the critical flow ampli-
tude a, at the onset of instability is a universal function, that
depends only on the product wd” (or w7, since P, is also a
material constant).

The boundary conditions (fully rigid) for Egs. (6)—(9)
read

Ux|z=11/2 =0, vz|z=tl/2 = Uz,z|z=il/2 =0,

Nl 12 =0. (13)

We have tested that in the framework of the stability
analysis (see below) the inertia term in the velocity equation
(3) (~¢,) can be neglected, if the frequencies are not too
high (w7, <1). Then the solution of Eq. (3) is simply given
as

Nylr=s12 =0,

v)=a(z+ 1/2)cos 1. (14)

Let us collect all perturbations in the vector Y
=(v,.v.,n,, nZ)T. From the Floquet theorem one can write the
modal solutions of Egs. (6)—(9) in the form

Y =e%%ey(z,1), (15)

where o is the growth rate, ¢ is the wave number; y(z,7) is
time periodic with the period of 2. Instead of solving the
Floquet problem (15) directly (for instance by finite differ-
ence methods) we employ a Galerkin expansion technique
[20]

Y(Z5t) = 2 2 cnk¢;l(z)eikts (16)

n=1 k=—x

with constant coefficients c¢,;. The trial functions ¢,(z) sat-
isfy the boundary conditions (13). We use Chebyshev poly-
nomials [21]

1 T0(22) = To(22),
la) = {sz+1(2z) -T,(22), n=2m,

n=2m-1,

(17)

for v,, n,, and n,, and for v, Chandrasekhar functions [22]

cosh(\,,2)  cos(\,2)
- , n=2m-1,
cosh(N,,/2)  cos(\,/2)
d(2)=) . .
sinh(v,z)  sin(v,z)
n=2m

sinh(v,/2)  sin(v,/2)
(18)

Here \,, and v,, are the roots of the appropriate characteristic
equations results from ¢,(+1/2)=3.¢,(x1/2)=0 [22].
Inspection of Egs. (6)—(9) shows that the modal solutions
(16) have a definite symmetry (even or odd) under the trans-
formations z——z and r—f+m. Accordingly the possible
modes destabilizing the basic state can be classified with the
help of symmetry of four types, see Table I. Although we
have eliminated the v, component in the linearized equations
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TABLE I. Spatial (z) and temporal (r) symmetries of solutions
of linearized Egs. (6)—(9).

1 1I III v

v, even odd even even odd odd odd even
v, odd even odd odd even even even odd
v even even even odd odd even odd odd
n, even odd even even odd odd odd even
n, even even even odd odd even odd odd

it is included in Table I for the completeness. Type I corre-
sponds to the ¥ symmetry and type II to the Z symmetry in
the notations of Pieranski and Guyon [11]. Type-I and -IIT
solutions allow for a nonzero time average of Uy, U, In this
case rolls are overturning, i.e., they have steadily rotating
contribution. Rolls of type II and IV are purely oscillating.

Substituting Egs. (15) and (16) into Egs. (6)—(9) and pro-
jecting onto the corresponding Galerkin modes (17) and (18)
[20] one obtains a linear, algebraic system for the expansion
coefficients ¢, of the form

(A+aB)ec=0cC -c, (19)

where matrices A, B, and C depend only on the wave num-
ber g and the material parameters. Truncating the expansion
(16) one can solve the finite dimension eigenvalue problem
(19) by standard methods. The condition max Re[o(a,q)]
=0 yields the neutral curve ay(g). If one assumes a stationary
bifurcation, i.e., Im(o)=0 at threshold, then one has to solve
the eigenvalue problem

(A" B)e=- ic, (20)

which is much more convenient. The minimum of a(q)
yields the critical wave number g=¢g, and the critical flow
amplitude a.=ay(q,.). Using Eq. (19) we have checked that in
all the cases the primary bifurcation of the basic state (2) is
stationary.

III. RESULTS AND DISCUSSION
A. Flow induced instabilities without an electric field

The detailed calculations were performed for the material
MBBA (4-methoxy-benzylidene-4’-n-butylaniline, see Ap-
pendix A for the material parameters). The critical amplitude
a.(wT,) and the critical wave number ¢ (w7,;) are shown in
Fig. 1. For wr,;<37 the primary instability in the absence of
external fields is homogeneous (g,=0). This could be ex-
pected already from the fact that in steady shear flow the
homogeneous instability occurs first [11,16]. Interestingly,
for wr,>37 the primary instability leads to rolls of type I,
which persists up to wr;~4.1X 10*. Then there is a transi-
tion to rolls of type II. The wave number ¢, is about 4.3 at
the lowest frequencies and increases monotonously with fre-
quency. At the transition point from type I to type II rolls g,
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FIG. 1. Critical amplitude a,. and critical wave number ¢, vs w7,
for MBBA. Solid lines are from numerical calculations, dashed
lines are obtained from the approximations (24) and (25), points are
experimental data from Ref. [13]. H denotes homogeneous instabil-
ity, R is roll instability, Roman numbers denote the symmetry type
from Table I.

jumps down from 11 to 1.3. We have checked numerically
that the appearance of the type II transition is related to the
inertia terms in the flow equations (6) and (7), described by
the parameter €,. By neglecting the inertia terms in the
Navier-Stokes Egs. (6) and (7), i.e., for €,— 0, the transition
was absent. We mention that according to our numerical
analysis the thresholds for the instabilities of types III and IV
are systematically higher for all frequencies investigated.

In order to clarify the mechanism leading to type I
—type II transition we have performed approximate analyti-
cal calculations. Applying the operator (ﬁi—)\&g) on Eq. (7)
we eliminate the velocities from Egs. (8) and (9). In the
remaining equations for n, and n, we use a one-mode ap-
proximation in space

n, = cos(mz)cos(qy)f(1),

n, = cos(mz)cos(gy)g(1), (21)

appropriate for the symmetry of type I or II. After projecting
the equations onto the corresponding modes one obtains
coupled ODEs for f(¢) and g(r). Further simplifications can
be made by keeping only the terms in the leading order in
€,,€,a,€;, while neglecting the terms proportional to
€,0,(n,,n,), €d(n,,n,), which are small compared with
d(n,,n.). Finally, one arrives at a minimal model that covers
all essential features of roll instabilities of type I and II

f+ €;myf — (maa cos t — e;mya sint)g =0,

g+¢€,ig—lhacostf=0. (22)

The coefficients m,(q), [;(g) are given in Appendix B. We
look for a solution of Eq. (22), which neither grows nor
decays. We assume
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J=fose: for type T,

8= 8stF 8ose

f:fsl +fosc’

that corresponds to the separation of the functions f and g
into the stationary (index st) and oscillatory (osc) parts with
time averages (fos.)=(gose»=0. Substituting Eq. (23) into Eq.
(22) and averaging over the period of the oscillations one
obtains the critical amplitudes for roll instabilities of type I
and II

g=8ose» for type II, (23)

2Aegmi+1) 1

12 _ 4
(ac) [mymy + mse,leg] 1,

(24)

(@")? = 2l +1) my

= (25)
[1ymy —mye,lel] I

Let us analyze the expressions (24) and (25). From Egs. (B1)
in the Appendix B one finds that m,(q), m,(q), ms(q), and
1,(q) are positive for all g, whereas I,(¢g) is positive only for
very small ¢(=<0.5) and comparatively large g(=3), and
negative for g in between. Thus, from Eq. (24) the rolls with
symmetry of type I can develop with both g.~27 and ¢,
=0 (homogeneous instabilities). In Eq. (25) the expression
[m,l, —mse€,/ €,] in the denominator changes sign from posi-
tive to negative with increasing frequency at

12
Wy T, = [%i} . (26)
ms P,J

A lower limit of the transition frequency w, is given by
setting ¢=0. For rolls of type II to exist at frequency w
> w, one needs the negative /,, which yields an instability
with g.~ 1. Therefore one can conclude from Eq. (25) that
only the ratio €,/€; plays an essential role in the transition
from rolls of type I symmetry to rolls of type II, but not €,
itself.

By increasing w7, the critical amplitude ai.(an'd) of mode
I given by Eq. (24) appears to tend to a constant value al-
ready at rather low values of w7, where €,<<1. Such a be-
havior was described before in Ref. [15], where in a one-
mode analysis (spatial and temporal) the inertia terms were
completely neglected both for the basic state and for the
linear stability problem. One can show that this feature is not
an artifact of the one-mode approximation in time. The same
result can be obtained by inspecting directly the high-
frequency limit in Eq. (22) (see Appendix C).

For_the threshold of type II rolls at frequency w7,
>1/\P,, ie., €,/€,>1, Eq. (25) can be expanded in terms
of €,/¢€, that gives

= [2(5311%+ 1) m

C

}1/2
P €. (27)
myly  (=1) *

. m. -
Slnce €;<1 for w7,>1 one sees that a, is inversely propor-
tional to w7y,.

The results for the approximate expressions (24) and (25),
are included in Fig. 1. Their deviation from the rigorous
numerical results is about 30% at small w7, and increases
with w7, This turns out to be a consequence of the spatial
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one-mode approximation (21). Nevertheless, the analytic ex-
pressions reproduce qualitatively all the important features of
the numerically calculated thresholds, including the switch-
ing between the modes of types I and II. Note, however, that
the frequency dependence of the critical wave number ¢, in
the one-mode spatial approximation for type I rolls does not
show a saturation as in the numerical calculations.

Finally we address the approximation of neglecting the
inertia term in velocity equation (3) which leads to simple
expression (14) and allows for the minimal model (22). From
Eq. (3) at small ¢, (for w7, <1/P,~ 10°) one can obtain the
correction of the basic velocity (14) as an expansion in €,. If
one keeps only the leading term the threshold amplitude
(and, consequently, ®,) in the numerical calculations
changes by less than 10% for €,=0.1 and the correction be-
comes smaller at lower frequencies, so that €, can safely be
neglected in Eq. (3) at least up to w7,~ 10°.

B. Comparison with experiments

In the experiments of PG with the nematic MBBA layer
of thickness d=240 um rolls of type I have been observed as
the first instability at critical amplitude a,. varying from 4.5
to 2.5 for frequency changing from w7,=2.9X10° to w7,
=1.1 X 10* with critical wave number g,~2m [11]. These
numbers were very close to those found in our calculations,
but one should note that in the experiments a constant mag-
netic field has been used in order to stabilize the initial di-
rector orientation (the study of the influence of a magnetic
field on the flow instabilities is beyond the scope of present
work).

Oscillatory Couette flow was investigated experimentally
also by Anikeev and Kapustina [13]. The authors used an
eutectic mixture of MBBA and EBBA, which is supposed to
have almost the same material parameters as MBBA. A ge-
ometry where the director is anchored in the plane of the
layer at an angle ¢ to the shear direction was investigated.
For the case #=90°, in which we are interested in, the fre-
quency dependence of a, and ¢, were given for d=90 um.
The experimental points taken from [13] are included in Fig.
1. The agreement between experimental and theoretical data
is good.

Experiments of Mullin and Peacock [14] performed with
the nematic E7 show the existence of a roll instability at least
up to 150 Hz with d between 20 and 50 wm. A good test for
the quality of oscillatory Couette flow experiments is the
scaling law a,=F(wt;), where F is determined from the
nematodynamic equations. The experimental data of Mullin
and Peacock pass this test only in a rather narrow region at
low frequencies, namely, up to about 40 Hz for d=20, 30,
and 40 um. At higher frequencies the scaling law is of vari-
ance with the experiments and the data follows more a rela-
tion similar to a.=F(w). This feature could be caused by
failure of the surface anchoring and/or departures from Cou-
ette flow in the experimental setup. Mullin and Peacock re-
port, that the observation of probe particles has revealed no
average flow, which could mean that the rolls are of type II,
the purely oscillating, characterized by a vanishing time av-
erage of velocity. On the other hand in the experiments the
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TABLE II. For the standard values of the material parameters of
MBBA at 25 °C and w7,=825 (typical value for lowest frequencies
in experiments [14]) the roll instability of type I (overturning rolls)
takes place at critical amplitude a.=2.6 and critical wave number
q.=7. When any one of the parameters is varied alone, a transition
to type II (oscillating rolls) occurs at the value given in the third
column. In the fourth and fifth columns the new values of the
threshold amplitude and the critical wave number are given.

Standard Transition
values values New a,. New ¢,

ala, 0.164 1.01 2.38 6.9

ayl a, —-0.748 -5.92 7.72 10.1

as/ a, —-0.706 -1.83 6.64 1.4

agl ay 0.304 —-0.85 6.60 1.4
K\1/Ky 1.586 5.95 2.93 7.3
K33/ Ky, 2.05 0.15 1.66 16.6

critical wave number increases with increasing oscillatory
flow frequency whereas for rolls of type II one would expect
that g, remains nearly constant (see Fig. 1).

We have found in the literature only the values of the
elastic constants for E7 [23], thus we are not able to perform
a direct comparison of our theoretical results with the experi-
mental data from Ref. [14]. Instead, we have explored the
impact of variation of the material parameters on the insta-
bility type. The results of this study are presented in Table II.
Although we have in fact identified the possibility of the
rolls of type II at low frequencies for a certain (reasonable)
set of the material parameters, the discrepancy in frequency
dependence of the critical wave number remains.

C. Influence of an electric field on the instability type and
symmetry

Applying an electric field across the nematic layer can
lead to switching between different types of temporal sym-
metry of rolls induced by oscillatory shear flow. In the case
of MBBA the change of the roll instability of type I to type
II by increasing the electric field strength was observed [11].
We have performed the stability analysis of the linearized
equations (6)—(9) in a wide range of the oscillatory flow fre-
quency and electric field strength for MBBA, which has a
negative anisotropy of the dielectric permittivity. We have
found that the electric field can change not only the temporal
symmetry of the instability, but also the spatial symmetry:
the phase diagram (Fig. 2) presents the regions, where the
rolls with symmetry type III appear at the threshold. Accord-
ing to their spatial symmetry these rolls represent a double-
layered structure, so that the critical wave number in this
area is about two times larger than in “normal,” one-layered
rolls. For low values of w7, the applied electric field leads to
an increase of the region of homogeneous instability (H),
which means that the electric field suppresses the roll insta-
bility. The profiles of the velocity and the director for various
modes with different symmetry are plotted in Fig. 3.

We have also calculated the phase diagram for a nematic
with positive dielectric anisotropy (Fig. 4). The material pa-
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FIG. 2. Phase diagram of instabilities induced by oscillatory
Couette flow in the presence of an electric field for a nematic with
negative dielectric anisotropy. H denotes homogeneous instability,
R is roll instability, Roman numbers denote the group of symmetry
from Table I.

rameters were taken from MBBA except €,=|eY"®*|. In this
case the phase diagram (Fig. 4) presents quite large region of
rolls of symmetry type 1. At low w7, there is a switching
between homogeneous instabilities of types I and II when
varying the electric field. Note, that under these conditions
without flow the splay Fréedericksz transition takes place at
E/Er=1, which leads to a homogeneous distortion predomi-
nantly at the middle of the nematic layer. As a result, when in
the presence of Couette flow the applied electric field E ap-
proaches Ep, a cooperative effect is expected and in fact the
critical flow amplitude a, goes to zero. The one-mode analy-
sis in this case does not agree very well with the full numeri-
cal calculations, although it keeps all the important features
(switching between modes, etc.).

IV. CONCLUSION

We have obtained the complete phase diagram of the ori-
entational instabilities, both homogeneous and spatially peri-
odic, in a flow aligning nematic liquid crystal subjected to
oscillatory Couette flow in the geometry, where the director
is prealigned perpendicular to the flow plane (spanned by the
primary flow velocity and its gradient). A linear stability
analysis of the full set of the nematodynamic equations has
been carried out. It has been found that the inertia effects of
the nematic fluid, usually neglected in the theoretical consid-
erations, are responsible for a new type of roll instability and
for the switching between roll instabilities of different tem-
poral symmetry. The important role of inertia effects has
been clearly borne out by analytical calculations. The agree-
ment between numerical simulations of the underlying equa-
tions and available experimental data is good.

For the nematic liquid crystal MBBA increase of the flow
frequency leads to the transition between rolls of symmetry
types I and II. Both of these modes can easily be distin-
guished in experiments. For MBBA material parameters one

PHYSICAL REVIEW E 72, 031709 (2005)

has the transition at w7,~4.1X 10* For d=240 um, the
value used in the PG experiments [11], this corresponds to
f=7 Hz. The maximal frequency in this experiment was
~2.5 Hz, so the effect could not be observed. Recent experi-
ments on oscillatory Couette flow in nematics [13,14] dem-
onstrate techniques to study the high-frequency range in de-
tail.

We have also investigated the effect of an additional elec-
tric field applied across the nematic layer for liquid crystals
with negative and positive dielectric anisotropy. For MBBA
it was found that the electric field causes a transition to a
double-layered roll structure [R III, Fig. 3(d)] in a regime,
which is intermediate between that of rolls of types I and II.
In this case, the critical wave number is about twice of those
of “normal” rolls (R I and R II,). Another interesting point in
the experimental investigations could be the transition be-
tween rolls of the same symmetry but quite different wave
numbers by increasing the flow frequency at E/Ep>3
(R II, — R 1I, in Fig. 2).
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APPENDIX A

Material parameters of nematic liquid crystal MBBA (at
25 °C) used in numerical calculations [24,25]. Elastic con-
stants K;;=6.66, Ky,=4.2, K3;=8.61 (in units 107! N); vis-
cosity coefficients a;=-18.1, a,=-1104, ay3=—1.1,a4
=82.6, a5=77.9, az=-33.6 (in units 107> N s/m?); aniso-
tropy of the dielectric permittivity €,=-0.53.

APPENDIX B
The coefficients m,(q), I;(g) in Eq. (22)

my = (9hq* + ) (ksq® + k),
my=[(m = e1)g” + w YL (1= V)],
my=1/[r(1-N)],

I, = rylksq® + 7 — sgn(e,) T Eg)/rs,

L=[\ry = (¢" = \7)(c2q* - 03772)]/[”3(1 -N]. (BI)
with
ri=lm+ (1 -N"alg + 7,
ry=[mq’ + () + my + ) wlg? +

ry=ry+ (1 =N (g* = \7?)?,
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FIG. 3. Director (left) and velocity (right) profiles, cross section in the y-z plane: (a) R I, time averaged, g.~ 11; (b) R II;, =0, ¢,

~11; (¢c) R I, t=0, g.~1.3; (d) R III, time averaged, ¢.~ 22.

1
cr=5(a5 + aj),
c3= %(aé +ag).

APPENDIX C

To investigate the behavior of the critical amplitude in the
high-frequency range we neglect €, in Eq. (22) and expand
the functions f and g in small parameter €;,=1/(w7,). For-
mally this analysis is valid for 1 <w7;<1/P,. Then equa-
tions (22) can be written in the matrix form

d
EY:A([)Y, (C1)

where

— €M Myacost
() el )
8 lza cost - Edll
The treatment follows the well known procedure of time-

dependent perturbation theory in quantum mechanics. We
seek a periodic solution of Eq. (C1) of the form

Y=YO+€dY1+ e

At zero order in €; one has
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FIG. 4. Phase diagram of instabilities induced by oscillatory
Couette flow in the presence of an electric field for a nematic with
positive dielectric anisotropy. H denotes homogeneous instability, R
is roll instability, Roman numbers denote the group of symmetry
from Table I.

d

—Y,=A)1)Y,, Cc2
o= A0Y, )
where Ayg=A(g,;=0). Since A(r) commutes with Ay(¢’) (in
contrast to A) the solution of the matrix equation (C2) has
the form

(C3)

Y, = eff)drAO(r)YO’ YO = (fz )7
8
where f° and g° are initial values (fluctuations) of the func-
tions f, and g, respectively. It can easily be seen, that Y, is
periodic with time averages (f,)~ f°, (go)~g°, so that the
state with (f°=0, g" # 0) corresponds to the mode of symme-
try type I, and the state (f°#0,g°=0) corresponds to mode
of symmetry type II.
At the first order in €; one has the system

dY -
LAY, +b, withb= ( m1f0>' (C4)
dt -lLgo

The solution of Eq. (C4) is given by

PHYSICAL REVIEW E 72, 031709 (2005)

t
Y, =Y, + eJodmol? J dre~ o8O (7). (C5)
0

Substituting b into Eq. (C5) and using the relation [21]

e sin 0 _ Io(z) + 22 (- 1)k12k+l(z)sin[(2k +1)6]
k=0

©

+2 (= DMy(z)cos(2k6),
k=1

where I; are modified Bessel functions of integer order, one
has the periodicity condition for Y,

— li+m
Io(2\mylya) = — -—— for I type, (C6)
ly=m
— I+
Io(2Nmylha) = 1= for 1I type. (C7)
1=

Equations (C6) and (C7) represent the connection between
the flow amplitude a and the wave number ¢ in the implicit
form. Solving these equations (numerically) one gets the
neutral curve ay(g). Minimization of aq(gq) gives the critical
values of the flow amplitudes a. and the wave number gq..

Equation (C7) has no real roots for ¢=0.5, so that when
the fluid inertia term is neglected, only a roll instability of
symmetry type I or homogeneous instability of symmetry
type II can develop. Equation (C6) gives a critical amplitude
a,~2.2 and wave number g.~ 12, which is in a good agree-
ment with the numerical results (see Fig. 1). From Eq. (C7) it
follows that the smallest threshold a.~ 10.9 corresponds to
q.=0.
The above analysis shows the role of the elasticity de-
scribed by terms proportional to €; in the nematodynamic
equations. The nature of these terms is singular, i.e., when
these terms are neglected the critical flow amplitude vanishes
(a.=0), although for infinitesimal €, there exists a finite
value of a.. Another point is that at high enough frequencies
a. does not depend on the flow frequency, which is in con-
trast to the case of director alignment within the flow plane
[5], where the critical amplitude of the roll instability mono-
tonically decreases with the flow frequency.
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