Effects of parametric disorder on a stationary
bifurcation

M. Hammele, S. Schuler, W. Zimmermann

Theoretical Physics, University of Saarland, D-66041 Saarbricken, Germany

Abstract

Effects of a frozen random contribution to the control parameter are investigated
in terms of the complex Ginzburg-Landau equation for a stationary bifurcation.
The threshold of the bifurcation from the homogeneous basic state is reduced by a
random contribution even with a vanishing spatial mean value, as shown by three
different approaches, by a perturbation calculation, by a self-consistent iteration
method and by a fully numerical solution of the linear part of the Ginzburg-Landau
equation. For an arbitrary noise strength the nonlinear stationary solutions are nu-
merically determined for a set of selected parameters. In the limit of weak random
contributions analytical expressions are derived in terms of two different perturba-
tion expansions, which describe already several trends of the random effects beyond
threshold. The spatial modulation of the solutions, for instance, increases with the
noise amplitude, but decreases with increasing distance from threshold.
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1 Introduction

Pattern formation is investigated particularly in spatially uniform systems
[1,2], in order to understand at first the essence of the underlying basic mech-
anisms. However, real systems are not always perfectly uniform and include
heterogeneities, which may become nonnegligible with increasing experimental
resolution. Heterogeneities may modify a bifurcation scenario, such as shifting
the threshold and the nonlinear behavior beyond a bifurcation. It is therefore
an interesting problem, what are such changes, how robust are the generic
pattern formation processes with respect to small inhomogeneities and above
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which strength do the inhomogeneities change the bifurcation behavior quali-
tatively? Here we focus on the effects of heterogeneities on a stationary bifur-
cation, where the spatially varying parameters occur multiplicatively in the
respective model equations.

Rayleigh-Bénard convection [3,4] and Taylor—Vortex flow [3,5] are two sys-
tems, where the effects of inhomogeneities have already been investigated
rather early. In both systems the effects of ramps, of periodic modulations
or of statistical distributed heterogeneities on different aspects of pattern for-
mation, such as wavelength selection etc. have been studied [6-25]. In several
of these examples the spatial variation of the parameters was restricted to one
direction [6-17] and in others either the modulation depends on two spatial
variables or the effects of a one-dimensional modulation on a two-dimensional
pattern was investigated [18-25]. Recently, a number of investigations about
heterogeneity effects were also focusing on the Turing instability in chemical
reactions [26-30], on excitable media [31-34], or on optical systems [35].

Here, we investigate the influence of a time—independent either spatially peri-
odic or spatially varying random contribution to the control parameter on a
supercritical bifurcation from a homogeneous basic state to a spatially peri-
odic state. Close to the threshold of such a supercritical bifurcation with wave
number ¢, a real field u(z,t) may be written as a product of the fast varying
function oc €% and the amplitude A(z, )

u(z,t) = Az, t)e' " + A*(z,t)e 4" . (1)

There are many systems showing a transition to a one-dimensional periodic
state of this type, as for instance the famous Rayleigh-Bénard convection, the
Taylor vortex flow, electroconvection [36] or the Turing instability. Here we
will focus on values of the control parameter close to the threshold, where only
long-wavelength modulations of the spatially periodic function o exp (ig.x)
are relevant. Such variations are commonly described by a slowly varying
amplitude A(z,t) of the periodic pattern given in Eq. (1) for which the well-
known Ginzburg-Landau equation [37,38]

T A =eA+ &0 A—g| AP A (2)

may be derived. Here 7y is the relaxation time, ¢ measures the distance from
threshold of the spatially periodic pattern, &, is the coherence length and the
nonlinear coefficient g determines the amplitude of the pattern as a function
of the control parameter ¢, as for instance with A \/% and g > 0 close
to a supercritical (forward) bifurcation. This amplitude equation is one of
the simplest models describing a bifurcation from an initial state A = 0 to a
stationary and spatially varying pattern A # 0. A spatial modulation of the
control parameter ¢ — ¢ + M(x), which describes for instance major effects
of a rough container boundary in Rayleigh-Bénard convection as estimated



in Ref. [12], leads to a modification of the bifurcation as shown in this work.
It leads for instance to a shift of the threshold but leaves the bifurcation
still perfect, whereas an additive contribution f(z,t) in Eq. (2) makes the
bifurcation imperfect.

In section 2 we describe the model and three different types of modulations of
the control parameter. The effects of these modulations on the threshold are
calculated in section 3 by solving the linear part of Eq. (3) by three different
methods, whereby their strengths and the deficiencies are compared with each
other. In section 3.1 a perturbation method is employed, in section 3.2 a full
numerical solution in Fourier-space is given and in section 3.3 a self-consistent,
approach is introduced. Beyond the threshold the dependence of the nonlinear
solution on the distance from the threshold is also changed by the modulation
of the control parameter as described in section 4. In section 4.1 the nonlinear
equation is solved numerically for a typical set of parameters and in section 4.2
the nonlinear solutions are determined in the range of small modulation am-
plitudes by the Poincaré-Lindstedt expansion. The results of this expansion
are compared with the results obtained by solving the nonlinear equation nu-
merically. A modified expansion of the nonlinear solution far beyond threshold
is described in section 4.3 and the work ends with the discussion of the results
and concluding remarks in section 5.

2 Model equation

The effects of a time-independent random contribution M (z) to the control
parameter are investigated near a bifurcation—point or phase transition in
terms of the complex Ginzburg-Landau equation with real coefficients

T A= [e+ M(z) + 2| A—g | AP A. (3)

M (z) is assumed to be either spatially periodic or a random function, as
specified in the following subsection.

2.1 Three types of spatial modulations M (x)

Spatially periodic modulations of the control parameter have already some
tradition [6-15] and some trends to be expected for a random function M(z)
in Eq. (3) can already be investigated in terms of a periodic function

M (z) = 2G cos (kx) . (4)



For a randomly varying modulation M(z) = £(z), we assume a vanishing
mean value and a d-correlated second moment [39]:

(&(2))=0, (5a)
(¢(z) £(«))=Dé(z — ). (5b)

The amplitude D in Eq. (5b) is a measure for the noise intensity and the
d-correlation expresses, that the random function M(z) is statistically inde-
pendent at each location z # z'. The Fourier transform of the correlation
function (5b) is also d-correlated (£*(¢)é(q")) = 2mDd(q — ¢') and otherwise
independent of the wave number.

In a third example we assume an Ornstein-Uhlenbeck process M(z) = w(z)
in space, where w(z) is generated by a white noise £(x) via the first order
differential equation [39,40]

dw(z)  w(x)  &(x)
ar € 4 ©)
for different values of the correlation length £. w(x) is a so-called colored noise
with vanishing mean value, where w(z) and w(z') are correlated at different

sites x # z' with an exponential decay of the correlation on a typical length £
as follows:

(w(z))=0, (7a)

D '
(w(z) wla')y= e omVe. (7b)
2/
The exponential decay in Eq. (7b) leads to a wave number dependence of its
Fourier transformation

. 21D6(q — q')
<w'(q) w(g) >= Tireg (8)
The correlation function of white noise is recovered from Eq. (7b) and Eq. (8)
in the limit £ — 0 by keeping D fixed.

Numerically the model in Eq. (3) may be solved on a finite grid with grid
spacing Az = L/N, the number N of grid points, and the position z; = jAx
of the sites. An alternative approach is a solution in terms of N Fourier modes,
as presented in Sec. 2.2. On a discrete lattice the autocorrelation function of
the random process £(z) takes the form

(E@)E(;)) = 3 o0 o)



where the random process [41]

£ = \/% (Cj - %) (10)

is expressed in terms of uniformly distributed random numbers 0 < (; < 1 that
are generated by a standard pseudo-random number generator with ((;) = 1/2
and (C7) = 1/12. Uniformly distributed random numbers (; are used because
the rare but huge fluctuations of a Gaussian distributed random process are
unrealistic for modeling, for instance, the roughness of the two opposite con-
tainer boundaries in Rayleigh-Bénard convection [3,4], or the roughness of the
two cylinders of a Taylor-Couette system [3,5,16].

2.2 Solution scheme of Eq. (3) in Fourier-space

The long-wavelength contributions to M (x) cover the major effects of the
modulation because the short-wavelength contributions are to a large extend
smoothed out by the diffusion term in Eq. (3) (see e.g. Fig. 2). Therefore,
the analysis can often be simplified by focusing especially in long systems on
the long-wavelength portions of the solution of Eq. (3), in order to reduce the
computational effort considerably. For this purpose the real function M (zx)
may be represented in a finite system of length L in terms of a Fourier series

N
M(z)= Y cpe™", with c_, =¢],
n=—N

and ¢y =0, (11)
where the Fourier-coefficients ¢, and the wave number £ are given by

1 L —inkx 2m
Cp = Z/o dx M(x)e and k= 7 (12)
We have assumed for reasons of simplicity, that the constant contribution cgy
to M(zx) is already included in the non—varying part of the control parameter
. Inherent of this ansatz is the assumption of periodic boundary conditions
for Eq. (3). However, this assumption is actually a rather weak one, especially
in long systems and when we are interested in mean values as for instance in

the mean shift of the threshold for an ensemble of random functions £(z) or

w(z).

A representation of the solution of Eq. (3) in terms of a Fourier-series



Alz) = Y Fpe™, (13)

together with a successive projection [ dx exp(—ijkz) ... of the linear part of
Eq. (3) leads to the following linear eigenvalue problem

(c-8UR)F+ X ¢ =0 (j=-N..N), (14)

where the smallest eigenvalue gives the threshold e.. The amplitudes ¢, of
the Fourier expansion of M (z) provide a coupling between the modes F; of
the linear solution A(z) and give rise to a threshold shift. This eigenvalue
problem will be analyzed in the next section by a perturbation method, a
fully numerical calculation as well as by a self-consistent iteration method.
Including the nonlinear term of Eq. (3), the nonlinear solutions of this equation
are obtained by using a standard pseudo-spectral code.

3 Determination of the threshold

The effects of a control parameter modulation M (x) on the threshold of a sta-
tionary bifurcation are calculated by three different methods in this section. In
the absence of modulations the linear part of Eq. (2) has constant coefficients
and it is solved by the ansatz A(x,t) = Fexp(iqx + At). The threshold for
the instability of the solution A = 0 is defined by a vanishing growth rate,
A = 0. This neutral stability condition provides an expression for the control
parameter €(q) as a function of the wave number g, the so-called neutral curve,
which has for the Ginzburg-Landau model in Eq. (2) a parabolic shape

eo(q) = £2¢°. (neutral curve) (15)

This expression takes its minimum at ¢ = 0 with the critical value e, = g¢(¢ =
0) = 0 at this point. Taking into account the modulation M(z), Eq. (3)
describes a parametrically driven system. For this case the threshold is always
negative ¢, < 0 and therefore lower than for the unmodulated system, as we
will show in this section. The actual values of . depend on the amplitudes of
M (z) as well as on its spatial form.

For small modulation amplitudes of M(z) the threshold shift is calculated
by a perturbation method as described in Sec. 3.1. For arbitrary modulation
amplitudes and an arbitrary length L of the system, the threshold is calculated
numerically by solving the eigenvalue problem in Eq. (14) for a selected set



of parameters in Sec. 3.2 as well as by a self—consistent iteration scheme in
Sec. 3.3. The results obtained by these three different approaches are compared
with each other.

3.1 Perturbation method for small amplitudes of M(x)

We introduce a small parameter n < 1 in order to express M (z) = nM (z) and
cn = M, for small modulation amplitudes in terms of a function M (z) oc O(1)
and of amplitudes ¢, o« O(1) of the order unity. In this limiting case, the
effects of the modulation on the solution A(z) and on the threshold . may
be calculated up to leading orders by a perturbation expansion for the control
parameter ¢, the solution A(z), and the Fourier amplitudes Fj:

ce=€0 4+ el 4 2@ 4 | (16a)
Ac(z) = AP (z) + nAD (2) + * AP (2) + ..., (16b)
Fi=F" 4 qFD + ?FP 4 ... (16¢)

Using these expansions, the linear part of Eq. (3) can be sorted with respect
to powers of the small parameter n

'’ LoAD = (17a)
n' EOAS) = —[M (z) +eMAD), (17b)
e LoAP) = —[M(z) +eV]AD — P AL, (17c)

where the linear operator £ is given by

Lo=el +&0; . (18)

A successive solution of this hierarchy gives the leading order corrections (/)
and AY)(z) of the solution of the linear part of Eq. (3). Representing also
AY)(z) by a Fourier series

A(j) Z F(] inkx with F / d.’EA(] fmkw’ (19)

Cc
n=—oo

then this hierarchy of equations takes the following form:



"’ Lo FY =0, (20a)

n

Mo LonFW == Y B - OFO), (20)
[=—0o0

i LonF? =— 3 e, F —eWED — QRO (20¢)
[=—o0

with the transformed linear operator Lo, = () — £2(nk)2.

Equation (20a) corresponds to the unperturbed linear equation and its spa-
tially homogeneous solution F}LO) = Fydy,, with a real amplitude Fyy provides
the lowest threshold at ¢®) = 0, as already mentioned above. Accordingly,
one has for n = 0 in Eq. (20b) Lo = 0 = LooF.", and since M (x) does not
include a spatially independent contribution, i.e. ¢y = 0, one obtains 5&1) =0.
For n # 0 the inhomogeneous Eq. (20b) yields

Fye
F = 0 21
"= Gy 20
and with Eq. (19), A% (z) may be expressed by the series
Fhe .
Agl)(l_) _ ZI 0Cn €anm, (22)

i & (nk)?

where the prime indicates a summation excluding n = 0.

According to Lo = 0 = EooFéQ) the right hand side in Eq. (20c) must vanish
for n = 0, which provides an expression for the leading order threshold shift

e2) — _9 3 ﬂ (23)
¢ n=1 53(7?,]{;)2

For a harmonic modulation M (x) = 2G cos (Qz) with the amplitude G = nG

and wave number ) = jk, one has ¢, = G(d,; + 0,,—;) and according to
Eq. (23) the threshold shift is

2G?
e® = — g (threshold harmonic modulation) (24)
&@Q
In the very special case, where all Fourier-coefficients coincide, |¢,| = G, the
sum in Eq. (23) can be evaluated and one obtains

Lo _ 26 2G” 7*

¢ é-ngC(Z):_@Fa (25)



with the Riemann Zeta-function (z). A comparison between the results given
by Eq. (24) and Eq. (25) emphasizes that the major contributions to the
threshold shift are due to the long-wavelength modulation with () = &, because
all the higher harmonics contribute to the threshold shift only 65% of that of
the first mode. The dependence of the threshold shift on the coherence length
&o is unchanged by including higher harmonics. This result indicates that also
in the case of a random function M (z) the contributions of short-wavelengths
will be small.

However, within the presented perturbation scheme the threshold diverges
with the system length as ¢ oc —L?, i.e. for a small wave number k = 27/L.
In this limit, & < 7, the first order contribution nA) o« nG/k? becomes of
the order of ”1” or larger. The correction 74" is therefore not small anymore
compared to the unperturbed solution A{’) and the assumption made for the
perturbation calculation is violated.

Another quantity for the characterization of the effects of the modulation is
the mean wave number

Y. nk|F,|?

that takes with the expression for the Fourier amplitudes, given in Eq. (21)
at leading order in 7 the following form

2 2 2]ef 4

For a harmonic modulation, as discussed above, one obtains for the mean wave
number

2G?

= aip TO0") (Q=3k). (28)

m

3.1.1 Modified neutral curve

Up to this point, Egs. (17) have only been solved for constant solutions Ay =
const. of the lowest order Eq. (17a). However, the latter one also has periodic
solutions o exp(igz) that grow above the neutral curve given by Eq. (15). It
is an interesting question, how the threshold of these periodic solutions along
the neutral curve ¢¢(q) is changed by a modulation M (x). For a periodic
modulation with wave number %, one obtains in the range ¢ < k/2 and up to
leading order in G the modified neutral curve as given by



2G? 1
eolq) = &q° — 1 ERTEaCRrIRE (29)

The corrections to the neutral curve, induced by the modulation also change
the curvature of £¢(g). At the minimum of the neutral curve the curvature is
k = 0%¢/0¢* and with Eq. (29) one obtains the expression

, 16G?
&k

k=221 T (30)

These results are compared with the full numerical results for the threshold
in Sec. 3.2.1.

3.1.2  Mean shift of the threshold for an ensemble of random functions M (x)
The sum in Eq. (23) may be further simplified by taking the average of it, be-

cause in this case the Fourier amplitudes can be eliminated by the correlation
function of the Ornstein-Uhlenbeck process,

o D
)= LA+ ehE) (31)
and with this expression, the mean shift of the threshold is
DL (n? & (ke)?
N [ S — . 32
(ec) = ~3mg ( 6 n; 1+ £2(nk)? (32)

With the Digamma function (z) and the imaginary unit 7, Eq. (32) may be
rewritten in the following form

(e?) = —% (%2 - %W [\1;(1 + ﬁ) — (1 - ﬁ)]) . (33)

This mean value decreases linearly with the noise amplitude D and the re-
duction becomes smaller with increasing values of the coherence length &g, i.e.
systems with a large coherence length become rather insensitive against inho-
mogeneous perturbations of the control parameter. Also the inhomogeneous
contribution A (x) given by Eq. (22) decays as &, 2. A finite correlation length
¢ leads to a smaller threshold reduction, as indicated by the positive contri-
bution of the ¢-dependent second term in Eq. (32). The first part in Eq. (32)
describes the threshold reduction in the limit of white noise, / — 0, given
by (e?)) = —DL/12¢2. As indicated by Eq. (23) and Eq. (32) each mode

10



Cc

-0.01

threshold <& >
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Fig. 1. The mean threshold according to formula (32) is plotted as a function of the
system length L for a d-correlated noise (solid line), and for random functions w(x)
with coherence length £ = w (dashed line) and £ = 27 (dotted line). The parameter
values are D = 0.02 and &, = 2.

¢n of M(x) contributes additively to the threshold reduction and the long—
wavelength contributions dominate it. For finite values of #, the dependence
of the threshold on the length L is nonlinear, as indicated by the dashed and
dotted lines in Fig. 1.

Using Eq. (21) and Eq. (31), one may estimate the validity range of the per-
turbation calculations, | F(!) | /F(0 < 1, and one obtains the following
additional restriction with respect to the noise amplitude and system length

VDL3 < (2m)%€3\/1 + 2(2n/L)2. (34)

This is further simplified for a d-correlated noise to vV DL? < (27)%£2. Accord-
ingly, one may expect deviations from the threshold shift (¢{?)) as discussed
above, as soon as the inequality in Eq. (34) is violated.

The variance of the threshold reduction is defined by var(e.) = (€2) — (e.)?
and for correlated noise the explicit expression of it is

4D? & 1
c , 35
7€) = Tags 22 k)i + PGAPT )
which may be further simplified in the case of white noise, i.e. £ — 0, to
D?L2
c : 36
var(e) = 3o (36)

This expression also indicates the trends of the threshold reduction in terms
of the system length, the noise strength and the coherence length. Similar as

11



the mean value of the threshold, also the variance decreases with increasing
values of the correlation length /.

The ensemble average of the expression for the mean wave number in Eq. (27)
yields

Dk & 1
\im) = g5 2 (kYL + Pk 7
which reduces for white noise to
DL?((3)

with ((3) & 1.2. With increasing values of the noise amplitude D higher order
modes of the solution A(z) become excited, which increases the mean wave
number ¢,,. Conversely, the mean wave number g¢,, tends to zero when the
noise amplitudes become smaller.

3.2 Numerical determination of the threshold

The trends, obtained by the perturbation calculation in the previous section,
may be verified by a numerical solution of the linear part of Eq. (3) as de-
scribed in this section. The Fourier expansion of A(z), cf. Eq. (13), leads to
the eigenvalue problem in Eq. (14). These coupled linear equations for the
Fourier amplitudes may be rewritten in terms of a matrix equation AF = ¢F,
where F includes the Fourier amplitudes F}; and A is the respective coefficient
matrix

Lo(—N) —c; 0
e
A= D Lo(0) e (39)
—C‘{
0 cee oo —c1 Lo(N)

with the abbreviation £y(j) = & (jk)?. Since A is a hermitian matrix it has a
real eigenvalue spectrum. The lowest eigenvalue of this set of 2/V + 1 coupled
equations provides the critical threshold €. either in the presence of a spatially
periodic or a random modulation M(z). By solving the linear problem for
J realizations of M (x), the shift of the mean value of the threshold (e.) is

12



obtained for each ensemble of realizations of M (x). Since the long-wavelength
contributions to M (z) provide the major threshold reduction, as indicated by
Eq. (32) and Fig. 4, already a medium number N of Fourier modes gives the
threshold reduction with considerable accuracy.

The number of operations required for the numerical determination of the
eigenvalues of A increases proportional to the number of Fourier modes as
o< (2N + 1)3. Therefore, for very large systems with N > 10® a direct nu-
merical integration of the linear part of Eq. (3) by a pseudo-spectral method
and studying the growth behavior of small perturbations becomes more ef-
ficient than determining the threshold ¢, by means of the eigenvalues of A.
Within this approach we start with arbitrary but small initial conditions for
A(z,t) and we detect the exponential growth behavior o< exp(At) of the global
quantity N(t,¢) = 1/L [ dz A(z,t)? as a function of . The threshold is de-
termined when the growth rate A changes its sign as a function of ¢ for each
realization M (zx). This approach is very efficient in particular for large sys-
tem lengths because in contrast to the eigenvalue problem, the number of
operations increase only proportional to Nlog(N) with the number of Fourier
modes.

3.2.1 Harmonic modulation

The effects of a harmonic modulation M (z) = 2G cos (kx) on the threshold of
a stationary bifurcation from the homogeneous state A = 0 are investigated
first. In this case a truncation of the series in Eq. (13) to N = 1 with only
three modes provides a useful analytical formula for the threshold &,

1 1
Ec = §€§k2 - § V (é-ok')4 + 8G? ; (40)

which reduces in the limit of small modulation amplitudes G < &2k? to the
result obtained by the perturbation calculation, cf. Eq. (24) . However, in the
limit & — 0, Eq. (40) approaches to the finite value ¢.(k = 0) = —/2G,
and there is no divergence as in the case of the perturbation calculation.
This is also indicated in Fig. 2, where the wavenumber-dependence of the
threshold according to Eq. (40) is shown by the dotted line. A full numerical
solution gives in the limit & — 0 the threshold shift ¢, = —2G, which is
lower than that obtained by the three-mode approximation. Moreover, this
value agrees with the threshold reduction obtained for a constant modulation
function M(z) = max[2G cos(kz)] = 2G. The comparison in Fig. 2 between
the full numerical results (solid line), the three mode approximation (dotted
line) and the results of the perturbation calculation (dashed line) shows, that
all three approaches provide similar results for larger values of the modulation
wave number k, while there are for small values of £ considerable deviations

13
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Fig. 2. The threshold reduction caused by a periodic modulation M (z) = 2G cos(kx)
with G = 0.02 is shown as a function of the wave number k for different approxima-
tions. The dashed line is obtained by the perturbation calculation, cf. Eq. (24), the
dotted line by the three mode ansatz, cf. Eq. (40), the solid line by the numerical
solution for N = 32 modes and the formula given in Eq. (41) is indicated by the
circles.

between the three approaches and the result of the perturbation calculation
even diverges.

According to the 2 symmetry of the Ginzburg-Landau equation the thresh-
old curve has a parabolic shape close to k ~ 0. However, apart from a narrow
range around k£ = 0 the threshold obtained by the full numerical solution

8.

7.2
6.4~
56

4.8

curvature K

40

3.2

x
L 1 L 1 L 1 L 1 L L
0 0.01 0.02 0.03 0.04 0.05 0.06

amplitude G

Fig. 3. The curvature k = 0%¢((g)/0q?|4=0 of the neutral curve is shown as a func-
tion of the amplitude G for a harmonic modulation M(z) and for two values of
k = 0.1, 0.2. The solid line is due to the perturbation method, cf. Eq. (30), and the
symbols are obtained by solving the eigenvalue problem numerically with N = 64
modes for k = 0.2 (squares) and k = 0.1 (stars). The dotted lines represent the re-
sults obtained by a three mode approximation similar as in Eq. (13). The coherence
length is &y = 2.
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follows in a wider range of k rather close a straight line, as indicated by the
circles in Fig. 2, that are described by the formula

£e = —2G + &VGk . (41)

The formula for smaller values of k together with the three mode approxima-
tion for larger values of k, cf. Eq. (40), approximate in a satisfying manner
the threshold curve and also cover the parameter dependence of the threshold
shift.

For k = 0.2 the results for the perturbation calculation and for the numerical
solution are in rather good agreement, as can be seen in Fig. 2. However,
there are already deviations for a smaller value & = 0.1. The curvature of
the neutral curve, as determined by the perturbation method in Sec. 3.1.1, is
also in agreement with the fully numerical solution for larger values of £ and
there are deviations at smaller values of k£ as shown in Fig. 3. The three mode
approximation (dotted lines) reproduces roughly the curvature of the neutral
curve even for larger values of G and k, where the perturbation calculation
already deviates from the numerically exact solution.

3.2.2 Stochastic modulation

The threshold also depends on the spatial resolution of the random process
M (x). Below which spatial resolution Az = L/N and beyond which number of
discretization points N becomes the mean threshold (g.) rather independent
of N for a fixed system length L? For a d-correlated random function £(z)
on a discrete lattice with a constant site distance Ax the values of £(x) at z;
and z; + Ax are statistically independent. However, a finite site distance Ax
mimics a finite correlation length. When this length is not very small compared
to the coherence length & and the system length L, the threshold for a given
noise strength obviously depends on the discretization Az and therefore on the
number of sites N. This is illustrated in Fig. 4, where the averaged threshold is
shown as a function of Az for a system of length L. = 64x. It can be seen that
for Nk/2 =z 3, corresponding to Az < 7/3 the mean value of the threshold
reduction is nearly independent of N and this estimate of Az can also be used
for systems of a different length L = 27 /k.

In part (a) of Fig. 5 the mean threshold reduction (e.) is shown as a function of
the system length L for a fixed discretization Az and in part (b) as a function
of the noise amplitude D for a d-correlated noise process. The solid lines show
the results obtained by the perturbation calculation, cf. Eq. (32). The inset in
part (b) shows the threshold shift in the range of small values of D, where the
result of the perturbation calculation is of fairly good agreement with the full
numerical one. Both approaches deviate from each other with increasing values
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Fig. 4. The averaged threshold (e.) is shown for a fixed system L = 647 = 27 /k
and for two values of the noise amplitude D as a function of the Fourier modes N
and the discretization Az, respectively. The evaluation of the ensemble averages are
calculated from 20,000 realizations of a dé-correlated M (x).

of D and L, respectively, because of the increasing ratio A /A which is a
measure for the violation of the assumption of the perturbation calculation,
cf. Eq. (34). The top parts in Figs. 5(a) and 5(b) show the respective standard
deviation o,

var(e,) = o2, = (&) — (e.)* . (42)

Again, for rather small values of L and D the standard deviation o, is also
well described by the result of the perturbation calculation given by Eq. (36).

The threshold reduction saturates with increasing values of the system length
L, as indicated in Fig. 6(a). In addition, the variance reaches at a system
length of about L = 100 ~ 50, a maximum and beyond this length, it decays
as a function of L as shown in Fig. 6(b) for two different values of the noise
amplitude D. These tendencies may be interpreted as follows. The results in
Fig. 4 show that below some discretization length Az, which depends espe-
cially on the coherence length &, the threshold becomes rather independent
with respect to further refinements of the discretization. So keeping Az fixed
at a finite value, but increasing the system length and the number of sites IV,
the uniformly distributed random numbers are increasingly explored. With an
increasing system length, it becomes more likely that the random number §;

given by Eq. (10) hits the most positive value /12D /Az /2 and with the next
neighbors £,y also in the positive range. In such a case a considerable thresh-

old reduction can be achieved, which is limited from below by —/12D/Az /2,

a value, that is obtained for a constant modulation & = (/12D/Az /2 for
j=0,...,N.In that respect, the tendencies shown in Fig. 6 corresponds to a
close exploration of the lower boundary of the threshold.
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Fig. 5. In part (a) the mean threshold (e.) decreases as a function of the system
length L and in part (b) as a function of the noise amplitude D. The inset in part
(b) displays (e.) in the range of small values of D while the solid line represents the
threshold shift given by Eq. (32) for £ = 0. The top parts show the standard devi-
ation o, . Parameters in part (a) are D = 0.001 (circles) and D = 0.003 (squares)
and in part (b) L = 167 (circles) and L = 647 (squares). 20, 000 realizations of £(z)
with Az = 0.39 have been used to evaluate the ensemble averages.

The variance var(e.) decreases for large values of L as shown in Fig. 6(b) and
this decay follows roughly a power law as o< L™, where the curves shown in
this figure are fitted (solid lines) with the exponents v =~ 0.18 for D = 0.05
and v = 0.2 for D = 0.1. Both curves are in rather good agreement with the
numerics and they indicate in the limit . — oo a vanishing variance for the
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Fig. 6. In part (a) the mean threshold and in part (b) its variance are shown for
d-correlated noise as a function of the system length L up to rather large values.
The parameters are D = 0.05 (squares), D = 0.1 (crosses), & = 2, J = 1,000 and
Az = 0.785. The solid lines represent fit curves of the form var(e.) o« L™ with the
exponents v &~ (0.18 for D = 0.05 and v = 0.2 for D = 0.1.
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Fig. 7. The threshold reduction (bottom) and the standard deviation (top) are
plotted for colored noise with £ = 27 (squares) and for white noise (crosses) as
functions of the system length L and for the noise amplitude D = 0.003. The solid
lines show the threshold shifts according to the expression given by Eq. (32) for
the respective correlation length ¢. The discretization Az =~ 0.19 and J = 10,000
realizations of M (z) have been used.

critical control parameter.

The effect of a finite correlation length ¢ is shown in Fig. 7, where we compare
the mean value of the threshold as a function of the system length for random
functions with a vanishing correlation length ¢ = 0 (crosses) and one with
¢ = 271 (squares). This figure shows, that the threshold reduction and its
variance are smaller for a finite correlation length ¢ than for £ = 0. This is
also indicated by the result of the perturbation calculation given in Eq. (32)
(solid lines in Fig. 7).

Another interesting statistical quantity is the distribution of the threshold, i.e.
the probability P(e.)de to find for a single realization of the random function
M (x) the threshold in a small interval (e.,e. + de). This distribution func-
tion is shown in Fig. 8 for different values of the system length L and for the
noise strength D = 0.001. Due to the asymmetry of the distribution there
is no coincidence between the most probable threshold £, determined by
maz [P(e.)], and the mean threshold (e.), indicated as dotted lines in this fig-
ure. The maximum of the distribution P(e.) is reduced with the system length
while its width increases. This is in agreement with the standard deviation o,
shown in Fig. 5(a) (top part) or with the result of the perturbation calculation,
cf. Eq. (36). For very long systems, however, the distribution P(e.) becomes
narrower and the maximum of P(e.) at € increases, which is in agreement
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Fig. 8. Distribution function P(e.) for the threshold is shown for three different
values of the system length: L = 327 (circles), L = 64x (squares), and L = 1287
(triangles). The noise amplitude is D = 0.001 and the distribution of the thresholds
€. has been calculated for J = 50,000 realizations of the d—correlated random

function M(z). The dotted lines indicate the respective mean value (g.) of the
threshold.

with the decreasing variance of ¢, in Fig. 6(b) for L > 200.

In the absence of the modulation (M = 0), the eigensolution A(z) of the lin-
ear part of Eq. (3) is either a constant function for ¢ = ¢, or it is a harmonic
function o< exp (igz) along the neutral curve gy = £3¢*>. With an increasing
amplitude of the random function M(z), the eigenfunction at threshold be-
comes more and more spatially localized as shown in Fig. 9(a), whereby one
realization of the random function itself is shown at the bottom of this figure.
This increasing localization is also indicated by the power spectrum of the
eigenfunctions in Fig. 9(b), which becomes broader for more localized func-
tions, i.e. with increasing noise strength higher order modes are excited. This
tendency also leads to a larger mean wave number of the eigenfunction as given
by Eq. (37). The large amplitude of the constant mode Fj is not included in
Fig. 9(b). The eigenfunctions are normalized, i.e. 1/L fOL dr A2 = 1.

The eigenfunctions corresponding to larger eigenvalues of A than the critical
one and therefore to larger values of the threshold, exhibit a similar local-
ized behavior, but their peaks are located in different regions within the given
system length L. This localization behavior of the eigenfunctions of A is impor-
tant for the nonlinear bifurcation behavior of the amplitude equation, which
is discussed in Sec. 4 in greater detail. For a random function with a finite
correlation length £, all the eigenfunctions of A become less pronounced with
increasing values of /.

The spatial correlation (A(z + x1)A(x)) of the eigenfunctions of A averaged
over a sequence of realizations of M (x) decays with increasing values of the
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Fig. 9. In part (a) the spatial dependence of the eigenfunction A(x) at threshold
€ = ¢ is shown for the noise amplitudes D = 10~* (solid line), D = 102 (dashed
line) and D = 10=2 (dotted line) and for one realization of the random function
&(z), illustrated for D = 10~3 by the bottom part on a grid with Az ~ 0.39. Part (b)
shows the amplitudes F; of the three eigenfunctions in part (a), whereby D = 1074
(circles), D = 103 (squares), and D = 102 (triangles). The large constant mode
Fj is not included.

displacement z; as shown in Fig. 10 for —correlated noise and for different
values of the noise amplitude. The typical decay length of this correlation func-
tion decreases with increasing values of the noise amplitude D, indicating that
for larger values of D the randomness is transferred to the spatial form of the
solution A(z). On the other hand, increasing the noise amplitude D enforces
the regions, where A(z) becomes very small and therefore the contribution of
such regions to the correlation function becomes small too.

3.8 Self-consistent approximation scheme

With a self-consistent iteration scheme, we describe in this section a third
method for solving the linear part of Eq. (3). The technique is inspired by a
Greens-function method used in turbulence [42], which reads in its discrete
formulation as follows. One starts with the coupled equations for the Fourier-
amplitudes given in Eq. (14). Since the constant contribution to M (x) van-
ishes, i.e. cp = 0, we split the equations for F; and F; with j # 0. For j = 0,
Eq. (14) takes the form

eFy +CD =0, (43)
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Fig. 10. The spatial correlation function (A(xz)A(z + 1)) of the eigenfunction at
threshold is shown as a function of the displacement z; for a d-correlated noise
and for three different values of the noise strength: D = 0.01 (solid line), D = 0.1
(dashed line), and D = 1 (dotted line). The ensemble average has been calculated
from J = 1,000 realizations of the stochastic process M (x) for a system of length
L = 1287 with grid space Az =~ 0.39.

where the unknown vector D and the vector C of the noise amplitudes

D= (F yper,. . Fo, Fry Fp)

(44)
C= <CfN/2+la---:Cflacla---:CN/2) )

include N — 1 components with the index —N/2 4+ 1 to N/2 but not Fy and
co, respectively. The vector D is determined by the following inhomogeneous
linear equation

B()D = BlD + F()C 3 (45)

which includes the N — 1 equations for j # 0 given in Eq. (14). Herein the
two matrices By and B; of dimension (N — 1) x (N — 1) are defined by

Bo, = [6k)° —ec] b,
Bljl:C]’,l, with —N/2+1§]—ZSN/2
In addition, the matrix B; has due to the vanishing component ¢y = 0 no

elements on its diagonal. The N — 1 components of the unknown vector D
may be determined by the iteration scheme

D1 =B, (B:D, + F,C) , (47)

with the initial condition Dy = 0. Using the n-th iteration as an approximate
solution D = D,,;; then one obtains with the help of Eq. (43) the following
equation

£c+C* li( 181)] ~1C =0, (48)

=0
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for the determination of the critical control parameter ... This equation may be
solved numerically either for a periodic or a single realization of the stochastic
modulation of the control parameter. In order to calculate the mean value
< g, > for an ensemble of realizations of M (z), this equation has to be solved
either J times or an equation for the mean value < €. > may be derived as
described below.

3.3.1 The limiting case of small modulation amplitudes

Restricting the iteration scheme in Eq. (48) to n = 0, the equation

! |Cn|2
S . — (49

that may be solved by a standard numerical routine, determines the threshold
approximately. If we assume in Eq. (49) small modulation amplitudes |c,|? =
n?|c,|?> with n < 1 and &, o n* < &2k?, then the resulting expression for
€. becomes in leading order of 7 identical with the result of the perturbation
calculation given in Eq. (23).

3.3.2 The equation for the mean value < g, >

One motivation for introducing the iteration method in this work is the pos-
sibility to derive for the average < €. > itself an equation. In such a case, the
averaged statistical properties of the noise can be used instead of solving the
threshold problem for J different realizations of M (x) before averaging.

However, by taking for instance the average of Eq. (49) directly, one has to
deal with the expression {|c,|?/(s.—&2(nk)?)) that includes the ratio of the two
random processes |c,|? and .. Here, we approximate the statistical average of
this ratio by assuming their statistical independence and replacing it by the
ratio of their averages. In this case an equation for (e.) follows:

Dk 1
€= o & T EGRA )~ GGH

=0 . (50)

An extension of such a decomposition to higher orders of the iteration scheme
in Eq. (48) becomes rather cumbersome because of the (n -+ 2)-point corre-
lation functions with respect to c;. For instance, for an iteration order up to
n = 2 one has to deal in Eq. (48) with the decomposition of a four-point cor-
relation function into a sum of two-point correlation functions: {(cicjcpcm) =
(crej)(enem) + (cien){cjem) + {(ciem){cjcn). The uneven (2n + 1)-point corre-
lation functions do not contribute to the threshold, because their ensemble
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Fig. 11. The convergence of the threshold as a function of the iteration order n in
Eq. (48) is shown for a periodic modulation M (z) = 2G cos (kz) with the amplitude
G = 0.5 and wave numbers k = 0.1 (crosses) and k£ = 0.01 (squares). The solid line
describes the threshold obtained by the numerical scheme given in Sec. 3.2.

averages vanish in Eq. (48). The expression corresponding to Eq. (50), but
expanded up to the order n = 2 has been solved too and the corresponding
result is given in Fig. 14.

Taking for £ = 0 the limit £ — 0 in Eq. (50), corresponding to a system of
infinite length L, the sum may be transformed into an integral. The latter
one can be easily evaluated and one obtains the saturation value for the mean
threshold

(ec) = — (2—?0)2/3 , (51)

similar as for the three mode approximation for a harmonic modulation in
Eq. (40) and in contrast to the perturbation calculation.

3.3.8 Numerical results for the iteration scheme

The convergence of the iteration scheme (48) as a function of the iteration
order n is shown for a periodic modulation M(x) = 2G cos (kz) in Fig. 11 for
two different values of the wave number £ = 0.01, 0.1 and for the modula-
tion amplitude G' = 0.5. The solid lines describe the thresholds calculated via
Eq. (14) for many modes. The iteration order n that is necessary for a reason-
able approximation of the threshold depends on the modulation parameters
and it converges faster for larger values of k£ and smaller values of G, similar
as for the perturbation calculation in Sec. 3.1.

The convergence of the iteration scheme for one realization of a random func-
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Fig. 12. For the system length L = 2007 (= k = 0.01), the convergence of the
threshold . is shown as a function of the iteration order n for two realizations
of a d-correlated noise with Az ~ 0.39 and noise amplitudes D = 0.08 (crosses),
D = 0.13 (squares). The solid lines describe the threshold obtained for the same
realization by determining the lowest eigenvalues of A.

tion M (x) but for two different amplitudes D is shown in Fig. 12. The conver-
gence as a function of n is similar as for a periodic modulation with £ = 0.01,
corresponding to the same system length L = 2007. Since M (z) is composed of
short- and long-wavelength contributions, the long-wavelength contributions
determine obviously the convergence of the iteration scheme. Therefore, in the
presence of a random function M (z) the convergence depends very much on
the system size and according to Fig. 12 also on the noise amplitudes.
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Fig. 13. The mean threshold (g.) is shown as a function of the iteration order n for
three different lengths: L = 107 (crosses), L = 157 (squares), L = 20w (circles).
The amplitude of the é—correlated noise is D = 0.1 and Az =~ 0.785. The averages
have been determined by J = 1,000 realizations of the random function M (z). The
solid lines are obtained by calculating the lowest eigenvalues of the matrix A for
the same random processes.
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In Fig. 13 instead of the threshold for one realization, the mean value of the
threshold (e.) is shown as a function of the iteration order n for an ensemble
of §-correlated random functions M (x) with noise strength D = 0.1 and for
different values of L. Again, the convergence becomes slower with increasing
system size and higher iteration orders n are required in order to approach
to the mean threshold calculated with eigenvalues of A. Since the matrices
B; have the same dimension as the matrix A, the latter one may become
numerically more efficient for single realizations because of the high number
of iterations n required for longer systems.

As described above, in long systems and for a large noise amplitude an iteration
of Eq. (48) up to large values of n is required in order to obtain a reasonable
approximation of the threshold. This disadvantage may be compensated when
a solution for J realizations can be avoided and an equation for the mean value
of the threshold (¢.) can be derived similar as in Eq. (50). In such a case the
equations must be solved only once, which reduces the computational effort
considerably. However, the derivation of an equation for the mean value (g.)
becomes rather cumbersome for higher orders of the iteration scheme, because
of the (n + 2)-point correlation functions that have to be decomposed into a
series of two-point correlation functions.

In addition, the assumption that |c,|* and ¢, are independent random vari-
ables is used in this scheme. For the iteration order n = 0 we have verified the
related error. The dashed line in Fig. 14 is obtained by solving Eq. (50) and
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Fig. 14. The mean threshold (e.) calculated by four different approaches is shown
as a function of the noise amplitude D of a d—correlated noise. The dashed line
is the mean value (¢.) determined by Eq. (50) and the solid line is obtained by a
formula corresponding to Eq. (50) but extended up to the iteration order n = 2.
The dotted line represents the perturbation calculation, the squares correspond to
the full numerical result for the threshold and the crosses indicate the threshold
obtained by taking the average of J = 10,000 solutions of Eq. (48) for n = 0. The
system length is L = 24r.
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the crosses in this figure are obtained by solving Eq. (48) at leading iteration
order n = 0 for J realizations of the random function M (z) and calculating
the average. The small difference between these two lines indicates that only
a small error is made by assuming |c,|? and ¢, as independent random vari-
ables. The same assumption together with the decomposition of a four-point
correlation function was used at the iteration order n = 2 and the result is
shown in Fig. 14 by the solid line, which is already rather close to the full
solution (squares).

4 Nonlinear behavior

The nonlinear solutions of Eq. (3) are investigated in this section, where we
start in Sec. 4.1 with a few selected numerical results in order to estimate some
trends imposed by the modulation M(x). Any finite parametric modulation
M (x) reduces the threshold as shown in Sec. 3 and in addition, it induces
(strongly) modulated solutions. On the other hand, for large values ¢ > M(z)
the effects related to M (z) become small and accordingly, a transition range
as a function of € may be expected, which increases with the noise amplitude
D. These trends are investigated in more detail in Sec. 4.2 by a perturbation
expansion, which is valid immediately above the threshold, and further beyond
threshold by another expansion around the homogeneous nonlinear solution
in Sec. 4.3.

In order to characterize the stationary and nonlinear, but inhomogeneous so-
lutions of Eq. (3), we introduce a global order parameter N(e) defined by the
integral for a system of length L

N(e) = %/Ode A@) . (52)

In terms of thermal convection, N(g) describes the so—called Nusselt number.
Besides the mean wave number ¢, introduced by Eq. (26), we introduce with

o 2 gl
G =
> IEP

a further wave number for a characterization especially of the spatially vary-
ing portion of A(z) for each realization M(x) as well as the variance of it
var(¢2,) = (g2 — (¢2,)?. Here, the acute brackets again denote an ensem-
ble average and Fj are the amplitudes of the Fourier representation of A(z).
The prime at the sum of the denominator in Eq. (53) means that the index

(53)

j = 0 and therefore the dominating amplitude Fy ~ /¢/g of the constant
contribution is excluded. By neglecting this term the expression in Eq. (53)
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is a measure for the mean wave number of the spatially varying part of A(x)
around the constant solution A% = £/g. Also the coherence length defined by

) (Zjucm - ) |ﬂ|2)
>, IFP
will be rather useful for a characterization. Without the inhomogeneity M (z),

the nonlinear stationary solution of Eq. (3) is A(z) = /(e — &%¢?)/g exp(iqx)
and one has in this case a linear e-dependence of N(¢) = (¢ —&2¢?)/g for e > 0
and a vanishing N below threshold.

—1/2

—_
—
—

, (54)

4.1  Numerical results

The nonlinear Eq. (3) is solved by a standard pseudo-spectral code and since
we are mainly interested in stationary solutions A(z), the simulation time is
chosen sufficiently long to reach the respective stationary state.

For a large number of realizations of a §-correlated random function M (z), one
of it is shown by the lower part in Fig. 9(a), we have calculated the mean value
of N(e) as well as the mean wave number (¢?,) and its variance as functions of
the control parameter ¢ for various noise amplitudes D = 0.01 (circles), D =
0.04 (squares) and D = 0.25 (crosses) as shown in Fig. 15(a)-(c). The solution
A(x) is given in part (e) for one realization of M (z) and for four different values
of the control parameter ¢ = —0.016, 0.01, 0.1, 0.5. With increasing values
of ¢ the spatially varying portion of A(z) becomes smaller and the spatially
independent part becomes dominating. Simultaneously, the short—wavelength
contributions to the spatially varying portion of A(z) become larger compared
to the long-wavelength ones and the spatial localization becomes weaker. Both
tendencies determine the major trends of the nonlinear behavior of (N(¢)),
that of the averaged wave number (¢2,) and its variance var(q?,) as well as of
the mean coherence length (=) as shown in Fig. 15(a)-(d).

Even for a finite modulation amplitude the function N(g) still approaches
at large values of ¢ the straight line in Fig. 15(c), which is obtained in the
unmodulated limit, M (z) = 0, because the spatially varying portion of A(x)
decreases with increasing values of ¢, cf. Fig. 15(e). On the other hand, all
finite modulations M (z) reduce the threshold, as shown in the previous section
and therefore, A(xz) and N(e) are already finite at negative values of €. As a
consequence of this earlier take off and of the approach of N(g) to the curve
of the unmodulated case for large values of the control parameter ¢, the slope

””Zf) |-=, at threshold decreases with increasing amplitudes of M (z) while the

curvature %ﬁlk:gc increases. The parameter dependence of both quantities
is discussed in greater detail in terms of a perturbation calculation in Sec. 4.2.
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Fig. 15. In part (a) the mean squared deviation var(g9,), in parts (b) and (c) the
mean values of g9, and N(e) are shown as a function of ¢ for different values of the
noise amplitude: D = 0.01 (circles), D = 0.04 (squares) and D = 0.25 (crosses). The
solid line in part (c) indicates the unperturbed linear behavior of N(e) = ¢/g for
g = 3. Part (d) shows the mean coherence length (Z) given by Eq. (54) as a function
of £. The system length is L = 327 and the averages have been evaluated by using
100 realizations of a d-correlated random function M (z) with Az =~ 0.39. The aver-
aged threshold values are (e.) = —1.637 x 1072 for D = 0.01, (g.) = —5.144 x 1072
for D = 0.04 and (e.) = —0.21 for D = 0.25. In part (e) the nonlinear solutions
A(z) of Eq. (3) are shown for various values of ¢ and for a single realization of the
random function M (z) with a noise amplitude D = 0.01.

At threshold, the mean wave number (g?,) also increases with the noise am-
plitude D but at large values of €, (¢2) becomes rather independent of D,
as indicated in Fig. 15(b). The latter tendency has its origin in the decay of
the coherence length as a function of ¢, as shown in Fig. 15(d). The short—
wavelength contributions, being suppressed by a larger coherence length close
to threshold, can emerge at large values of ¢, where = becomes small for any
noise amplitude D. This has to be compared with the behavior of the mean
wave number (g,,), as defined in Eq. (26), which becomes small in the limit
of a small noise amplitude D and large values of ¢, because in both limits the
spatially constant contribution Fj is dominating and therefore the amplitude
of the wavenumber ¢, of the real field u(z,t) in Eq. (1).
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4.2 The Poincaré - Lindstedt expansion

Immediately above threshold the Poincaré - Lindstedt expansion [43] is used
for the determination of A(x) and N(e) as well as of its slope dN(¢)/de|.—,
and its curvature d’N(g)/de?|.=c,. The basic solution A = 0 of the modified
Ginzburg-Landau equation loses its stability already at a threshold in the
negative range, £.(n) < 0, as determined in the previous section, where n was
used as a measure for the strength of the modulation amplitude M (z). Both,
the order parameter A and the control parameter € are expanded with respect
to a small parameter A\ that measures the distance from £.(n) and the small
amplitude of A close to threshold:

1 2 3
A(z) = 7 (ML (z) + XAy (2) + N As(2) +.. | (55a)
e —ec(n)=Aer + N2y + Mg+ Mey ... . (55b)

We focus with this ansatz on stationary solutions and therefore we will neglect
the time derivative in Eq. (3). With the formulas in Egs. (55) the model in
Eq. (3) may be expanded with respect to powers of A. This leads to a hierarchy
of equations, similar as in Sec. 3.1, from which all the corrections A; and ¢;
are determined by using the Fredholm solubility condition.

The equation obtained at the leading order of \ is

L, A (z) =0 (56)

with the self-adjoint operator

Ly, =cc(n) +nM(z) + &02 . (57)

For n = 0 this becomes the unperturbed operator given in Eq. (18) and the
fact that A;(z) belongs to the kernel of the operator L, is crucial for the
determination of the higher order corrections ¢; and A; by the equations at
higher order in A in this hierarchy. Equation (56) was also the starting point
for the determination of the threshold .(n) as discussed in Sec. 3.1. In order
to get analytical expressions for the coefficients of the Poincaré - Lindstedt
expansion we will later on restrict n to small values and determine the first
correction A; by using the results of that section.

At order \? the following inhomogeneous equation is obtained
EWAQ(:L‘) = —81A1(3}') . (58)
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According to the Fredholm theorem this equation is solvable if the inhomo-
geneity of the right hand side is orthogonal to the solution of the adjoint
operator ﬁ%. This condition requires that the leading correction in £ vanishes

e1=0, (59)

and Eq. (58), which becomes homogeneous as Eq. (56) may be solved by
Ay = vA; with a real constant 7.

At the next higher order \®, one again obtains an inhomogeneous equation

L,A3(z) = —e2A;1(2) + |A1 ()2 Ay (z) . (60)

Using the Fredholm condition this equation gives the first nontrivial correction
toe

(A1, | A1[241)
=LAl A 61
®2 = AL Ay (61)

where (.,.) denotes the canonical scalar product. Once the solution A;(x) of
Eq. (56) has been found, ¢, is also known. At fourth order in A the equation

LnAs(z) = —e3A1 — €245 + ATAL + 2|AP A, (62)

is obtained. Applying the solubility condition to Eq. (62) and using the relation
Ay = vA; together with Eq. (60) leads to the following relations

g3 = 27e, and L Ay =3vL,As, (63)

where the latter equation is obviously solved by

The solubility condition applied to the equation at order A3 yields

Eq4 = §4(’)/ = 0) -+ ")/262 (65)

with

Eq =

(Ay, ATA3) P (A1, AsAq)?) (Ay, Az)

(A1, Ay) (A1, Ay) T2 (A, Ay (66)
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Using €; = 0 together with Eq. (55b), A may be eliminated from Eq. (55a) so
that

— 1/2 —
A= (F25) " A (25 [ - 2a)
\/g €9 \/§ €9 262

1 /e —e.\3? €5 bel ey oA
- N I B B ' o) ( ) 67
+ V9 ( £9 > l €9 + 82 2y T €2 (67)

follows. With the expressions for €3, A4 and €4, as determined above, it turns
out that this expression for A(x) is independent of the constant . Accordingly,
v = 0 and therefore e3 = Ay = Ay = 0 may be chosen. In this case A(z) takes
an even simpler form

—)" (68)

where we have dropped the tilde of £4. Equation (68) is the final result of the
Poincaré-Lindstedt expansion of A(z) up to order (¢ —.)*? and the Nusselt
number in terms of A(x) is in leading order of \? = (¢ — &.)/eo

NE)=1 [zl A@P = (A(), A@)

/\2 )\4 €4
= (A Ay + 7 (s Ay + (g, A1) = A 4| + - (69)
2

In order to obtain explicit analytical expressions for N(g) as well as for the
slope 0. N and the curvature 92N at threshold as a function of the parameters,
one has to determine the explicit form of the corrections A; as described in
the next subsection.

4.2.1 Determination of the coefficients of the Poincaré-Lindstedt expansion

The starting point of the determination of A; and ¢; is the expansion with
respect to small modulation amplitudes n as already introduced in Sec. 3.1

A =Fy+ AN + 242 + . (70)

Here Fj is an undetermined amplitude that will drop out in the final expres-
sions of N(e), cf. Secs. 4.2.2 and 4.2.3. The first correction A, as given by
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Eq. (22), is due to the relation c_, = ¢, for the Fourier amplitudes of the
modulation M (z) a real function.

According to Eqs. (70) and (61) one obtains for e9
ey = F2+572(AD, ALY + O(nh) (71)

and due to the inhomogeneity in Eq. (60), the expansion of Az starts in leading
order o 7. Therefore, we choose the ansatz

Ay(z) = nAY (2) + P AP () + ..., (72)

and with Eq. (60) in leading order of 1 the inhomogeneous real equation

(e + &202) AP (z) = 2F3AD (w) | (73)

follows and therefore A;(;l) is a real function as well.
The correction &4 given by Eq. (66) is in leading order of 5
es = 817 (AL, AY) + 0(n'"). (74)

With all these expressions for the coefficients in Eq. (68), one ends up for A(x)
with

_c\/2 AQ) A@ 540 A0
A({E):(s EC) <1+77 c +n2[ [ ( c 14%¢ y|>

V9 Fo Fo 2F7
3/2 (1) 2
£ — &, A
.| \/g) (n 3;;,, - 277%1 27 AP —8(A£1),A§1))]) + - (75)

For a vanishing modulation, i.e. n = 0 and therefore ¢, = 0, the well known
behavior of a supercritical bifurcation A o /¢ follows.

The expansion of N(e) as given in Eq. (69) takes now the following form:

N(e) = (e — ) s(n) + (6 — &c)? k(1) + O(e —&c)* (76)
with the abbreviations for the slope s(n) = ’ﬂzgg) e,
st) =+ (1= 2 (A9, A0) ) + O (77)
g Ao ’
and the curvature 2x(n) = dzézgg) le=e,
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2 6 (1) 4() 4
Kk(n)=-n AL A +0(n") . 78

Both the slope and the curvature are explicitly calculated for a periodic and
stochastic function M(z) in the following two subsections.

4.2.2  Analytic results for periodic modulations

At_ﬁrst, we consider a periodic modulation of the control parameter M () =
nM(z) = 2G cos(Qx) with the amplitude G = nG and wave number (). The
function A is obtained by using the Fourier modes of the modulation M (x)

in Eq. (22) and AW is obtained by solving Eq. (73). For both one obtains

L0 _ 2GFy 4GF}
R 1% &HQ*
Using these solutions as well as the expressions for s(n) and x(n) the function
N(e) up to second order is

cos (Qx) and  A{) = cos (Qz) . (79)

— & 8G” —&.)” 24G”
Ve =5 (1o g ) CER R ol - o0

From Eq. (80) the slope and curvature of N(e) with respect to the control
parameter ¢ follows immediately

ON(e 1 8G?

&i ) = (1—772%@4) and (81a)
9?N(e) 48G?

o | T 980Q° (810)

The slope of N(g) at threshold decreases with increasing values of the mod-
ulation amplitude o G?, while the curvature of N(g) increases at threshold
proportional G?. This is consistent since a smaller slope of N(g) at &, requires
a larger curvature, because N(¢) has for any modulation amplitude a similar
slope at large values of . Note that the curvature is always positive.

4.2.83 Analytic results for stochastic modulations

For a randomly varying function M (z) the solutions A() and A are calcu-

lated in a similar way as for a periodic modulation and the solutions are given
by
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inkx
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With these expressions together with the definition of s(n) and x(n) the func-
tion N(e) takes the form

-2 - g

g n=—oo S0
(e — 50)2 2 iy |En‘2 3
12— — .
PR 2 gy T O T (&)

The prime at the sum excludes the index n = 0 and therefore the deviations of
N (g) from the linear behavior only depend on the noise amplitudes |¢,|?. Since
g. depends itself on the realization of the power spectrum |c,|?, an ensemble
average of N (¢) is not possible with a decomposition of the product of the two
stochastic processes ¢, and |c,|2. However, the ensemble averages of the first
and second derivative of N(g) can be specified, because here only the second
moment of the noise enters. Accordingly, one obtains for the mean value of
the slope

Ry 2°°<|en\2>> )
> g <1 o nz::l &(nk)t ) (84

and for the mean curvature

< a?gzge)

48 & < |e 2 >
Ec> =1 ) é:6|(cn|k)6 : (85)

Taking the explicit expressions for the second moments of the noise with am-
plitude D = n%D, one obtains for correlated noise

Oe

< a?gxgg)

< ON ()

ac>:%<1_47;§ki(nk)4[1i€2(nk)2]) and  (86a)

n=1
24Dk & 1
>: @y 2 R EGR

(86b)

and in the limiting case of white noise
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ON(e) 1 , DL3
IYE) N2 (1=

< % EC> . ( n 130¢2 and (87a)
?N(E)| \  , DL?

< De? >_" 1260 €8g (87b)

Similar as for a periodic modulation of the control parameter, the slope at
threshold is reduced with increasing noise amplitudes and the positive curva-
ture of N(e) increases with D.

Using the results for the corrections A{) and A as given in Eq. (82) the mean
wave number as defined by Eq. (26) can also be expanded for small values of
1 and as a function of the distance from threshold ¢ — €.. One obtains

oo v || _ (e —ec) lea]? (5_50)2 [Cal? )
I =21 nzl(fé(nk)?’ g Ty &)

and at threshold ¢ = ¢, the mean wave number is recovered, as given by
Eq. (27). The ensemble averages of both the slope and the curvature of ¢, at
threshold are

< 9gm ()

> = _&7° i {lenl™) and (89a)

Oe g =1 fg(nk)5
Pan(e)| \ 1672 & (Jal?)
< P gc>‘ g 2 k) (89P)

The formulas for white or correlated noise follow by inserting the respective
correlation function. The finite value of the mean wave number at threshold
as well as its negative slope and positive curvature show that (g,,) decreases
with increasing values of the control parameter. This is in contrast to the wave
number ¢2, as defined in Eq. (53). The decay of (g,,) reflects the increasingly
dominating contribution of the homogeneous state |Fp|? o< € that has been
neglected in the expression of ¢7,, but dominates now for large values for ¢.

4.2.4  Numerical results of the Poincaré - Lindstedt expansion

In Fig. 16 the slope %9\5256 and the curvature %9\5:50 are shown for
a periodic modulation M (z) = 2G cos(Qx) as a function of the modulation
amplitude G and for two different values of the modulation wave number
(. Both the decreasing behavior of the slope and the increasing nature of
the curvature as functions of G, as predicted by the formulas in Egs. (81),
agree with the results obtained by numerical simulations, especially for small
values of the modulation wave number. Both trends indicate an increasing
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Fig. 16. The slope d]:;gg”s:gc and curvature d2£§€)|5:56 of N(e) at threshold are

displayed for a periodic modulation M (z) = 2G cos(Qz) as a function of the modu-
lation amplitude G for two different wave numbers @ = 0.5 (circles) and Q = 0.375
(diamonds). The solid and the dashed lines are plots of the respective formula of
the Poincaré-Lindstedt expansion given by Egs. (81).

transition range with G from the lowered threshold to the linear behavior
of N(e) further beyond the threshold. The perturbation calculation and the
numerical simulations are again closer for larger values of the modulation wave
number (), similar as the decreasing difference between the full numerical
solution and the perturbation approach with increasing values of () in Sec. 3.

The effects of a random modulation M (x) on the slope and the curvature of
N (e) are shown Fig. 17 for a system of length L = 167 and two different values
of the correlation length ¢ = 0 in part (a) and ¢ = 7 in part (b). Similar as for
the shift of the threshold in Sec. 3, the agreement between the results from the
perturbation expansion and from the numerical calculations are best at small
values of the modulation amplitude D. The range of agreement increases with
decreasing system lengths and vice versa. In Figs. 16 and 17 the analytically
predicted slope is smaller and the predicted curvature is larger than those
obtained by the numerical solution of the model equation, but this is also
consistent with the stronger reduction of the threshold as obtained by the
perturbation calculation.
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Fig. 17. The average of the slope (d]\;és) |e=¢.) and of the curvature (d2éz§5) le=e,) of

N(e) at threshold are shown as a function of the noise amplitude D for a d-correlated
noise in part (a) and for a colored noise with correlation length £ = 7 in part (b).
The system length is in both cases L = 167 and the grid space is Az ~ 0.39. The
averages from numerical simulations were calculated in terms of 1,000 realizations
of the random function M (z). The solid lines represent the results according to the
Poincaré-Lindstedt expansion given for white noise by Eqgs. (87) and for colored
noise by Egs. (86).

4.8 Ezpansion of A(z) with respect to deviations from \/e/g

The partial differential equation (3) has for M(z) = 0 a constant nonlinear
solution A2 = £/g. For small modulations M (z) = nM(z) with n < 1, and

the ansatz

1

V9

Eq. (3) may be expanded with respect to powers n up to order n?,

1’ (e +&02)Ao— | Ao |2 Ao =10, (91a)
n' (e 4 E20%) A, — (24, + A}) A2 = —M(2) A, , (91b)
M (e + E00) Ay — (245 + A3) AF = —M (2) A

+Ap (AT +2] 41 7). (91c)

and from this hierarchy of equations the corrections A; may determined. The
solution of Eq. (91a) is given by the constant A2 = & or by the periodic

function Ag(z) = (/e — &8¢*> exp(igz). The solution of Eq. (91b) is
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Z an, ez’nkm , (92)

n=-—oo

whereby the Fourier coefficients

Ao

T G (nk)? + 26

Cn (93)

are determined by the Fourier amplitudes of M (z) = ¥, ¢, exp (inkx). Note
that the constant contribution ay = 0 vanishes according to the vanishing
mean value of M (z) and that for large values of ¢ the first order contribution
Aq(z) x 1/+/€ becomes small. To evaluate N(g) as defined in Eq. (52) up to
order 7%, we only need the spatially independent contribution of Ay(x), which
is given by

Ao & ealIE0R) =]
2e 2 [3(nk)? +2¢]?

n=—oo

(94)

2:

and which also becomes small for large values of €. Together with the spatially
independent contribution |A;[? of |A4;|?, the Nusselt number N(g) may be
expanded with respect to the noise amplitude n as follows

1 (L 1 - -
= [Tdn | Ap= §[A§+n2(zAOA2+|A1|2)+...] (95)

and with the explicit expressions for A; Eq. (95) takes the compact form

L & SR
N(e)—g[ +n? > [fg(nk)2+25]2+'”]' (96)

n=—oo
Equation (96) describes the behavior of N(¢) beyond the threshold ¢.. In the
vicinity of the threshold of the bifurcation, e becomes of the order n? and may
be neglected in the denominator in Eq. (96). Therefore N vanishes precisely
at the negative threshold given in Eq. (23). This holds both for deterministic
and stochastic modulations of the control parameter. Far beyond threshold
the contribution of the modulation to N vanishes as 1/¢? and the Nusselt
number approaches the linear e-dependence of the unperturbed situation in
agreement with the trend indicated by the full numerical solution shown in
Fig. 15(c). Furthermore, at the unperturbed threshold e, = 0 for n = 0 the
Nusselt number takes a finite value

N(e=0) = ; il |Cn| ’ (97)

2
0
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which is for instance in the case of §-correlated noise proportional to the noise
amplitude D if one takes the ensemble average in Eq. (97). According to the
power spectrum for correlated noise in Eq. (31), N(e = 0) will decrease with
increasing values of the correlation length £.

The initial slope of N is given by

oN
Oe .

_ 3[1 e i’ el L (98)
9 oo &6 (k) ’

which is in agreement with the result of the Poincaré-Lindstedt expansion for
small modulation amplitudes, cf. Eq. (83), and a single realization of M(z).
Evaluating the ensemble average and inserting the respective power spectrum
either for correlated or uncorrelated noise leads then to the respective formulas
for the slope of N(e) at threshold.

5 Summary and conclusion

The effects of a spatial randomly varying contribution to the control parameter
on a supercritical stationary bifurcation are strongest pronounced close to the
threshold of the bifurcation, as shown by different methods in this work.

The major effects of modulations of the control parameter, the reduction of the
threshold, the reduction of the initial slope ON/0¢|,, of the nonlinear function
N(e) and its approach for large values of £ to the linear behavior N(g) o e
are all indicated by the presented perturbation calculations.

The perturbation calculation is valid in the limit of small modulation ampli-
tudes and in section 3.1 analytical expressions are given for the mean value of
the threshold reduction, the mean wave number etc.. The dependence of the
respective formulas on the second moment of the noise is a considerable advan-
tage because a determination of the threshold for each realization separately
is not required before averaging. In contrast to this, with the full numerical
approach the threshold has to be calculated for each realization before aver-
aging, cf. Sec. 3.2. However, the perturbation approach fails for large values
of the system length L, where the threshold reduction becomes much larger
than the true one and it even diverges in the limit L — oc.

With a second semi-analytical method, the self-consistent iteration method
described in section 3.3, this divergence can be avoided and the trends of
the noise effects are already given in a correct manner by the lowest order of
this iterative approach, even for large values of the system length. For short
systems and small values of the noise amplitude, the results of the different ap-
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proaches used for the threshold agree with those obtained by the perturbation
calculation.

The iteration order required for the self-consistent method in order to ap-
proach the correct results, increases with the system length and the noise
amplitude. So it depends on both parameters whether the computational ef-
fort is smaller for the numerical approach described in Sec. 3.2 or for the
self—consistent approach in order to obtain results with reasonable precision.

For short-wavelength modulations the effects on the threshold etc. are smallest
and in this limit the different approaches also provide rather similar results.
The long-wavelength portions of the modulation dominate the disorder effects
and with increasing values of the correlation length of the noise their effects
become weaker.

Each realization of the modulation M (z) gives a different threshold and the
width of the distribution function obtained for an ensemble of realizations of
M (z) decreases for increasing values of the system length L. This suggests that
in very long systems the threshold is well approximated by every realization
of the underlying noise process.

The long-wavelength contributions to the noise not only affect the threshold
strongly but also modify the eigensolutions at threshold that become for in-
creasing values of the noise amplitude more and more localized, as shown in
Fig. 9(a). This localization behavior also influences the Nusselt number N(¢)
in a characteristic manner, because slightly above threshold the nonlinear spa-
tial structure of the solutions are quite similar to the localized eigenfunctions.
These eigenstates interact with each other via the nonlinearity. Consequently,
the main contributions to N (g) slightly above threshold come from the spa-
tially extended patches of the eigensolutions and due to their spatial localiza-
tion the value of the Nusselt number is smaller compared with its unperturbed
value.

The localization becomes weaker for larger values of the control parameter be-
cause the spatially constant solution oc £'/2 dominates. However, the spatially
varying part of the nonlinear solution resembles that of the noise. This can
be attributed to the decrease of the coherence length of the spatially varying
portion of A(z) for increasing values of D and &, respectively, as shown in
Fig. 15(d).

Spatially varying modulations that occur multiplicatively in the respective
model equations leave the bifurcation sharp, but N(e) becomes rounded as a
function of ¢, similar as for an imperfect bifurcation. Therefore experimental
curves that exhibit such a rounding may be interpreted with care as an im-
perfect bifurcation, because the bifurcation may still be sharp but shifted to
lower values of the control parameter as a consequence of the roughness of the
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container boundaries.

With our analysis of the effects of disorder within the amplitude equation for
the envelope A(z) of the spatially periodic real field u(x,t) o< A(x,t) exp (ig.x)+
c.c., we have already focused on the long—wavelength modulations of the ran-
dom contribution and we have restricted our approach to one spatial dimen-
sion. The noise effects in two spatial dimensions are different in several re-
spects, as described elsewhere. The effects of a random contribution to the
control parameter in a model equation with spatially periodic solutions, such
as in the Swift-Hohenberg equation [44,1], are also different. In this case dif-
ferent kinds of resonance effects come into play, which are described elsewhere
too.
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