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We present the macroscopic equations for polar nematic liquid crystals. We consider the case where one has
both, the usual nematic director, n̂, characterizing quadrupolar order as well as the macroscopic polarization, P,
representing polar order, but where their directions coincide and are rigidly coupled. In this case one has to
choose P as the independent macroscopic variable. Such equations are expected to be relevant in connection
with nematic phases with unusual properties found recently in compounds composed of banana-shaped mol-
ecules. Among the effects predicted, which are absent in conventional nematic liquid crystals showing only
quadrupolar order, are pyro-electricity and its analogs for density and for concentration in mixtures as well as
a flow alignment behavior, which is more complex than in usual low molecular weight nematics. We also
discuss the formation of defect structures expected in such systems.

DOI: 10.1103/PhysRevE.74.021713 PACS number�s�: 61.30.�v, 05.70.Ln, 61.30.Gd

I. INTRODUCTION

One of the most important developments in the field of
liquid crystals over the last few years has been the invention
and study of liquid crystalline phases formed by banana-
shaped molecules �1–5�. These molecules trigger the forma-
tion of many new phases unknown from rodlike molecules,
in particular of the smectic variety �5�.

From a fundamental point of view, an important issue in
this field is the question to what extent a macroscopic polar-
ization and fluidity are compatible macroscopically. Corre-
spondingly it was pointed out early on �4� that there are
several possibilities to achieve a low symmetry by the vari-
ous ways one can pack banana-shaped molecules onto layers.
As one would expect from the previous experience in solid
state physics, mainly the antiferroelectric variety of phases
with a macroscopic polarization was found in the beginning
�compare the early review �5��.

The number of nematic phases reported to arise for
banana-shaped molecules was comparatively small from the
very beginning �5–8�. In particular, when one requires a
phase sequence involving both a nematic as well as a B-type
phase, this number is even smaller. Nematic phases are of
particular interest, since they are fluid in three dimensions.
Nevertheless it turns out that there are various possibilities in
which uniaxial and biaxial nematic phases with one or more
polar directions could arise �9�. On the synthetic and experi-
mental side it was found that for some compounds composed
of banana-shaped molecules nematic phases with ambidex-

trous chirality �equal amount of left-handed and right-handed
domains� arise for some nonchiral compounds �6,10,11�.
This rather surprising phenomenon can be explained by the
simultaneous presence of the usual quadrupolar orientational
order as well as of tetrahedratic �octupolar� order �12�. The
latter, suggested first for the application to the field of liquid
crystals by Fel �13�, can also have numerous other fascinat-
ing macroscopic consequences �14–16�.

Stimulated by the new possibilities to generate polar di-
rections in liquid crystalline phases formed by bent-core
molecules including polar nematics, we present here the
macroscopic dynamic equations for the simplest possibility
of such a phase, namely a uniaxial polar nematic for which
one can distinguish between head and tail of the preferred
direction, thus giving rise to a phase of C� symmetry. There
have been historically �almost 2 decades ago� already some
efforts to synthesize polar nematics �17,18�, for example, for
molecules of pyramidic structure �17�. Triggered by this
early synthetic work, two of us investigated the question
whether phases with spontaneous splay defects would be en-
ergetically more favorable in a polar nematic phase �19�.
This was found to be the case for a temperature range close
to the isotropic–polar nematic phase transition using a
Ginzburg-Landau type analysis. This possibility will not be
considered further here.

The method we use in the present paper for our descrip-
tion is macroscopic dynamics, that is to a purely hydrody-
namic description, we add variables that relax on long, but
finite time scales. In pure hydrodynamics one concentrates
exclusively on two classes of variables: conserved quantities
�such as density and density of linear momentum� and vari-
ables associated with spontaneously broken continuous sym-
metries �20–22�, such as, for example, director variations for
a usual uniaxial nematic phase. For nonpolar uniaxial nem-
atics the hydrodynamic equations have been derived by For-
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ster and colleagues �23–25�. The use of macroscopic vari-
ables has been pioneered by Khalatnikov �26� using the
modulus of the order parameter as a macroscopic variable in
the vicinity of the � transition in superfluid 4He. This con-
cept has since been applied to numerous systems including
the superfluid phases of 3He �27� �for which the tiny mag-
netic dipole interaction renders the magnetization density to
be no longer strictly hydrodynamic� and to nematic elas-
tomers �28,29� and uniaxial magnetic gels �30� �for which
relative rotations between the polymer network and the di-
rector or the magnetization become macroscopically impor-
tant� as well as to polymers �31� and nematic side-chain
polymers �32� for which the strain associated with the tran-
sient network becomes a macroscopic variable.

In the next section we derive the macroscopic equations
in some detail. Then we present several experimentally test-
able predictions followed by discussions and conclusions,
where we also critically compare our results to previous
work on related topics �19,33�.

II. DERIVATION OF MACROSCOPIC EQUATIONS

A. Hydrodynamic and macroscopic variables

First we must clarify which type of polar nematics we will
study in the following. In Ref. �9�. we have shown that—
depending on the number of polar and nonpolar directions—
there can be, on the basis of symmetry considerations, a
fairly large number of biaxial nematic phases. Here we focus
on the simplest possibility of a polar nematic phase: we as-
sume that there is one preferred direction associated with
quadrupolar order and one with polar order and that these
two directions coincide. Thus one has overall uniaxial sym-
metry. We characterize the direction associated with quadru-
polar order with the usual director n̂ and the polar order with
the macroscopic polarization P, which can be decomposed
into the unit vector p̂ and the modulus P= �P�. Since we will
assume throughout this paper that n̂ and P are rigidly
coupled, variations of n̂ are no longer independent macro-
scopic variables, but already described by variations of p̂.
Thus the relevant variables �22� come in three classes. The
first class of variables, also called the conserved quantities,
contains those already known from a simple fluid, the mass
density �, the energy density �, and the momentum density
g. In our case we add another variable, the concentration c in
mixtures. In the second class we have the variables that are
related to spontaneously broken continuous symmetries. In
our case we have the orientation of the macroscopic polar-
ization, p̂, which is associated with spontaneously broken
rotational symmetry. The variations of p̂, �pi with p̂i ·�pi
=0 are truly hydrodynamic. p̂ is a polar vector and thus odd
under parity and even under time reversal; the former prop-
erty leads to a number of static and dynamic cross-coupling
terms unknown from conventional uniaxial nematics. The
modulus or magnitude of the macroscopic polarization, P,
belongs to the third class of variables, which relax on a long,
but finite time scale. The main difference to ordinary nemat-
ics lies in the fact that p̂i is a true vector �no general
p̂i→−p̂i invariance, but p̂i→−p̂i under spatial inversion� and
in the modulus variable P, which is strongly susceptible to

electric fields, in contrast to the nematic order parameter
modulus. It should be noted that even in ordinary nematics
the modulus �S� has been treated as an additional degree of
freedom �34,35�, although it is only weakly susceptible to
external fields and its fluctuations often have a rather short
relaxation time. Due to the strong coupling of P to electric
fields, it is even more reasonable to keep that variable in
polar nematics.

Throughout this paper we stick to the splitting of P into
its modulus and its orientation, because that shows off the
different hydrodynamic nature of the latter variables and fa-
cilitates comparison with ordinary nematics. We stress, how-
ever, that no additional �static and/or dynamic� material pa-
rameters or effects are introduced by this procedure and we
have checked that using P as a variable leads to a completely
equivalent macroscopic dynamics �for an analogous discus-
sion for ordinary nematics cf. �36��. Contrarily, in a
Ginzburg-Landau type description of the phase transition
from the isotropic �no P� to the polar nematic state �finite P�
certainly the vector P should be used as a variable.

B. Statics and thermodynamics

To get the static properties of our system we formulate the
local first law of thermodynamics relating changes in the
entropy density � to changes in the hydrodynamic and mac-
roscopic variables discussed above. We find the Gibbs rela-
tion

d� = Td� + �d� + �cdc + vidgi + h�PdP + 	i
Pd�iP + hi�dp̂i

+ 	ijd�� jp̂i� , �1�

where we have kept inhomogeneous variations of the polar-
ization magnitude, �iP, which become relevant for defects as
well as for inhomogeneous external fields. Similar to the
case of an ordinary nematic director, homogeneous varia-
tions of the preferred direction p̂ do not cost energy due to
the spontaneous nature of the broken rotational symmetry,
except in the presence of an external �symmetry breaking�
field; thus, in the field-free, homogeneous case hi�=0. In ad-
dition, hi�p̂i=0, since p̂i is a unit vector.

In Eq. �1� the thermodynamic quantities, temperature T,
chemical potential �, relative chemical potential �c, velocity
vi, the electric molecular fields h�P, 	i

P, hi�, and 	ij are de-
fined as partial derivatives of the energy density with respect
to the appropriate variables �22�. If we neglect surface effects
and integrate Eq. �1� by parts we can obtain a simplified
expression for the Gibbs relation

d� = Td� + �d� + �cdc + vidgi + hPdP + hidp̂i, �2�

where the molecular fields hP and hi are given by
hP=h�P−� j	 j

P and hi=hi�−� j	ij, respectively.
In the true equilibrium state, the polarization magnitude,

P0, is constant and a given material parameter. The orienta-
tion of the polarization p̂i

0 is homogeneous and arbitrary. In
an external electric field E, P0 is function of the field
strength, P0= P0�E�, a function which we will not specify
further and which we assume to be known. To simplify no-
tation, we will always use P0, even if a field is present. For
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the type of polar nematic phase chosen here, the orientation
of the polarization is parallel to the external field, p̂0=E /E in
equilibrium.

Assuming this equilibrium state to be the stable ground
state, the energy density expanded in all variables about this

state has to be convex. In addition, this energy density must
be invariant under time reversal as well as under parity and it
must be invariant under rigid rotations, rigid translations, and
covariant under Galilei transformations. Taking into account
these symmetry arguments we get

� = 
E2��p̂i�2 +
1

2

��P�2 +

1

2
Kij

�2���i�P��� j�P� +
1

2
Kijkl��ip̂j���kp̂l� + Kijk

�3���i�P��� jp̂k�

+ ��1�� + �2�� + �3�c��P + ��1�� + �2�� + �3�c�p̂i�i�P + ��̄1�� + �̄2�� + �̄3�c�div p̂

+
c��

2
����2 +

c��

2
����2 +

ccc

2
��c�2 + c�c������c� + c���������� + c�c������c� +

1

2�
gigi + O�3� , �3�

where � denotes deviations from the equilibrium value, in
particular, �P= P− P0, �p̂i= p̂i− p̂i

0, �c=c−c0, etc. and the
tensors are of the form

Kijkl =
1

2
K1��ij

��kl
� + �il

�� jk
�� + K2p̂ppijp̂qqkl + K3p̂kp̂i�lj

�,

�4�

Kij
�2� = K4p̂ip̂j + K5�ij

�, �5�

Kijk
�3� = K6�p̂i� jk

� + p̂j�ik
�� , �6�

where ijk is the totally antisymmetric symbol and �ij
� the

transverse Kronecker delta, �ij
�=�ij − p̂ip̂j.

Equation �3� contains the energy density of a normal fluid
binary mixture �third line� and that of a usual nematic phase
including spatial modulations of the order parameter modu-
lus: the Frank orientational elastic energy ��Kijkl with splay,
bend, and twist �37��, the energy associated with gradients of
the modulus ��Kij

�2�� �22�, and a cross-coupling term be-
tween gradients of the preferred direction to gradients of the
order parameter modulus ��Kijk

�3�� �38�. The orientation en-
ergy due to an external field is governed by the electric sus-
ceptibility 
 �rather than by the dielectric anisotropy as in the
case of ordinary nematics� and the stiffness of order param-
eter variations is given by 1/
. Although the energy density
expression is given in harmonic approximation only, it can
give rise to nonlinear effects, since all material parameters
�and particularly 
� are still functions of the state variables,
like temperature, pressure, and polarization P0, and therefore
also of E. This is in contrast to ordinary nematics, where the
material parameters can only be a function of E2.

The second line of Eq. �3� contains all those contributions
that are specific for polar nematics and are absent for ordi-
nary, nonpolar nematics as they would violate the n̂→−n̂
invariance. These comprise couplings ���1,2,3� between the
polarization and variations of �, �, and c, which are of the
same nature as the pyroelectric term in solids �39�. Other

cross-coupling terms, ��̄1,2,3 and ��1,2,3, are relating varia-

tions of �, �, and c to splay, div p̂, and to spatial variations of
the polarization along the preferred direction, p̂i�i�P, re-
spectively. Since we are dealing with a stable homogeneous
equilibrium state here, a possible surface term, � div p̂, can
be neglected.

We now give the expressions for the conjugated variables
in terms of the hydrodynamic and macroscopic variables.
They are defined as partial derivatives with respect to the
appropriate variable, while all the other variables are kept
constant, denoted by ellipses in the following:

vi = � ��

�gi
�

. . .
=

1

�
gi, �7�

h�P = � ��

�P
�

. . .
=

1



�P + �1�� + �2�� + �3�c , �8�

	i
P = � ��

���iP�
�

. . .

= Kij
�2��� jP� + Kijk

�3��� jp̂k� + ��1�� + �2�� + �3�c�p̂i,

�9�

hi� = � ��

�p̂i
�

. . .

= 2
E2�p̂i, �10�

	ij = � ��

��� jp̂i�
�

. . .

= Kjikl��kp̂l� + Kkji
�3���kP� + ��̄1�� + �̄2�� + �̄3�c��ij

�,

�11�

�� = � ��

���
�

. . .

= �1�P + �1p̂i�iP + �̄1 div p̂ + c���� + c�c�c + c���� ,

�12�
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�T = � ��

���
�

. . .

= �2�P + �2p̂i�iP + �̄2 div p̂ + c���� + c���� + c�c�c ,

�13�

��c = � ��

��c
�

. . .

= �3�P + �3p̂i�iP + �̄3 div p̂ + ccc�c + cc��� + cc��� ,

�14�

from which the total molecular fields hP=h�P−� j	 j
P and hi

=hi�−� j	ij follow immediately.

C. Thermostatic stability

The generalized energy density, Eq. �3�, must be positive
to guarantee thermostatic stability �20�. This requirement
leads to a number of inequalities for the static susceptibilities
appearing there as prefactors. They take the form 
�0,
��0, c���0, c���0, ccc�0, c��

2 �c��c��, cc�
2 �cccc��,

cc�
2 �c��ccc, 
�1

2�c��, 
�2
2�c��, 
�3

2�ccc, �̄1
2�K1c��,

�̄2
2�K1c��, �̄3

2�K1ccc, �1
2�K4c��, �2

2�K4c��, �3
2�K4ccc,

K1�0, K2�0, K3�0, K4�0, K5�0, K6
2�K3K5, and

K6
2�K1K4.

We note that these conditions arise as a consequence of
thermodynamics and are not related to the description of a
phase transition. For the latter, the energy expression �3� is
insufficient and one has to go back to a Ginzburg-Landau
energy that allows, as a minimum, for an alternative state. If
the thermodynamic relations listed above are violated, this
means the hydrodynamic description based on Eq. �3� can no
longer be used and has to be replaced by a different one
starting from a different ground state.

D. Dynamic equations

To determine the dynamics of the variables we take into
account that the first class of our set of variables contains
conserved quantities that obey a local conservation law while
the dynamics of the other two classes of variables can be
described by a simple balance equation where the counter
term to the temporal change of the quantity is called a qua-
sicurrent. As a set of dynamical equations we get

�t� + �igi = 0, �15�

�t� + �i��vi� + �i ji
� =

R

T
, �16�

���tc + vi�i�c + �i ji
c = 0, �17�

�tgi + � j�v jgi + �ij�W + E · D� + �ij
th + �ij� = 0, �18�

�tP + vi�iP + XP = 0, �19�

�tp̂i + v j� jp̂i + �p̂ � ��i + Xi = 0, �20�

where we have introduced the vorticity �i= �1/2�ijk� jvk and
the Maxwell and Ericksen-type stresses

�ij
th = −

1

2
�EiDj + DiEj� + 	 j

P�iP + 	kj�ip̂k. �21�

and the displacement Di=Ei+4�Pi. In Eq. �21� we imple-
mented the requirement that the energy density should be
invariant under rigid rotations �22�.

The pressure W in Eq. �18� is given by �E /�V and reads
for our system

W = − � + �� + T� + v · g . �22�

In the equation for the entropy density �16� we introduced
R, the dissipation function which represents the entropy pro-
duction of the system. Due to the second law of thermody-
namics R must satisfy R�0. For reversible processes this
dissipation function is equal to zero while for irreversible
processes it must be positive. In the following we will split
the currents and quasicurrents into reversible parts �denoted
with a superscript R� and irreversible parts �denoted with a
superscript D�. These phenomenological currents and quasi-
currents are given within “linear irreversible thermodynam-
ics” �guaranteeing general Onsager relations�, i.e., as linear
relations between currents and thermodynamic forces. The
resulting expressions are nevertheless nonlinear, since all
material parameters can be functions of the state variables
�e.g., p, T, P�.

E. Reversible dynamics

If we again make use of the symmetry arguments men-
tioned above �behavior under time reversal, parity, rigid ro-
tations, rigid translations, and covariance under Galilei trans-
formations� and use Onsager’s relations we obtain the
following expressions for the reversible currents up to linear
order in the thermodynamic forces:

gi = �vi, �23�

ji
�R = 0, �24�

ji
cR = 0, �25�

�ij
R = �ij

PhP + �kjihk, �26�

XPR = �ij
PAij , �27�

Xi
R = �ijkAjk, �28�

with Ajk= 1
2 ��ivk+�kvi�. The coupling of the polarization and

the density of linear momentum is provided by the tensors

�ijk = ��p̂j�ik
� + p̂k�ij

�� and �ij
P = �2

P�ij
� + �3

Pp̂ip̂j . �29�

One finds a total of three material dependent coupling terms.
The first is the analog of the classical flow alignment term
coupling the orientation of the preferred direction to defor-
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mational flow, while the coupling to rotational flow �rigid
rotation� is not material dependent and has already been
made explicit in Eq. �20�. The two contributions ��2

P and
��3

P are associated with the coupling of the magnitude of the
polarization, P, to velocity gradients �compare also the de-
tailed discussion in the next section�. We note that this cou-
pling between the density of linear momentum and the po-
larization is identical in structure to that of a uniaxial
nematic, when formally p̂i is replaced by the director n̂i and
P by the nematic order parameter modulus S.

F. Irreversible dynamics and entropy production

We can use the dissipation function R as a Liapunov func-
tional to derive the irreversible currents and quasicurrents.
One can expand the function R �R /T is the amount of en-
tropy produced within a unit volume per unit time� into the
thermodynamic forces using the same symmetry arguments
as in the case of the energy density. We obtain

R =
1

2
�ij��iT��� jT� + Dij

T��iT��� j�c� +
1

2
Dij��i�c��� j�c�

+
1

2
�ijklAijAkl +

1

2
b�hihi +

1

2
b�hPhP + ��

P �ij
���iT�hj

+ ��
P�p̂i�iT�hP + D�

P �ij
���i�c�hj + D�

P�p̂i�i�c�hP. �30�

The tensors �ij, Dij
T , Dij, and �ijkl are of the standard uniaxial

form for second and fourth ranks tensors �22�. The contribu-
tion �b� in the entropy production describes the relaxation of
the polarization modulus P, while the contribution associated
with b� corresponds to the diffusion of the preferred direc-
tion �conventionally called �1

−1 in the literature of nematody-
namics�. These terms have their analog in ordinary nematics
�with the order parameter modulus included�. Specific for
polar nematics are the dissipative cross-couplings between
polarization and diffusion and thermodiffusion governed by
the material parameters �P and DP. Their experimental
meaning will be discussed below.

To guarantee the second law of thermodynamics locally,
R has to be positive definite, which imposes a number of
inequalities to the dissipative coefficients: �� �0, ���0,
D� �0, D��0, �D�

T�2�D���, �D�
T �2�D���, b� �0, b��0,

���
P �2���b�, ���

P�2���b�, �D�
P�2�D�b�, �D�

P �2�D�b�,
and where the five viscous coefficients �i satisfy the usual
inequalities for a uniaxial system �40�.

To obtain the dissipative parts of the currents and quasi-
currents we take the partial derivatives of R with respect to
the appropriate thermodynamic force

ji
�D = � −

�R

���iT�
�

. . .

= − �ij�� jT� − Dij
T�� j�c� − ��

P hi − ��
Pp̂ih

P, �31�

ji
cD = � −

�R

��� j�c�
�

. . .

= − Dij�� j�c� − Dij
T�� jT� − D�

P hi − D�
Pp̂ih

P, �32�

�ij
D = � −

�R

��� jvi�
�

. . .
= − �ijklAkl, �33�

Xi
D = � �R

�hi
�

. . .
= b�hi + �ij

��D�
P � j�c + ��

P � jT� , �34�

XPD = � �R

�hP�
. . .

= b�hP + p̂i�D�
P�i�c + ��

P�iT� . �35�

III. EXPERIMENTAL CONSEQUENCES

In this section we briefly outline some of the experimental
consequences of the static and dynamic cross-coupling
terms, which are absent in the usual description of ordinary
nematics. We start with those static susceptibilities ��1,2,3�,
which are similar in structure to the pyroelectric term in sol-
ids. Variations of the density, the entropy density, or the con-
centration lead to a change in the magnitude of the polariza-
tion. In experiments it is easier to vary the temperature, the
pressure, or the relative chemical potential. Thus one of the
experimentally testable predictions for a polar nematic is the
occurrence of a change in the macroscopic polarization when
a temperature �pressure� change is applied. This can be done,
for example, with a low frequency variation: temperature
�pressure� variations and polarization changes then occur at
the same frequency. Similar effects are described by the
static susceptibilities �1,2,3 that couple inhomogeneous varia-
tions of the magnitude of the polarization �along the pre-
ferred direction p̂i�iP� with temperature, pressure, and rela-

tive chemical potential changes, while the �̄1,2,3 provide such
couplings to splay deformations of div p̂i.

A rather outstanding effect is the shift of the sound wave
velocity, cs, in polar nematics, which is no longer given
solely by compressibility effects, but also by the static cou-
pling between density and polarization, cS

2=�0�c��−
�1
2�.

Since the electric susceptibility is field dependent, the sound
velocity can be changed by an external field. Sound waves
can also be excited by �longitudinal� polarization waves due
to the same static pyroelectric-like coupling term. The relax-
ation of P, expressed by the dissipative transport parameter
b� shows up in an isotropic and an anisotropic contribution to
the sound wave damping �of order k2 in the wave vector�.

Now we turn to terms associated with reversible currents.
Homogeneous shear flow alignment of p̂i is governed by the
reversible transport parameter �, Eqs. �29�, provided ����1,
similar to the case of usual nematics. The two contributions
��2

P and ��3
P are associated with the coupling of the mag-

nitude of the polarization, P, to deformational flow, Eq. �27�.
They are identical in structure to contributions discussed be-
fore arising in the vicinity of nematic–smectic A �41� and the
nematic–columnar �42� phase transitions. In Refs. �41,42�
the corresponding second rank tensor was denoted by �ij and
took the form �ij =��n̂in̂j +���ij

�; it was shown that this con-
tribution leads to the induction of smectic or columnar order
in a flow field �for example, a shear flow� in the vicinity of
the nematic–smectic A and the nematic–columnar transitions.
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In our system these coupling terms give rise to flow-induced
changes in P.

The dynamic couplings between polarization on the one
hand and concentration or heat current on the other hand,
provided by the dissipative transport parameters D�,�

P and
��,�

P , Eqs. �31� and �32�, are specific to polar nematics. In
such materials, a �transverse� heat current is invoked by a
rotation of p̂i in the presence of an external field,
j�
� �−2��

P 
E2�p̂�, while changes in the magnitude of the
polarization as well as changes in temperature, density, or
concentration all lead to a longitudinal heat current
j�
��−��

P
−1�P and also ��T, ���, and ��c, respectively.
For example, for heat diffusion this results in an anisotropic
correction of order O�k3� to the dispersion relation for small
frequencies i�
�b�, while for large frequencies a unidirec-
tional propagating heat wave with �=�2��

Pk� is possible. Ap-
propriate statements can be made regarding the concentration
current.

IV. DISCUSSION AND CONCLUSIONS

In Sec. II we have derived the macroscopic dynamics for
a polar nematic liquid crystal and we have shown that this
dynamics is rather different from that of uniaxial nematics.
In particular there is a number of static cross-coupling terms
leading to pyroelectricity and its analog when coupling the
macroscopic polarization to concentration and pressure
variations.

Using the macroscopic polarization as a variable, in par-
ticular its modulus as a relaxing variable and its orientation
as a truly hydrodynamic one, we have seen that there are
three phenomenological coefficients associated with dynamic
reversible effects coupling the polarization to flow. One is
the analog of flow alignment in usual nematics and the other
two are due to the coupling of the modulus to flow. The latter
effects have been studied before close to the transition from
the nematic to the smectic A �41� and to the columnar phase
�42�.

All these three phenomenological cross-coupling terms
associated with reversible currents contain contributions
from the frequency as well as from the memory matrix in the
spirit of hydrodynamics derived in the framework of the
Mori-Zwanzig formalism �21,24�. That such contributions
from the reversible part of memory matrix enter hydrody-
namic equations has been pointed out first by Forster �25�.
Later on it was found that all systems having hydrodynamic
variables associated with broken rotational symmetries in
real space �including superfluid 3He−A �27� and 3He−A1
�43�, smectic C �44�, biaxial nematics �44�, and smectic C*

�45� as well as systems with broken rotational symmetry
associated with total angular momentum in 3P2 neutron star
matter �46�� pick up reversible contributions from the
memory matrix in the hydrodynamic regime. We would like
to point out in this paper that the cross-coupling terms be-
tween the degree of order and the flow also acquire revers-
ible contributions from the memory matrix. This applies for
the macroscopic dynamics of polar nematics as studied here
as well as to the macroscopic equations derived previously
�41,42� in the vicinity of phase transitions involving a nem-

atic phase. We would also like to stress that such reversible
contributions from the memory matrix entering the hydrody-
namic equations cannot be obtained in the framework of the
formalism using Poisson brackets, implying that the ap-
proach of macroscopic dynamics is more general.

In this paper we have focused, in the spirit of hydrody-
namics and macroscopic dynamics, on the bulk contribu-
tions. It is known, however, that for a polar nematic phase
surface contributions play an important role and can lead to
the spontaneous formation of a phase characterized by spon-
taneous splay �19�. In Ref. �19� it was shown that for a cer-
tain temperature interval the surface term, D1� ·P, leads to a
lowering of the overall energy �including both bulk and sur-
face contributions� when defects are formed. In this case the
spontaneously splayed polar nematic phase, necessarily in-
cluding defects, represents the thermodynamic ground state
of the system �19�. To arrive at this conclusion one uses a
Ginzburg-Landau approach, which is valid in the vicinity of
a phase transition. The Ginzburg-Landau energy density of
interest takes the form

GL = −
A

2
P2 +

B

4
P4 − D1 div P +

D2

2
�div P�2 +

D3

2
�curl P�2.

�36�

Then a spontaneous splay phase was shown to arise and to be
thermodynamically stable in the vicinity of the phase transi-
tion to the isotropic phase �19� provided the inequality

D1
2 � �

A2

B
D2 �37�

is fulfilled, where � is a number of order unity; we refer to
Ref. �19� for the evaluation of �.

This approach is different and rather complementary to
that of hydrodynamics and macroscopic dynamics. It there-
fore appears to be inappropriate, as it has been done recently
�33�, to conclude from the violation of thermostatic stability
for bulk terms—the corresponding conditions have been dis-
cussed in Section II—that a phase with spontaneous splay is
formed. Rather the type of analysis given in Ref. �19� must
be used to find an alternative ground state.

Throughout this paper we have concentrated on the case
where P and the nematic director are rigidly coupled and
parallel. Clearly, generalizations to different configurations
of n̂ vs P are possible. If their relative orientation is not
fixed, a term ��n̂ · p̂�2 arises in the generalized energy, simi-
lar to the case of a mixture of two uniaxial, nonpolar nematic
phases �47�. If n̂ and P are not parallel, the systems will be
biaxial �9� and will have, in general, three truly hydrody-
namic variables like a nonpolar biaxial nematic �48�. In ad-
dition, those biaxial polar nematics will have more complex
structures for the pyroelectric and related coupling terms.

Throughout the present paper we have focused on polar
nematics as they could arise for nematic liquid crystalline
phases composed of bent-core molecules. It seems natural,
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however, to generalize our analysis to polar nematic phases
in active media as they appear in biological systems like the
cytoskeleton �49–52� or as they are discussed for suspen-
sions of active and self-propelled particles, for example, bac-
teria �53,54�.
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