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We investigate the response of two-dimensional pattern-forming systems with a broken up-down symmetry,
such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear
behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:2 and 1:1
ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective
system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-
Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate
the generic response scenarios to a specific pattern-forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence, stability, and coexistence is deter-
mined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation,
single-mode solutionssstripesd are favored close to threshold for modulation amplitudes beyond some critical
value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of
existence shrinks to zero with increasing values of the modulation amplitude. Furthermore, depending on the
modulation amplitude, the transition between stripes and distorted hexagons is either subcritical or
supercritical.
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I. INTRODUCTION

External periodic forcing provides a powerful tool to ana-
lyze the response behavior of nonlinear pattern-forming sys-
tems, allowing, for instance, the study of their inherently
nonlinear mechanism of self-organization. The early investi-
gations of effects dealing with spatially periodic forcing were
devoted to pattern formation in hydrodynamic systems fol-
lowed by chemical systemsf1–22g. The situation is compa-
rable for temporal forcing of patternsf23–32g, whereas re-
cent investigations on spatiotemporal forcing have mainly
been motivated by chemical reactionsf33–36g.

In thermal convection, when deviations from the Bouss-
inesq approximation come into playf37,38g, as well as in
several chemical reactions of the Turing typef39,40g, the
up-down symmetry of the fields describing the patterns,
usr ,td→−usr ,td, is broken. In such two-dimensional ex-
tended systems rotationally symmetric in a plane, hexagons
are the generic pattern close to threshold. In systems with a
strong axial anisotropy, such as in nematic liquid crystals,
this rotational symmetry is brokenf41–44g and hexagonal
convection patterns do not occur. Thus the interplay between
different broken symmetries, such as the broken up-down
symmetry with a weak anisotropy, leads to an interesting
competition between stripe and hexagonal patterns, as has
been shown recentlyf45–47g.

Which kind of effects may be expected if besides the
up-down symmetry the translational symmetry is simulta-
neously broken by periodic modulation in one spatial direc-
tion? As the direction of the modulation wave number de-
fines a preferred direction, the system becomes anisotropic.
In the following, we present the symmetry-adapted ampli-
tude equations and analyze the related hexagon-stripe com-

petition in terms of these equations. In thermal convection,
this symmetry breaking may be achieved by modulating the
container boundaries or the applied temperature difference
periodically in one directionf1,8,14g. In chemical reactions,
however, the forcing is introduced by a spatially modulated
illumination of the systemf20,48g. The specific manifesta-
tion of the modulation-induced symmetry breaking in ge-
neric amplitude equations depends on the ratio between the
modulation wave numberkm and the wave numberkc of the
respective pattern. We will study two cases of resonant
modulation:km=2kc andkm=kc.

To give a specific example, we will focus in this work on
the Lengyel-Epstein model for a chemical reaction. This
model, introduced in Sec. II, displays in some parameter
range a Turing instability of the homogeneous basic state, as
will be shown in Sec. III. Immediately above the threshold of
a supercritical bifurcation, the amplitudes of the unstable
pattern-forming modes are still small enough to apply the
powerful perturbational technique of amplitude equations. In
Sec. IV, we derive the amplitude equations from the given
Lengyel-Epstein model in the limit of small spatially peri-
odic modulations of the illumination acting on the chemical
reactions. We consider a resonant ratio of 1:1 as well as of
1:2 between the wave number of the Turing instability and
the modulation wave number. The amplitude equations ob-
tained in each of these resonant cases are generic and may be
found for other systems having the same symmetry proper-
ties as the considered Lengyel-Epstein model, for instance
modulated convection systems. Without spatially periodic
forcing, it is known that the resulting amplitude equations
favor hexagonal patterns close to threshold. In Sec. V, we
investigate how the spatial forcing modifies the transition
scenario between stripe and hexagonlike patterns and how
the initial hexagonal patterns get distorted. Analytical calcu-
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lations are confirmed by numerical simulations in Sec. VI.
Concluding remarks and an outlook on traveling stripe forc-
ing within the scope of the underlying chemical reaction are
given in Sec. VII.

II. THE LENGYEL-EPSTEIN MODEL

As a basic model of a chemical reaction, we choose the
Lengyel-Epstein model as described in Ref.f49g. If the effect
of illumination on the chemical reaction is taken into ac-
count, as is done in Ref.f50g, the model may be described by
the following equations:

]tu = a − cu− 4
uv

1 + u2 − F + Du, s1ad

]tv = sScu−
uv

1 + u2 + F + dDvD . s1bd

In these equations, the dimensionless concentrations of two
relevant chemical substances are labeled withusr ,td and
vsr ,td, whereasa, c, s, andd denote dimensionless param-
eters of the chemical system. Finally, the effect of external
illumination is described by the fieldFsr ,td, which can be
identified as the control parameter of the system and decom-
posed into a spatially homogeneous and a spatially periodic
part f20,21,51g,

Fsr ,td = f + Msr d. s2d

For the second term of Eq.s2d, we assume a periodic depen-
dence in one spatial direction as described by

Msr d = 2G̃ cosskmxd. s3d

For a spatially homogeneous illumination, Eqs.s1d have a
stationary and homogeneous solution given by

u0 =
a − 5f

5c
, v0 =

as1 + u0
2d

5u0
. s4d

III. THRESHOLD FOR PATTERN FORMATION

In a certain parameter range, the spatially homogeneous
state described by Eqs.s4d becomes unstable against infini-
tesimal perturbationsu1sr ,td and v1sr ,td. In order to deter-
mine this interval, the basic state is separated from the inho-
mogeneous contributions to both fields by the ansatz

usr ,td = u0 + u1sr ,td, s5ad

vsr ,td = v0 + v1sr ,td. s5bd

In a next step, the linearization of the basic Eqs.s1d with
respect to those small contributionsu1sr ,td and v1sr ,td
yields linear equations with constant coefficients, which may
be solved by the mode solutions

u1sr ,td = ū1e
lt+ik·r , v1sr ,td = v̄1e

lt+ik·r s6d

and thus leads to a set of homogeneous linear equations for
the amplitudesū1 and v̄1. From these equations, the disper-

sion relationlskd may be specified. It turns out that a strong
and homogeneous illumination of the chemical reaction sup-
presses inhomogeneous perturbations. This is illustrated by
Fig. 1, wherein the dispersion relationlskd is plotted for
three different cases of the illumination strengthf.

From theneutral stability condition

Reflskdg = 0, ⇒ f0skd, s7d

the neutral curvef0skd may be determined, which has to be
done numerically in our case. Some examples of character-
istic neutral curves are plotted in Fig. 2 for different values
of the diffusion coefficientd. For d=1.2, the homogeneous
state is either stable for a small or for a strong illuminationf
and is thus unstable only within a small island enclosed by
the corresponding neutral curve in thef-k plane. However,
for d.1.4 the homogeneous state remains only stable for

FIG. 1. The dispersion relationlskd for a supercritical value
f,fc sdotted lined of the illumination strengthf, for a critical
valuef=fc ssolid lined and for a subcritical valuef.fc sdashed
lined. Parameters area=16, c=1.0, d=1.5, ands=301.

FIG. 2. The neutral curvef0skd is determined numerically via
the neutral stability condition in Eq.s7d for different values of the
diffusion parameterd=1.2,1.3, . . . ,1.6sfrom inside to outsided.
The remaining parameters area=16, c=1.0, ands=301 in all
cases. The homogeneous state is unstable inside of each curve. The
dotted line showskc as a function ofd.
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strong illuminations. In this case, the neutral curvef0skd
takes its maximum at the wave number

kc
2 =

1

2
S4v0su0

2 − 1d
s1 + u0

2d2 − c −
u0

ds1 + u0
2d
D s8d

and the value of the illumination at the maximum of the
neutral curve defines the critical illumination strengthfc
=f0skcd. This critical value is plotted in Fig. 3 as a function
of the diffusion coefficientd and for various values of the
parameterc. The occurring Turing instability vanishes, when
the inner closed curve in Fig. 2 shrinks to zero, i.e., below
dc=1.179 for the parameter set chosen in this figure. Below
this critical valuedc, the stationary homogeneous state be-
comes stable with respect to an oscillatory instability.

IV. AMPLITUDE EQUATIONS AND LINEAR STABILITY
OF THEIR SOLUTIONS

The amplitudesū1 and v̄1 of the linear modes described
by Eq. s6d as well as the amplitudes of any other pattern are
restricted by the nonlinear terms proportional tou1 andv1 in
Eqs.s1d. In two-dimensional systems with a broken up-down
symmetry, the common patterns close to threshold are
stripes, squares, or hexagonsf52g. Immediately beyond a su-
percritical bifurcation, where the amplitude of an emerging
pattern is still small, the concept of the so-called amplitude
equations is a very successful one to characterize the nonlin-
ear behavior of patterns, as is exemplified for several physi-
cal, chemical, and biological systems in Refs.f52,53g. The
amplitude equations are obtained by a perturbative method
from the basic Eqs.s1d, whereby the coefficients occurring in
these amplitude equations reflect the dependence of the pat-
terns on the parameters of the specific system.

A. Scheme of the derivation of amplitude equations

The small parameter used in the perturbative derivation of
the amplitude equations is the relative distance to the thresh-
old fc,

« =
fc − f

fc
. s9d

Since the up-down symmetry for inhomogeneous field con-
tributions is broken, i.e.,u1, v1→” −u1, −v1, we expect hex-
agonal patterns to occur in some parameter ranges. Close to
threshold hexagonal patterns are described by a superposi-
tion of three wavessstripe patternsd with wave vectors en-
closing an angle of about 120° with respect to each other. If
the two fieldsu1 and v1 are rewritten in terms of a vector
w1=su1,v1dT, the generating field of hexagonal patterns may
be represented by

w1 = S 1

E0
DsA1e

ik1·r + A2e
ik2·r + A3e

ik3·rd + c.c., s10d

where the wave vectorsk i si =1,2,3d of the three underlying
stripe patterns read

k1 = kcS1

0
D andk2,3=

kc

2
S − 1

±Î3
D s11d

and the second componentE0 of the eigenvector is given by

E0 = − sc + kc
2d

1 + u0
2

4u0
−

v0

u0

1 − u0
2

1 + u0
2 . s12d

The coupled amplitude equations deduced for the three en-
velope functionsAi si =1,2,3d are identical apart from the
term evoked by the forcing, which naturally differs whether
we choose in Eq.s3d a ratio1:2=kc:km between the modu-
lation wave numberkc and the critical wave numberkm or a
ratio 1:1=kc:km. In the first case, the modulation amplitude
G should vary asG=G1~«, in the latter one asG=G2
~«3/2.

Choosing the ansatz specified in Eq.s10d and expanding
Eq. s1d with respect to powers of the small parameter« as
well as the small amplitudesAi, one obtains the following set
of nonlinear equations for the three amplitudesAi:

t0] t A1 = «A1 + dA2
*A3

* + G1A1
* + G2 − sguA1u2 + ruA2u2

+ ruA3u2dA1, s13ad

t0] t A2 = «A2 + dA3
*A1

* − sguA2u2 + ruA3u2 + ruA1u2dA2,

s13bd

t0] t A3 = «A3 + dA1
*A2

* − sguA3u2 + ruA1u2 + ruA2u2dA3,

s13cd

which are quite similar to those presented in Refs.
f35,45,54g. Depending on which of the resonant cases men-
tioned above is considered, eitherG1 or G2 is nonzero. For
further details on the derivation scheme of the amplitude
equations, we refer to Ref.f55g, where likewise reaction dif-
fusion equations were studied in detail.

The analytical expressions of the coefficientst0,d ,g ,r
appearing in the amplitude equationss13d as functions of the
parameters of the basic equationss1d are rather lengthy. In-
stead of giving their analytical forms, we therefore plot them
in Fig. 4 as functions of the diffusion coefficientd while

FIG. 3. The critical illuminationfc=f0skcd is plotted as a func-
tion of the diffusion coefficientd for different values of the param-
eter c, with c=0.6,0.7,0.8, . . . ,1.4 from top to bottom anda=16,
s=301. The dotted line corresponds to that in Fig. 2.
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assuming different values forc. Rescaling of the amplitudes
Ai si =1,2,3d allows us to express time as well as the coef-
ficients of Eqs.s13d as follows:

Ā =
g

udu
A, h =

g

d2«, t̄ =
d2

t0g
t,

Ḡ1 =
g

d2G1, Ḡ2 =
g2

udu3
G2,

r̄ =
r

g
, d̄ =

d

udu
s14d

and yields a simpler form of Eqs.s13d,

] t̄ Ā1 = hĀ1 + d̄Ā2
*Ā3

* + Ḡ1Ā1
* + Ḡ2 − suĀ1u2 + r̄uĀ2u2

+ r̄uĀ3u2dĀ1, s15ad

] t̄ Ā2 = hĀ2 + d̄Ā3
*Ā1

* − suĀ2u2 + r̄uĀ3u2 + r̄uĀ1u2dĀ2,

s15bd

] t̄ Ā3 = hĀ3 + d̄Ā1
*Ā2

* − suĀ3u2 + r̄uĀ1u2 + r̄uĀ2u2dĀ3

s15cd

with d̄= ±1. Choosingt0=g=1 andd= ±1 in Eqs.s13d re-
duces them to the same form as Eqs.s15d, which besides the
modulation amplitudeGi si =1,2d and the control parameter
h only depend on the nonlinear coefficientr̄. In most cases,
this coefficient takes values in the intervalr̄P f1,2g as
shown in Fig. 5, wherer̄ is plotted as a function of the
diffusion coefficientd for different values ofc.

B. Functional

The coupled nonlinear equationss13d may be considered
as a potential dynamics

t0]tAi = −
dF
dAi

* s16d

with the functional

F = o
i=1

3 Sg

2
uAiu4 − «uAiu2D +

r

2o
jÞi

3

uAiu2uAju2 −
G1

2
sA1

2 + A1
*2d

− G2sA1 + A1
*d − dsA1A2A3 + A1

*A2
*A3

*d. s17d

This functional or its rescaled version yielding Eqs.s15d pro-
vides a useful criterion to decide which kind of pattern is
most likely to occur in a given parameter range. Generally
the pattern leading to the lowest value of the functional is

FIG. 4. The coefficients of the
amplitude equations in Eq.s13d
are shown close to the 1:2 reso-
nance, i.e.,G2=0, as functions of
the diffusion coefficientd for dif-
ferent values of the parameterc,
from left to right c=0.7, 0.9, 1.1,
and 1.3.

FIG. 5. The rescaled coefficientr̄=r /g as a function ofd for
various values ofc, with c=0.7, 0.9, 1.1, and 1.3 from left to right.
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preferred. Once again eitherG1 or G2 is nonzero, corre-
sponding to one of the considered resonant cases.

C. Linear stability of hexagons and rolls

Since we only consider a spatially periodic modulation in
thex direction, the translational invariance in they direction
is preserved. This holds for both resonant cases under inves-
tigation. Therefore, two out of three amplitudes, namelyA2
and A3, are degenerated and the remaining two stationary
amplitudes, calledA and B, are determined by two of the
three Eqs.s15d. The linear stability of the stationary and
nonlinear solutions is analyzed by superimposing small per-
turbations to the latter ones, meaning we use the following
ansatz:

Ā1 = A + m1st̄d, Ā2,3= B + m2,3st̄d. s18d

Accordingly, the amplitude equationss15d are linearized with
respect to the small perturbationsmi si =1,2,3d, which leads
to the following set of equations:

] t̄ m1 = sh − 2uAu2 − 2r̄uBu2dm1 + sḠ1 − A2dm1
*

− r̄AB*sm2 + m3d + sd̄B* − r̄ABdsm2
* + m3

*d,

s19ad

] t̄ m2 = fh − s2 + r̄duBu2 − r̄uAu2gm2 − B2m2
* − r̄A*Bm1

+ sd̄B* − r̄ABdm1
* − r̄uBu2m3 + sd̄A* − r̄B2dm3

* ,

s19bd

] t̄ m3 = fh − s2 + r̄duBu2 − r̄uAu2gm3 − B2m3
* − r̄A*Bm1

+ sd̄B* − r̄ABdm1
* − r̄uBu2m2 + sd̄A* − r̄B2dm2

* .

s19cd

These coupled equations may be transformed into a set of
homogeneous linear equations by means of an ansatz for the
perturbations

mi = n1ie
st + n2i

* es* t si = 1,2,3d, s20d

which allows to determine the growth ratessk, . . .d of those
perturbations. Marginal stability, i.e., Refssk, . . .dg=0, then
yields the stability boundary as a function of the control
parameterh. As an example, if one considers the stability of
stripes in a 2:1 resonant case, the amplitudeB=0 and the
marginal stability condition lead to a polynomial inh,

sr̄ − 1dh2 + f2r̄Ḡ1sr̄ − 1d − d̄2gh − Ḡ1sd̄2 − r̄2Ḡ1d = 0,

s21d

whose solutions are

h1,2=
2r̄Ḡ1s1 − r̄d + d̄2

2s1 − r̄d2 ±
d̄

2sḡ − r̄d2
Îd̄2 + 4Ḡ1s1 − r̄d.

s22d

Consequently, single-mode solutionssstripesd are linearly
unstable within the region bounded by those values ofh and
linearly stable in the complementary area.

V. NONLINEAR SOLUTIONS OF THE MODULATED
AMPLITUDE EQUATIONS

In this section, the bifurcation scenarios from the homo-
geneous basic state and thus the weakly nonlinear solutions
of Eqs. s15d are discussed for three different cases: first of
all, we consider an unmodulated systemsG1=G2=0d, then
we study the modulated cases already taken into account in
Sec. IV, namely eitherG1Þ0 and G2=0 or G1=0 andG2
Þ0. Without modulation one has either a single-mode solu-

tion with modulusuĀ1u=A anduĀ2u= uĀ3u=0 or hexagons cor-
responding to a three-mode solution with coinciding moduli

uĀ1u= uĀ2u= uĀ3u. In the case of a finite modulation amplitude,
single-mode solutions as well as three-mode solutions with

amplitudes satisfyinguĀ1uÞ uĀ2u= uĀ3u may be encountered.
By means of the determined nonlinear solutions, the func-
tional value of the latter ones may be calculated through Eq.
s17d, which gives rise to the intervals wherein either the one-
mode or the three-mode solution is preferred.

A. Solutions of the unforced amplitude equations

Without modulations, Eqs.s15d have either a single-mode

solutionuĀu=Îh or a three-mode solution with equal moduli,

i.e., with amplitudes fulfillinguĀ1u= uĀ2u= uĀ3u=A. Assuming
a relative phase shiftu j for each linear mode contributing to
the three-mode solution

Āj = AeiQ j , s23d

one obtains a nonlinear equation for the common modulusA,

0 = hA + d̄eiQA2 − s1 + 2r̄dA3, s24d

with d̄= ±1 and the sum of the phase anglesQ=u1+u2+u3.
Equations24d has two real solutions,

A± =
1

2s1 + 2r̄d
fd̄ ± Îd̄2 + 4hs1 + 2r̄dg, s25d

whereA+ corresponds to the larger one of the two amplitudes

with d̄=1, while A− is obtained ford̄=−1. If d̄=1, the phase
angle isQ=0 and one expectsregular hexagons, whereas

d̄=−1 yields a phase angleQ=p corresponding toinverse
hexagons. Comparing the functional given in Eq.s17d of
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those solutions, one may ascertain the following: In cased̄

=1, regular hexagons are preferred asFH
+ ,FH

− , and if d̄
=−1, inverse hexagons are most likely to occur because their
functional value is the lowest one, i.e.,FH

− ,FH
+ .

B. Solutions of the forced amplitude equations forkm=2kc and
G1Å0,G2=0

In the case of a 2:1 resonance with a finite modulation
amplitude G1, two of the three amplitudes coincideA2,3
=Beiu2,3, the third one beingA1=Aeiu1. Thus the remaining
two amplitudesA andB are determined by the following two
nonlinear equations:

sh − A2 − 2r̄B2dA + Ḡ1A + d̄eiQB2 = 0, s26ad

fh − s1 + r̄dB2 − r̄A2gB + d̄eiQAB= 0, s26bd

with Q=u1+u2+u3. The single-mode solution generated by
those coupled equations is given by

A = Îh + Ḡ1, B = 0 s27d

and bifurcates supercritcally at the threshold«=−G1 or h

=−Ḡ1 in rescaled units. A linear stability analysis of the
single-mode solution according to the scheme described in
Sec. IV C shows that the single mode is linearly unstable in
the region delimited by the two values ofh,

h1,2=
2r̄Ḡ1s1 − r̄d + d̄2

2s1 − r̄d2 ±
d̄

2sḡ − r̄d2
Îd̄2 + 4Ḡ1s1 − r̄d.

s28d

The three-mode solution withd̄eiQ=1 is generally pre-
ferred and the appendant amplitudesA andB may be deter-
mined by solving Eqs.s26d with a standard computer algebra
program. Instead of presenting the rather complex analytical
solutions, we opt for the characteristic bifurcation diagrams
based on four different parameter sets in Fig. 6, which ought
to cover the typical bifurcation scenarios encountered. In
Fig. 6, the linearly stable intervals of each branch are visu-
alized by solid lines, whereas unstable ones are represented
by dashed lines.

Part sad of Fig. 6 shows the well known bifurcation sce-

nario of the unmodulated casesḠ1=0d for supercritically bi-
furcating stripes and subcritically bifurcating hexagonal so-
lutions f54g. With increasing values of the modulation

amplitude Ḡ1, the degeneracy of the three-mode solution
vanishes and only the onset of the single-mode solution starts

at hc=−Ḡ1. This removal of degeneracy is already best re-

flected in Fig. 6sbd, wherein Ḡ1=0.05: the subcritical
branches of the hexagonal solution,A corresponding to the
larger amplitude andB to the smaller one, do not overlap

anymore. For finite values ofḠ1, the upper hexagon branch,
i.e., theA branch, always emerges from the single-mode so-
lution, while the B branch, which is the lower hexagon

branch, bifurcates from zero with decreasing valuesh. If Ḡ1
is small enough, the bifurcation of the three-mode solution is
subcritical, as depicted in Fig. 6sbd and Fig. 6scd, whereas for
large modulation amplitudes this bifurcation is shifted to
smallerh values while becoming supercritical, as sketched in
Fig. 6sdd.

It turns out that for intermediate values ofḠ1, such as
those used in Fig. 6sbd and Fig. 6scd, the three-mode solution
bifurcates subcritically from the single-mode solution not
only for small values of the control parameterh, but also for
large values ofh, as it may be concluded from Fig. 7. For

large values ofḠ1, e.g., Ḡ1=0.25 in Fig. 6sdd, the lower
bifurcation point becomes supercritical while the upper one
nevertheless remains subcritical at first. By comparing the
bifurcation diagrams shown in Fig. 7 and Fig. 6sdd, it can
easily be seen that the existence range of the three-mode
solution shrinks with increasing values of the modulation
amplitude. Simultaneously, the hysteresis becomes less pro-

nounced with increasing values ofḠ1, changing the subcriti-
cal bifurcation to a supercritical one at smallh values as well
as the upper bifurcation point from subcritical to supercriti-

cal for even larger values ofḠ1. This latter point can be seen
nicely in Fig. 8, which shows that beyond some critical value

Ḡ1c of the modulation amplitude, the three-mode solution
ceases to exist. Since both bifurcations from the single- to
the three-mode solution are already supercritical before their

domain of existence shrinks to zero, the critical valueḠ1c
may be determined using the condition that the twoh values
given by Eq.s28d coincide, i.e.,h1=h2. Hence for modula-

FIG. 6. The amplitude of supercritically bifurcating stripes and
the subcritically bifurcating hexagons with three degenerated am-
plitudes are shown insad as a function ofh for the unmodulated
case. In each case, the solid lines mark the linearly stable part of
each branch and the dashed parts the unstable ones. For finite

modulation amplitudesḠ1, the three-mode solution withA always
corresponding to the upper branch andB to the lower branch, as
well as the amplitude of a single-mode solution, are plotted as a
function of the control parameterh for three different values of the
modulation amplitudeG1=0.05sbd, G1=0.11scd, andG1=0.25sdd,
whereas the nonlinear coefficientr̄ is fixed atr̄=1.8 andd̄=1. Each
vertical dotted line reflects theh value where the values of the
functionalF of the one- and the three-mode solution coincide.
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tion amplitudesḠ1 greater than the critical value

Ḡ1c =
1

4sr̄ − 1d
, s29d

single-mode solutions are stable for allh and three-mode
solutions do not exist any more. Since Fig. 5 evinces that in

most casesr̄ takes values larger than 1,Ḡ1c should always be
a positive parameter.

The domain of existence of three-mode solutions, the sta-
bility range of single-mode solutions, as well as the points of
coincidence of the corresponding functionalssvertical dotted
linesd are represented in Figs. 6sbd–6sdd and Fig. 7 for three

different values ofḠ1. These relevant properties are recapitu-

lated as a function of the modulation amplitudeḠ1 in Fig. 8.
Within the region bounded by the dotted lines, three-mode
solutions exist. Along the dashed line, the functional values
of one- and three-mode solutions match and the area lying in
between the upper and lower solid lines is the portion of the

h-Ḡ1 plane wherein one-mode solutions are linearly un-

stable. As predicted by Eq.s29d for r̄=1.8 three-mode solu-
tions do not exist for modulation amplitudes greater than

Ḡ1=0.3125. Before this critical value is reached, the dotted
and the solid lines are overlapping, which means that the
upper bifurcation of three-mode solutions, i.e., the one oc-
curring at largeh values, has become supercritical, as has
already been mentioned above.

According to Eq.s10d, different amplitudesA andB gen-
erate dissimilar spatial patterns, as illustrated in Fig. 9 for
four distinct parameter sets. Figure 9sad shows regular hexa-
gons, whereas in Figs. 9sbd–9sdd, distorted hexagons can be
seen for various amplitude ratiosA/B corresponding to the
parameters used in Figs. 6sbd and 6scd.

FIG. 7. The amplitudesAshd and Bshd are plotted for Ḡ1

=0.05 andḠ1=0.11salready shown in Fig. 6d over a broader inter-
val of h, which reveals that the upper bifurcation point of the three-

mode solution moves for increasing modulation amplitudesḠ1 to

decreasing values ofh. As in Fig. 6, r̄=1.8 andd̄=1.

FIG. 8. Between the upper and lower dotted linessthe lower one
overlapping partially with the solid lined lies the domain of exis-
tence of three-mode solutions. The functionals of single- and three-
mode solutions coincide along the dashed lineswhich overlaps once
again partially on its lower branch with the solid oned and the re-
gion lying in between these lines is the one where three-mode so-
lutions are favored. Single-mode solutions are linearly unstable in-
side the area delimited by the solid line, whereas they are linearly
stable outside and the dashed-dotted line corresponds to the thresh-

old hc=−Ḡ1 of the single-mode solution. Partsbd of the figure holds
an enlargement of the smallh range in order to distinguish properly
the different curves in the lower half-plane of partsad. Further pa-

rameters arer̄=1.8 andd̄=1.

STRIPE-HEXAGON COMPETITION IN FORCED… PHYSICAL REVIEW E 71, 046212s2005d

046212-7



C. Solutions of the forced amplitude equations forkm=kc

and G1=0,G2Å0

As in the previous case, two amplitudes of the three-mode
solution coincide, i.e.,A2,3=Beiu2,3, whereas the third one is
given byA1=Aeiu1. The two remaining moduliA andB are

determined by the following nonlinear equations:

sh − uAu2 − 2r̄uBu2dA + Ḡ2 + eiQB*2 = 0, s30ad

fh − s1 + r̄duBu2 − r̄uAu2gB + eiQA*B* = 0. s30bd

If B=0 andḠ2Þ0, the single-mode solution is determined
by a third-order polynomial inA. In contrast to the case
discussed in Sec. V B, the bifurcation is now an imperfect
one, as can be seen in Fig. 10. Despite this imperfect bifur-
cation, one may observe the following similarities to the pre-
vious paragraph wherein the 2:1 resonance was studied: First
of all, the degeneracy of three-mode solutions encountered

for Ḡ2=0 vanishes once again for finite values of the modu-

lation amplitudeḠ2. Secondly, as for the 2:1 resonance,A
corresponding to the largest amplitude of the three-mode so-

lution bifurcates for small values ofḠ2 from the top of the
single-mode solution, whereas the small amplitudeB bifur-
cates from zero.

With increasing values ofḠ2, the bifurcation of the three-
mode solution changes once more at its lower bifurcation
point from a subcritical one in Fig. 10sad to a supercritical
one in Fig. 10scd or in Fig. 10sdd. The bifurcation point lo-
cated at large values ofh is not shown in Fig. 10sad and Fig.
10scd but is subcritical as the one depicted in Fig. 7 for a 2:1
resonance. Thirdly, the hysteresis described by the three-
mode solution becomes once again less pronounced with in-

creasing values ofḠ2 and turns out to be supercritical for
large modulation amplitudes. Last but not least, the three-
mode solution ceases to exist beyond some critical value of

the modulation amplitudeḠ2, as was noticed as well for a
2:1 resonance.

The properties explained in the previous paragraph are
recapitulated in Fig. 11, where three-mode solutions exist
within the region bounded by the dotted lines, overlapping in

FIG. 9. The spatial variation of one term contributing to Eq.s10d
is shown for hexagons in partsad and for distorted hexagons insbd,
scd, and sdd. In part sbd, a distorted hexagon is depicted for the

parameters used in Fig. 6sbd, namely Ḡ1=0.05 andh=−0.0492,
with the amplitudes beingA=0.0551 andB=0.0124. In the remain-

ing two parts, the modulation amplitude isḠ1=0.11, whereas the
control parameter ish=−0.099 in scd swith A=0.15 andB=0.06d
andh=−0.09 in partsdd swith A=0.198 andB=0.116d.

FIG. 10. The amplitudes of a
three-mode solution withA al-
ways corresponding to the upper
branch andB to the lower one, as
well as the amplitude of the im-
perfect bifurcating single-mode
solution sB=0d are plotted as a
function of the control parameter
h. Three different values of the
modulation amplitude are taken

into account:Ḡ2=0.05 sad, where
sbd is an enlargement ofsad over a

smallerh range,Ḡ2=0.1 scd, and

Ḡ2=0.2 sdd. Solid lines mark lin-
ear stable solutions and dashed
lines unstable ones. Furthermore,

r̄=1.7 andd̄=1.
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the lower half-plane with the solid line. Along the dashed
line, the functionalsF of the single- and three-mode solution
match, meaning that the three-mode solution is preferred in
between the dashed line and the lower solid line. The lower
dotted line coincides with the lower solid line if three-mode
solutions exist, the one-mode solution is unstable, while the
lower dashed line lies below and is therefore physically in-
sensible. Through a linear stability analysis, similar to the
one described in Sec. IV C, one may conclude that single-
mode solutions are linearly stable only outside of the area
delimited by the solid line.

VI. NUMERICAL RESULTS

A major problem always encountered when dealing with
amplitude equations is that their validity range around the
threshold remainsa priori unpredictable. Therefore, we have
determined the amplitude of the stripe solution by numerical
simulations of the basic Eqs.s1d without considering modu-
lations as a function of the relative distanceh from threshold
and compared these numerical results with the analytical so-
lution A=Îh /g in Fig. 12. Up toh,0.2, we find a fairly
good agreement between analytical and numerical results,
which gives a reasonable estimate of the quantitative validity
range of the preceding results obtained in terms of amplitude
equations.

VII. SUMMARY AND CONCLUSIONS

The generic amplitude equationss13d are suggested for a
forced two-dimensional system with a broken up-down sym-
metry and discussed throughout this work. Additionally, they
are derived explicitly from a model for chemical reactions, in
the present case the Lengyel-Epstein model. They are apt to

describe how spatial periodic modulations interfere with the
competition between stripes and hexagonal patterns. Our in-
terest was particularly focused on a 1:1 and a 2:1 resonance
between the modulation wave numberkm and the wave num-
ber kc of the respective pattern. Compared to the unmodu-
lated case, the bifurcation scenarios of stripes and hexagonal
patterns change strongly in the presence of modulations. It
has been shown that three-mode solutions, i.e., hexagons in
the unmodulated case and distorted hexagons otherwise, are
suppressed for large modulation amplitudes. Furthermore,
evidence was given that depending on the strength of the
modulation amplitude, those three-mode solutions bifurcate
either sub- or supercritically. The bifurcation diagrams pre-
sented in this work may be confirmed by experiments on
chemical reactions with a spatially modulated illumination,
where, in contrast to Refs.f20,21g, the ratio between the
wave number of the illumination and the wave number of the
Turing pattern should be chosen to be 2:1 or 1:1.

Instead of considering a stationary forcing, the effect of
traveling stripe forcing on the competition between hexagons
and stripes has recently been investigated for a 1:1 resonance
in a one-dimensional systemf34g. Given the coupled ampli-
tude equationss13d, the results established in Ref.f34g may
be directly interpreted within the scope of the microscopic
Lengyel-Epstein model. The same allegation holds for the
1:1 resonance analyzed in a two-dimensional system in Ref.
f35g. Although the bifurcation scenarios of the stationary 1:1
and 2:1 resonance we studied in the present work share some
similarities, there remains the open question of how the bi-
furcation diagrams presented in Refs.f34,35g are modified if
one has to deal with a 2:1 resonance instead of a 1:1 reso-
nance.

We mainly focused on the spatially periodic forcing of
Turing patterns. The Lengyel-Epstein model exhibits further-
more a Hopf bifurcationf56g similar to those found in other
chemical reaction schemes. Instead of a temporal resonant

FIG. 11. In between the dotted line and the lower solid line
three-mode solutions exist. Along the dashed line the values of the
functionals of single- and three-mode solutions match. Thus within
the area bounded by the dashed line and the lower solid line, three-
mode solutions are favored. Single-mode solutions are linearly
stable in the complementary part of the region enclosed by the solid

line. The nonlinear coefficient is assumed to ber̄=1.7 andd̄=1.

FIG. 12. The amplitude of a stripe solution obtained by numeri-
cal simulationsscirclesd of the microscopic model given by Eqs.s1d
is compared with the analytical solutionA=Îh /g. The parameters
used area=16, s=301, d=1.07, andc=0.6, which yield the non-
linear coefficientg=0.288. For the sake of simplicity, no modula-
tions were taken into account.
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forcing of an oscillatory but spatially homogeneous chemical
reactionf31,32g, one may induce such an oscillatory reaction
by a spatially periodic or a traveling stripe modulation. This
leads to a revealing amplitude equation, which has been re-

cently deduced from the Lengyel-Epstein model and exhibits
rich transition scenarios between solutions that are either
spatially harmonic or subharmonic with respect to the exter-
nal modulationf57g.
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