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Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry
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We investigate the response of two-dimensional pattern-forming systems with a broken up-down symmetry,
such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear
behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:2 and 1:1
ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective
system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-
Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate
the generic response scenarios to a specific pattern-forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence, stability, and coexistence is deter-
mined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation,
single-mode solutionéstripes are favored close to threshold for modulation amplitudes beyond some critical
value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of
existence shrinks to zero with increasing values of the modulation amplitude. Furthermore, depending on the
modulation amplitude, the transition between stripes and distorted hexagons is either subcritical or

supercritical.
DOI: 10.1103/PhysReVvE.71.046212 PACS nunt®er82.40.Ck, 47.20.Ky, 47.54r
[. INTRODUCTION petition in terms of these equations. In thermal convection,

this symmetry breaking may be achieved by modulating the

External periodic forcing provides a powerful tool to ana- container boundaries or the applied temperature difference
lyze the response behavior of nonlinear pattern-forming sysperiodically in one directiori1,8,14. In chemical reactions,
tems, allowing, for instance, the study of their inherentlyhowever, the forcing is introduced by a spatially modulated
nonlinear mechanism of self-organization. The early investiillumination of the systenj20,48. The specific manifesta-
gations of effects dealing with spatially periodic forcing weretion of the modulation-induced symmetry breaking in ge-
devoted to pattern formation in hydrodynamic systems fol-€riC amplitude equations depends on the ratio between the
lowed by chemical systenfd—27]. The situation is compa- Medulation wave numbe, and the wave numbdg, of the
rable for temporal forcing of patterrf@3-32, whereas re- respective pattern. We will study two cases of resonant

cent investigations on spatiotemporal forcing have mainI);no_?glait\'/zngk;":ezcﬁ%?gi;%:lfg we will focus in this work on
been motivated by chemical reactior&3—36. 9 b P,

In thermal convection, when deviations from the Bouss the Lengyel-Epstein model for a chemical reaction. This

. imati into old37 3 I _~>>"model, introduced in Sec. Il, displays in some parameter
inesq approximation come into pldp7,38, as well as in  3nq0"3 Tyring instability of the homogeneous basic state, as

several chemical reactions of the Turing ty{89,40, the i he shown in Sec. IIl. Immediately above the threshold of
up-down symmetry of the fields describing the patternsg gypercritical bifurcation, the amplitudes of the unstable
u(r,t)—-u(r,t), is broken. In such two-dimensional ex- pattern-forming modes are still small enough to apply the
tended systems rotationally symmetric in a plane, hexagonsowerful perturbational technique of amplitude equations. In
are the generic pattern close to threshold. In systems with 8ec. IV, we derive the amplitude equations from the given
strong axial anisotropy, such as in nematic liquid crystals| engyel-Epstein model in the limit of small spatially peri-
this rotational symmetry is brokef#1-44 and hexagonal odic modulations of the illumination acting on the chemical
convection patterns do not occur. Thus the interplay betweereactions. We consider a resonant ratio of 1:1 as well as of
different broken symmetries, such as the broken up-dowr:2 between the wave number of the Turing instability and
symmetry with a weak anisotropy, leads to an interestinghe modulation wave number. The amplitude equations ob-
competition between stripe and hexagonal patterns, as hasined in each of these resonant cases are generic and may be
been shown recently45-47. found for other systems having the same symmetry proper-
Which kind of effects may be expected if besides theties as the considered Lengyel-Epstein model, for instance
up-down symmetry the translational symmetry is simulta-modulated convection systems. Without spatially periodic
neously broken by periodic modulation in one spatial direcforcing, it is known that the resulting amplitude equations
tion? As the direction of the modulation wave number de-favor hexagonal patterns close to threshold. In Sec. V, we
fines a preferred direction, the system becomes anisotropivestigate how the spatial forcing modifies the transition
In the following, we present the symmetry-adapted ampli-scenario between stripe and hexagonlike patterns and how
tude equations and analyze the related hexagon-stripe corthe initial hexagonal patterns get distorted. Analytical calcu-
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lations are confirmed by numerical simulations in Sec. VI. ) ' ' ' ) '
Concluding remarks and an outlook on traveling stripe forc-
ing within the scope of the underlying chemical reaction are
given in Sec. VILI.

0.00

Il. THE LENGYEL-EPSTEIN MODEL = 00

As a basic model of a chemical reaction, we choose the’<
Lengyel-Epstein model as described in Rdf]. If the effect
of illumination on the chemical reaction is taken into ac- —4.00
count, as is done in Ref50], the model may be described by
the following equations:

uv 0.0 . 05 I 1.0 . L5 I 2.0
1+U2_(I)+Au' (18) k

dqu=a-cu-4

FIG. 1. The dispersion relation(k) for a supercritical value
uv ¢< ¢ (dotted ling of the illumination strengthgp, for a critical
du =o{cu= 1+ 2 +®+dav |. (1D value ¢= ¢, (solid line) and for a subcritical value)> ¢, (dashed
line). Parameters ara=16,¢=1.0,d=1.5, ando=301.
In these equations, the dimensionless concentrations of two

relevant chemical substances are labeled with,t) and  sjon relation\ (k) may be specified. It turns out that a strong
v(r,t), whereasa, ¢, o, andd denote dimensionless param- ang homogeneous illumination of the chemical reaction sup-
eters of the chemical system. Finally, the effect of externapresses inhomogeneous perturbations. This is illustrated by
illumination is described by the field(r,t), which can be Fig. 1, wherein the dispersion relatior(k) is plotted for
identified as the control parameter of the system and decomnree different cases of the illumination strength

posed into a spatially homogeneous and a spatially periodic Erom theneutral stability condition

part[20,21,51,
ReNK)]=0, O ¢ok), (7)

d(r,t) =+ M(r). (2)
o the neutral curvegy(k) may be determined, which has to be
For the second term of E(2), we assume a periodic depen- qone numerically in our case. Some examples of character-
dence in one spatial direction as described by istic neutral curves are plotted in Fig. 2 for different values
~ of the diffusion coefficiend. For d=1.2, the homogeneous
M(r) = 2G cogkmx). ) state is either stable for a small or for a strong iIIurginatan
For a spatially homogeneous illumination, Eq$) have a and is thus unstable only within a small island enclosed by

stationary and homogeneous solution given by the corresponding neutral curve in tigek plane. However,
for d>1.4 the homogeneous state remains only stable for

a-5¢ a(l+ud)
Up=——"), =—. 4
0 5¢c Yo 5U0 ( ) T T T 1 T T T
IIl. THRESHOLD FOR PATTERN FORMATION 14 r 7
12 F -

In a certain parameter range, the spatially homogeneou:
state described by Eq&4) becomes unstable against infini- 1.0
tesimal perturbations(r,t) andv4(r,t). In order to deter- o

; o : ; . 0.8
mine this interval, the basic state is separated from the inho- ¢ >

mogeneous contributions to both fields by the ansatz 0.6 F -
u(r vt) = uO + ul(r vt)v (Sa) 04 i
02 -
v(r,t) =vg+uvy(r,t). (5b)
. . . ) . 00 1 1 1
In a next step, the linearization of the basic E@b. with 0.8 0.9 1.0 1.1 1.2 1.3 14
respect to those small contributions(r,t) and v4(r,t) k

yields linear equations with constant coefficients, which may

be solved by the mode solutions FIG. 2. The neutral curvepy(k) is determined numerically via

the neutral stability condition in Eq7) for different values of the
ul(r,t):Ule“”k", vl(r,t):v_le“”k'r (6) diffusion pa_rameterd=1.2,l.3,...,1.6(from inside to ou_tsid)e
The remaining parameters aes=16, c=1.0, ando=301 in all
and thus leads to a set of homogeneous linear equations foases. The homogeneous state is unstable inside of each curve. The
the amplitudesus; andv,. From these equations, the disper- dotted line shows. as a function ofd.
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I 1 I d)c_d)
a5k i e= TC (9
20 F Since the up-down symmetry for inhomogeneous field con-
tributions is broken, i.e.y, v1-4-u,, —v,, we expect hex-
15 F agonal patterns to occur in some parameter ranges. Close to
< threshold hexagonal patterns are described by a superposi-
10 F tion of three wavegstripe patternswith wave vectors en-

closing an angle of about 120° with respect to each other. If

05 | - the two fieldsu; and v, are rewritten in terms of a vector
w,;=(u;,v,)", the generating field of hexagonal patterns may
2

00 | be represented by

1 1 1
0.5 10 L5 2.0
d

FIG. 3. The critical illuminations,= go(k.) is plotted as a func-  Where the wave vectols (i=1,2,3 of the three underlying
tion of the diffusion coefficient for different values of the param- Stripe patterns read
eterc, with ¢=0.6,0.7,0.8,...,1.4 from top to bottom ane 16, 1
0=301. The dotted line corresponds to that in Fig. 2. ky = kc(é) andk, 5= kEC(J, 5) (11)
Ty

strong illuminations. In this case, the neutral cumglk)  anq the second componeg of the eigenvector is given by
takes its maximum at the wave number

1+U5 vel-uj
4v0(ug—l) ~ Ug ) Eo=-(C+k§)—°—— 9

1 . : .
5 w1:<E )(AlekrwAzekz-f+A3e'ks-f)+c.c., (10)
0

@ 1( (12)
= — c-—
2\ (1+ud)? d(1 +ud) _ _

The coupled amplitude equations deduced for the three en-
and the value of the illumination at the maximum of the yelope functionsA; (i=1,2,3 are identical apart from the
neutral curve defines the critical illumination strengtl  term evoked by the forcing, which naturally differs whether
=¢o(k.). This critical value is plotted in Fig. 3 as a function e choose in Eq(3) a ratio1:2=k.:k,, between the modu-
of the diffusion coefficiend and for various values of the |ation wave numbek, and the critical wave numbég, or a
parametec. The occurring Turing instability vanishes, when ratio 1:1=k:k,. In the first case, the modulation amplitude
the inner closed curve in Fig. 2 shrinks to zero, i.e., belowG should vary asG=G,x¢, in the latter one aG=G,
d.=1.179 for the parameter set chosen in this figure. Below ¢3/2

this critical valued,, the stationary homogeneous state be- Choosing the ansatz specified in Efj0) and expanding

(8) 4uy  Upl+ud

comes stable with respect to an oscillatory instability. Eq. (1) with respect to powers of the small parameteas
well as the small amplitudes;, one obtains the following set
IV. AMPLITUDE EQUATIONS AND LINEAR STABILITY of nonlinear equations for the three amplitudes

OF THEIR SOLUTIONS . . | |2 | |2
. . Tod1 AL = eA1 + SAA; + G1A + Gy — (9]A4]7 + plA
The amplitudess; andv, of the linear modes described o ! ) 2 T ! 2
by Eq.(6) as well as the amplitudes of any other pattern are + plAg)A, (133
restricted by the nonlinear terms proportionalitoanduv in .
Egs.(1). In two-dimensional systems with a broken up-down  7ody Ay = Ay + SAGA; — (VA2 + plAg? + plAD A,
symmetry, the common patterns close to threshold are (13b)
stripes, squares, or hexagdBg®]. Immediately beyond a su-
percritical bifurcation, where the amplitude of an emerging 90 Aa= 8Ax+ SAA: — (VA2 + ol A2 + plAPVA
pattern is still small, the concept of the so-called amplitude ~ "°7t78 = #h8™ Ol (A" + plAsf* + plAAs,
equations is a very successful one to characterize the nonlin- (130

ear behavior of patterns, as is exemplified for several physiz hich  are quite similar to those presented in Refs.

cal, qhemical, af_‘d biological _systems in Re[EZ,S:_ﬂ. The 35,45,54. Depending on which of the resonant cases men-
amplitude equations are obtained by a perturbative methogyneq above is considered, eith®f or G, is nonzero. For

from the basic Eqg1), whereby the coefficients occurring in ther details on the derivation scheme of the amplitude

these amplitude equations reflect thg_dependence of the p@quations, we refer to Ref55], where likewise reaction dif-
terns on the parameters of the specific system. fusion equations were studied in detail.

The analytical expressions of the coefficientsd, v, p
appearing in the amplitude equatiaiis) as functions of the

The small parameter used in the perturbative derivation oparameters of the basic equatigis are rather lengthy. In-
the amplitude equations is the relative distance to the threststead of giving their analytical forms, we therefore plot them
old ¢, in Fig. 4 as functions of the diffusion coefficiedt while

A. Scheme of the derivation of amplitude equations
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50 60 - —
401
& 30¢r Q40
20¢r
20F 1
1o0F 4
k& FIG. 4. The coefficients of the
0.0 0.0 i i - amplitude equations in Eq13)
05 0.5 10 1‘-15 2.0 25 are shown close to the 1:2 reso-
nance, i.e.G,=0, as functions of
T T T the diffusion coefficiend for dif-
1.0F J ferent values of the parameter
from left to rightc=0.7, 0.9, 1.1,
0.0 40 and 1.3.
b°
-10F 1€
20F
20F 1
—3.0 C I 1 1 00
0.5 1.0 15 2.0 2.5 0.5
d
assuming different values far Rescaling of the amplitudes B. Functional
A (i=1,2,3 allows us to express time as well as the coef-  1he coupled nonlinear equatiofs3 may be considered
ficients of Eqs(13) as follows: as a potential dynamics
— vy y — & oF
A:—A, = s, :—t, o
| 51 n (528 oY T Oé)tAl 5AI* (16)
with the functional
al_éle Ezzing, 3 y 3 G
p 1 *
4 F=3 (DAt - ola?) + £ (AR Siag a7
i=1 j#i
=P 520 (14 — Go(Ar+ A = S(AAA + AAAY). (17)
L4 R This functional or its rescaled version yielding E¢k5) pro-
and yields a simpler form of Eq§13), vides a useful criterion to decide which kind of pattern is
most likely to occur in a given parameter range. Generally
ITAL = AL + 5A*2A*3+ GlA*l“‘Gz— (A2 + PTA 2 the pattern leading to the lowest value of the functional is
+pIADA, (158 ' ' '
1AL = 1Ay + SALA; — (IAl® + plAg? + A %) Ay, 20r
(15b)
1.8
_ - _ _ - I
ITAs= As+ SAA, = (|Ag® + plAL* + pIAg| ) Ay
(150 1.6
with =+1. Choosingrg=y=1 and§=+1 in Egs.(13) re-
duces them to the same form as E@s), which besides the l4r

modulation amplitudés; (i=1,2) and the control parameter L . L
. - 1.0 L5 2.0 2.5

n only depend on the nonlinear coefficigntin most cases, J

this coefficient takes values in the intervale[1,2] as '

shown in Fig. 5, wherep is plotted as a function of the FIG. 5. The rescaled coefficiept=p/y as a function ofd for

diffusion coefficientd for different values ot. various values o€, with ¢=0.7, 0.9, 1.1, and 1.3 from left to right.
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preferred. Once again eith&,; or G, is nonzero, corre- — 172 +[20G- (0= 1) = 1= G (2 =52G,) = 0
sponding to one of the considered resonant cases. (p=17" +[2pGy(p = 1) = &7 = Go(&" =Gy ’(21)

. . whose solutions are
C. Linear stability of hexagons and rolls

Since we only consider a spatially periodic modulationin 7, ,= 2pG(L _p)2+ & + _5 SV &+ 4G,(1-7).
the x direction, the translational invariance in tiirection 2(1-p) 2(y-p)
is preserved. This holds for both resonant cases under inves- (22)

tigation. Therefore, two out of three amplitudes, namgjy

and As, are degenerated and the remaining two stationar{-onsequently, single-mode solutioristripes are linearly
amplitudes, calledA and B, are determined by two of the unstable within the region bounded by those valueg ahd

three Egs.(15). The linear stability of the stationary and linéarly stable in the complementary area.
nonlinear solutions is analyzed by superimposing small per-
turbations to the latter ones, meaning we use the following V. NONLINEAR SOLUTIONS OF THE MODULATED

ansatz: AMPLITUDE EQUATIONS

o o In this section, the bifurcation scenarios from the homo-
A=A+ (), Arz=B+pup4t). (18)  geneous basic state and thus the weakly nonlinear solutions
of Egs.(15) are discussed for three different cases: first of
all, we consider an unmodulated systé®,=G,=0), then
Accordingly, the amplitude equatio$5) are linearized with  \ve study the modulated cases already taken into account in
respect to the small perturbatiops (i=1,2,3, which leads  gec. v, namely eithe6;#0 andG,=0 or G;=0 and G,
to the following set of equations: # 0. Without modulation one has either a single-mode solu-

tion with modulus|/Aq| =A and|A,|=|A4|=0 or hexagons cor-
SIAZ— FTRI? G A responding to a three-mode solution with coinciding moduli
— = - - + - -~ e ~ .- . :
tua = (= 2A - 2B ) s + Gy~ Ay |A1|=|Az|=|Ag]. In the case of a finite modulation amplitude,
CPAB (p+ p12) + (9B~ pAB) (1 + 1), smgl(.a—mode sqlutpns_as well as three-mode solutions with
amplitudes satisfyindA,| #|A|=|As] may be encountered.

(199 By means of the determined nonlinear solutions, the func-
tional value of the latter ones may be calculated through Eg.
Lo (17), which gives rise to the intervals wherein either the one-
a1y =[n- (2 +p)|B]? - p]AZ]u, — B?u, — pA'Buy mode or the three-mode solution is preferred.
+ (6B = pAB)u; — p[B[2us + (6A" = pB?) g, ‘ . .
(19b) A. Solutions of the unforced amplitude equations
Without modulations, Eq€15) have either a single-mode
solution|A|=17 or a three-mode solution with equal moduli,
dtma=[7n-(2+p)|B]> - p]APus — B>uz — pA'Buy i.e., with amplitudes fulfilling|Ay| =[Ag| =|Ag|=A. Assuming
_ X _ X a relative phase shiffj for each linear mode contributing to
+(6B" = pAB) u; — p[B|%uy + (8A" — pB?) . the three-mode solution
(190 A =Ad¥, (23)

_ . one obtains a nonlinear equation for the common mod&jus
These coupled equations may be transformed into a set of

homogeneous linear equations by means of an ansatz for the 0= nA+3e‘("A2 — (1 + 2p)A3, (24)
perturbations -
with §=+1 and the sum of the phase angt@s 6,+ 6,+ 6.
Equation(24) has two real solutions,

1 —
=——|o%x
As 2(1+25[5_ V& + 4n(1 + 2p)], (25
which allows to determine the growth ratek, ...) of those )
perturbations. Marginal stability, i.e., Re(k, ...)]=0, then WhereA. corresponds to the larger one of the two amplitudes
yields the stability boundary as a function of the controlWith 6=1, while A_is obtained foro=-1. If =1, the phase
parametem. As an example, if one considers the stability of angle is®=0 and one expecteegular hexagonswhereas
stripes in a 2:1 resonant case, the amplitB¥e0 and the §=-1 yields a phase angl® = corresponding tanverse
marginal stability condition lead to a polynomial i hexagons Comparing the functional given in Eql7) of

= v+ uyet (1=1,2,3, (20
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M12= 20Ul =p)+ & P &+ 4Gy (1 -p).

21-p* " 2(y-p)?

0.60

™ 040

(28)
0201

The three-mode solution witde®=1 is generally pre-
. ferred and the appendant amplitudesind B may be deter-
(b) n mined by solving Eqs(26) with a standard computer algebra

0.30
7
' ' = program. Instead of presenting the rather complex analytical
0211 / ons |

0.00 —i——
~0.10 0.10

@

solutions, we opt for the characteristic bifurcation diagrams
based on four different parameter sets in Fig. 6, which ought

501y :~0.50- to cover the typical bifurcation scenarios encountered. In
007 - 1 ot Fig. 6, the linearly stable intervals of each branch are visu-
’ alized by solid lines, whereas unstable ones are represented
000 — : s 000 by dashed Iine_s. _ _
(©) ' n @ R Part (a) of Fig. 6 shows the well known bifurcation sce-

nario of the unmodulated ca$6,=0) for supercritically bi-

FIG. 6. The amplitude of supercritically bifurcating stripes and furcating stripes and subcritically bifurcating hexagonal so-
the subcritically bifurcating hexagons with three degenerated amy

) ) ! lutions [54]. With increasing values of the modulation
plitudes are shown iri@) as a function ofy for the unmodulated ) = ]
case. In each case, the solid lines mark the linearly stable part gMplitude G;, the degeneracy of the three-mode solution
each branch and the dashed parts the unstable ones. For fink@nishes and only the onset of the single-mode solution starts
modulation amplitudesS,, the three-mode solution with always ~ at 7.=-G;. This removal of degeneracy is already best re-
corresponding to the upper branch aBdo the lower branch, as flected in Fig. 6b), wherein G,=0.05: the subcritical
well as the amphtude of a Slng|e-m0de SOIUUOn, are plotted as %ranches Of the hexagonal Solutldh,correspond|ng to the
function of the control parametey for three different values of the larger amplitude and to the smaller one, do not overlap

modulation amplitudé&s;=0.05(b), G;=0.11(c), andG,;=0.25(d), . —
N " pl' ! ﬁ_ '(_)t fl_ | (_—)1 N 53—1 E( )h anymore. For finite values @&, the upper hexagon branch,
yer(;:;l?sdot(taer(]joﬂrize?erflceocisI(t:;?m \S/aiﬁz V\{j‘:]‘()e;e .th:nvalrje.s oa;cthe l.e., theA branch, always emerges from the single-mode so-
e’ lution, while the B branch, which is the lower hexagon

functional F of the one- and the three-mode solution coincide. =
branch, bifurcates from zero with decreasing valyef G;

) _ ) — is small enough, the bifurcation of the three-mode solution is
those solutions, one may ascertain the following: In case subcritical, as depicted in Fig(® and Fig. 6c), whereas for
=1, regular hexagons are preferred B§<F,, and if § large modulation amplitudes this bifurcation is shifted to
=-1, inverse hexagons are most likely to occur because theamaller values while becoming supercritical, as sketched in
functional value is the lowest one, i.65, < F,. Fig. 6(d).

It turns out that for intermediate values &1, such as
B. Solutions of the forced amplitude equations fork,,=2k. and  those used in Fig.(®) and Fig. &c), the three-mode solution
G;#0,G,=0 bifurcates subcritically from the single-mode solution not
. - . only for small values of the control parametgrbut also for
In the case of a 2:1 resonance with a finite modulatio : :
amplitude Gy, two of the three amplitudes coincide, s rWarge values ofp, as it may be concluded from Fig. 7. For

=Bd’3, the third one beingh,=Ad".. Thus the remaining |a/ge values ofG,, e.g.,G;=0.25 in Fig. &d), the lower
two amplitudesA andB are determined by the following two bifurcation point becomes supercritical while the upper one

nonlinear equations: nevertheless remains subcritical at first. By comparing the
bifurcation diagrams shown in Fig. 7 and Figdg it can
(9= A2-2pBY)A + G,A+ 66®B2=0 (269  €asily be seen that the existence range of the three-mode

solution shrinks with increasing values of the modulation
_ amplitude. Simultaneously, the hysteresis becomes less pro-
2 _ A2 i0 — . . . oy . L.
[7-(1+p)B*- pA’]B+ 5¢°AB=0, (26D nounced with increasing values Gf, changing the subcriti-
cal bifurcation to a supercritical one at smallalues as well
as the upper bifurcation point from subcritical to supercriti-
cal for even larger values @;. This latter point can be seen
A=\n+ Elv B=0 27) nicely in Fig. 8, whu?h shows.that beyond some critical va!ue
G, of the modulation amplitude, the three-mode solution
and bifurcates supercritcally at the thresheld-G; or »  ceases to exist. Since both bifurcations from the single- to
=-G, in rescaled units. A linear stability analysis of the the three-mode solution are already supercritical before their
single-mode solution according to the scheme described idomain of existence shrinks to zero, the critical valbig
Sec. IV C shows that the single mode is linearly unstable irmay be determined using the condition that the tywaalues
the region delimited by the two values of given by Eq.(28) coincide, i.e.,n;=17,. Hence for modula-

with @=6;+6,+ 6. The single-mode solution generated by
those coupled equations is given by
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S 005 |

0.6 [
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—0.1 03 08 1.2 1.7 000 005 010 015 020 025 030
K b) G

FIG. 7. The amplitudesA(7) and B(») are plotted forG, FIG. 8. Between the upper and lower dotted litibe lower one
=0.05 andG,; =0.11(already shown in Fig.)6over a broader inter-  gyerlapping partially with the solid linelies the domain of exis-
val of 5, which reveals that the upper bifurcation point of the three-tence of three-mode solutions. The functionals of single- and three-
mode solution moves for increasing modulation amplituGgsto mode solutions coincide along the dashed lingich overlaps once
decreasing values af. As in Fig. 6,p=1.8 ands=1. again partially on its lower branch with the solid ¢orend the re-
gion lying in between these lines is the one where three-mode so-
. ) — . lutions are favored. Single-mode solutions are linearly unstable in-
tion amplitudesG; greater than the critical value side the area delimited by the solid line, whereas they are linearly
stable outside and the dashed-dotted line corresponds to the thresh-
Gy = _1 , (29 old 7.=-G; of the single-mode solution. Pdl) of the figure holds
4p-1) an enlargement of the smajlrange in order to distinguish properly

) ) the different curves in t_he lower half-plane of péat. Further pa-
single-mode solutions are stable for ajland three-mode . arp=1.8 ando=1.

solutions do not exist any more. Since Fig. 5 evinces that in

;ngztsci:tif:z;?gaseygues larger than G, should always be stable. As predicted by Eq29) for p=1.8 three-mode solu-
. N . tions do not exist for modulation amplitudes greater than
The domain of existence of three-mode solutions, the sta— ) - )
bility range of single-mode solutions, as well as the points of1=0-3125. Before this critical value is reached, the dotted
coincidence of the corresponding function@lertical dotted ~ @nd the solid lines are overlapping, which means that the
lines are represented in Figs(t6—6(d) and Fig. 7 for three  UPPer bifurcation of three-mode solutions, i.e., the one oc-

different values of5;. These relevant properties are recapitu curring at larges values, has become supercritical, as has
1 Properties P already been mentioned above.

lated as a function of the modulation amplitu@ein Fig. 8. According to Eq.(10), different amplitudesA andB gen-
Within the region bounded by the dotted lines, three-modeyrate dissimilar spatial patterns, as illustrated in Fig. 9 for
solutions exist. Along the dashed line, the functional valuegoyr distinct parameter sets. Figuréashows regular hexa-
of one- and three-mode solutions match and the area lying igons, whereas in Figs(19-9(d), distorted hexagons can be
between the upper and lower solid lines is the portion of theseen for various amplitude rati@s/'B corresponding to the

7-G; plane wherein one-mode solutions are linearly un-parameters used in Figs($ and €c).
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FIG. 9. The spatial variation of one term contributing to Eid)
is shown for hexagons in paf@) and for distorted hexagons (b),
(c), and (d). In part (b), a distorted rExagon is depicted for the

parameters used in Fig.(t§, namely G;=0.05 and »=-0.0492,
with the amplitudes being=0.0551 and8=0.0124. In the remain-
ing two parts, the modulation amplitude @& =0.11, whereas the
control parameter i$y=-0.099 in(c) (with A=0.15 andB=0.06

and »=-0.09 in part(d) (with A=0.198 andB=0.116.

C. Solutions of the forced amplitude equations fork,, =k,

and G;=0,G,#0

As in the previous case, two amplitudes of the three-mode The properties explained in the previous paragraph are
solution coincide, i.e.A, ;=Bd %3 whereas the third one is recapitulated in Fig. 11, where three-mode solutions exist

given by A;=A€%. The two remaining modulA andB are

045

m"030'
<0

0.15

-0.15 0.00

0.15

PHYSICAL REVIEW E 71, 046212(20095

determined by the following nonlinear equations:

(7-|AP-2p[BP)A+G,+€°B?=0, (308

[7-(1+p)|B>-plA’IB+€®A'B"=0.  (30b

If B=0 andG, # 0, the single-mode solution is determined
by a third-order polynomial inA. In contrast to the case
discussed in Sec. V B, the bifurcation is now an imperfect
one, as can be seen in Fig. 10. Despite this imperfect bifur-
cation, one may observe the following similarities to the pre-
vious paragraph wherein the 2:1 resonance was studied: First
of all, the degeneracy of three-mode solutions encountered

for G,=0 vanishes once again for finite values of the modu-

lation amplitudeG,. Secondly, as for the 2:1 resonanée,
corresponding to the largest amplitude of the three-mode so-

lution bifurcates for small values @b, from the top of the
single-mode solution, whereas the small amplit@dbifur-
cates from zero.

With increasing values dB,, the bifurcation of the three-
mode solution changes once more at its lower bifurcation
point from a subcritical one in Fig. 18 to a supercritical
one in Fig. 1Qc) or in Fig. 1Qd). The bifurcation point lo-
cated at large values of is not shown in Fig. 1&) and Fig.
10(c) but is subcritical as the one depicted in Fig. 7 for a 2:1
resonance. Thirdly, the hysteresis described by the three-
mode solution becomes once again less pronounced with in-

creasing values o6, and turns out to be supercritical for
large modulation amplitudes. Last but not least, the three-
mode solution ceases to exist beyond some critical value of

the modulation amplitudé&,, as was noticed as well for a
2:1 resonance.

within the region bounded by the dotted lines, overlapping in

FIG. 10. The amplitudes of a
three-mode solution withA al-
ways corresponding to the upper
branch and® to the lower one, as
well as the amplitude of the im-
perfect bifurcating single-mode

solution (B=0) are plotted as a
n ‘ function of the control parameter
n. Three different values of the

modulation amplitude are taken
into account:EZ:O.OS (a), where
(b) is an enlargement dB) over a
smaller » range,azzo.l (c), and
G,=0.2 (d). Solid lines mark lin-
ear stable solutions and dashed
lines unstable ones. Furthermore,

p=1.7 ando=1.

0.30 0.70
n
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FIG. 11. In between the dotted line and the lower solid line FIG. 12. The amplitude of a stripe solution obtained by numeri-
three-mode solutions exist. Along the dashed line the values of theal simulationgcircles of the microscopic model given by Eqd)
functionals of single- and three-mode solutions match. Thus withiris compared with the analytical solutigk=1'7/y. The parameters
the area bounded by the dashed line and the lower solid line, three¢tsed area=16, 0=301,d=1.07, andc=0.6, which yield the non-
mode solutions are favored. Single-mode solutions are linearlyinear coefficienty=0.288. For the sake of simplicity, no modula-
stable in the complementary part of the region enclosed by the solitlons were taken into account.

line. The nonlinear coefficient is assumed todsel.7 ands=1.

) o describe how spatial periodic modulations interfere with the
the lower half-plane with the solid line. Along the dashedcompetition between stripes and hexagonal patterns. Our in-
match, meaning that the three-mode solution is preferred igetween the modulation wave numberand the wave num-
between the dashed line and the lower solid line. The loweper k. of the respective pattern. Compared to the unmodu-
dotted line coincides with the lower solid line if three-mode |ateqd case, the bifurcation scenarios of stripes and hexagonal
sensible. Through a linear stability analysis, similar to thethe unmodulated case and distorted hexagons otherwise, are
one described in Sec. IV C, one may conclude that singlesyppressed for large modulation amplitudes. Furthermore,
mo_de_ solutions are Iin_early stable only outside of the areayidence was given that depending on the strength of the
delimited by the solid line. modulation amplitude, those three-mode solutions bifurcate

either sub- or supercritically. The bifurcation diagrams pre-
sented in this work may be confirmed by experiments on
VI. NUMERICAL RESULTS chemical reactions with a spatially modulated illumination,

A major problem always encountered when dealing with"VNere, in contrast to Ref§20,21], the ratio between the
amplitude equations is that their validity range around théVave number of the illumination and the wave number of the
threshold remaina priori unpredictable. Therefore, we have 1Uring pattern should be chosen to be 2:1 or 1:1.
determined the amplitude of the stripe solution by numerica] nstéad of considering a stationary forcing, the effect of
simulations of the basic Eq&l) without considering modu- traveling stripe forcing on the competition between hexagons
lations as a function of the relative distangérom threshold ~ @nd stripes has recently been investigated for a 1:1 resonance
and compared these numerical results with the analytical sd? & one-dimensional systef84]. Given the coupled ampli-
lution A= \m in Fig. 12. Up to~0.2, we find a fairly tude.equat|9n$13), the re.sullts established in Réﬁ{l may
good agreement between analytical and numerical resultfe directly interpreted within the scope of the microscopic

which gives a reasonable estimate of the quantitative validit falngyeI-Epstein mlodeld The sam(;a_ alleg_atior|1 holds for ;hef
range of the preceding results obtained in terms of amplitud%' resonance analyzed in a two-dimensional system in Ref.
e : 35]. Although the bifurcation scenarios of the stationary 1:1
quations. o
and 2:1 resonance we studied in the present work share some
similarities, there remains the open question of how the bi-
VII. SUMMARY AND CONCLUSIONS furcation diagrams_presented in Re{m,ﬂ are modified if
one has to deal with a 2:1 resonance instead of a 1:1 reso-
The generic amplitude equatiofis3) are suggested for a nance.

forced two-dimensional system with a broken up-down sym- We mainly focused on the spatially periodic forcing of
metry and discussed throughout this work. Additionally, theyTuring patterns. The Lengyel-Epstein model exhibits further-
are derived explicitly from a model for chemical reactions, inmore a Hopf bifurcatiori56] similar to those found in other

the present case the Lengyel-Epstein model. They are apt tthemical reaction schemes. Instead of a temporal resonant
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forcing of an oscillatory but spatially homogeneous chemicakently deduced from the Lengyel-Epstein model and exhibits
reaction[31,32, one may induce such an oscillatory reactionrich transition scenarios between solutions that are either
by a spatially periodic or a traveling stripe modulation. Thisspatially harmonic or subharmonic with respect to the exter-
leads to a revealing amplitude equation, which has been ratal modulation57].
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