
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Effects of cross-links on motor-mediated
filament organization

Falko Ziebert 1, Igor S Aranson 1,3 and Lev S Tsimring 2

1 Materials Science Division, Argonne National Laboratory,
9700 S Cass Avenue, Argonne, IL 60439, USA
2 Institute for Nonlinear Science, University of California, San Diego,
La Jolla, CA 92093-0402, USA
E-mail: aronson@msd.anl.gov

New Journal of Physics 9 (2007) 421
Received 8 May 2007
Published 30 November 2007
Online athttp://www.njp.org/
doi:10.1088/1367-2630/9/11/421

Abstract. Cross-links and molecular motors play an important role in the
organization of cytoskeletal filament networks. Here, we incorporate the effect
of cross-links into our model of polar motor-filament organization (Aranson
and Tsimring 2005Phys. Rev.E 71 050901), through suppressing the relative
sliding of filaments in the course of motor-mediated alignment. We show that
this modification leads to a nontrivial macroscopic behavior, namely the oriented
state exhibits a transverse instability in contrast to the isotropic instability that
occurs without cross-links. This transverse instability leads to the formation of
dense extended bundles of oriented filaments, similar to the recently observed
structures in actomyosin. This model can be also applied to situations with two
oppositely directed motor species or motors with different processing speeds.
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1. Introduction

Biological cells consist to a large degree of a complex, self-organizing viscoelastic fluid, the
cytosol. Its main constituents include cytoskeletal proteins such as actin and tubulin, which
exist mainly in the polymerized form as semi-flexible actin filaments and stiff microtubules
[1, 2]. The entangled networks of microtubules and actin filaments form the cytoskeleton of
most eukaryotic cells, stabilize their morphology and determine the rheological properties of the
cytosol. These intricate networks are created and maintained by an efficient mechanism which
involves various types of motor proteins as well as passive cross-linking proteins. Motors are
specialized protein molecules that move along the cytoskeletal polymer scaffold and perform
directed intracellular transport [3]. Additionally, if motors bind to more than one filament, they
are able to move the filaments and reorganize the cytoskeleton itself. The cross-links connect
different filaments but do not move along them. Their main function is thus believed to provide
rigidity and elasticity to the cytoskeleton.

Various experiments have been performed in recent years that shed light on the
viscoelastic behavior of entangled cytoskeletal filament solutions, ranging from filament–motor
mixtures [4], cross-linked filaments [5]–[7], and systems of filaments, motors and cross-
links [8]. Surprising new effects have been found such as active fluidization of actin gels by
myosin motors [9].

Maintained in a state far from equilibrium, the active filaments exhibit a strong tendency
towards self-organization. Bundles and contracting states have been foundin vitro in actomyosin
extracted from muscle cells [10], and various patterns like ray-like asters, spindle-like structures
and rotating vortices have been reported in quasi two-dimensional mixtures of microtubules and
motors [11, 12]. These dissipative structures have inspired many theoretical efforts [13]–[19]
directed towards modeling active filament solutions.

While cross-links so far have been mainly investigated only in the context of rheology,
recently their influence on the dynamics and self-organization also attracted attention [20]. In
particular, it was shown that cross-links facilitate the formation of bundles in the actin–myosin
system: at high concentration of adenosine triphosphate (ATP), actin–myosin systems display an
isotropic phase; in the course of depletion of ATP however, myosin motors become static cross-
links and initiate the formation of oriented bundles and cluster-like patterns. Reintroduction
of ATP in the bundled state resulted in consequent dissolution of the structures and
re-establishment of the isotropic state.
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Motivated by these experimental results, we focus here on the effects of static cross-links
on the self-organization of polar filaments and generalize the model for microtubule–motor
interaction introduced in [17, 19]. In that model, the complicated process of filament interaction
via multi-headed molecular motors was approximated by instant binary ‘inelastic collisions’,
leading to alignment of the filament orientation vectors and attraction between their centers of
mass. Here, we consider the situation when the density of cross-links is low, namely less than
one cross-link per filament on average. In this case, the cross-links do not create macroscopic
viscoelastic response of the system; however, as we show, they affect the pattern-forming
instabilities. More specifically, cross-links alter the interaction rules between filaments: if the
two parallel filaments are cross-linked, they are not able to slide past each other and become
collocated. We model this effect here by suppressing relative sliding of the filaments in the
course of alignment. Our analysis shows that this relatively minor modification produces a
nontrivial macroscopic effect, namely the isotropic density instability of the polar oriented
state of the filaments becomes transverse. In the nonlinear regime, this new kind of instability
leads to the formation of dense oriented bundles, similar to those seen in experiments [20]. In
contrast, the model without cross-links demonstrates an isotropic instability in which density
and orientation of the filaments are uncorrelated, and no bundling occurs.

2. Model

Here, we outline the model of self-organization of microtubule-motor mixtures developed in
our earlier works [17, 19]. The microtubules are modeled as identical rigid polar rods of
lengthL, and the molecular motors are introduced implicitly through corresponding interaction
probabilities4. Binary interactions of microtubules via multi-headed molecular motors are
approximated by instant inelastic collisions leading to alignment of the microtubule orientation
anglesφ1,2 (or, equivalently, the unit vectorsn1,2 = (cosφ1,2, sinφ1,2)) according to the
following rules:(

φa
1

φa
2

)
=

(
γ 1− γ

1− γ γ

) (
φ1

φ2

)
. (1)

Hereφa
1,2 are the orientations of the two rods after the collision, and the constant ‘restitution’

parameterγ characterizes the inelasticity of the collision (in analogy to the restitution coefficient
in granular media). The angle between the two rods is reduced after the collision by the
‘inelasticity’ factorε = 2γ − 1. Of special interest is the totally inelastic collision corresponding
to γ = 1/2 or ε = 0. In this case, the rods acquire the same orientation along the bisector
n̄= (cosφ̄, sinφ̄), and their center of mass positions,r1,2, also align:

φa
1 = φa

2 = φ̄ =
φ1 +φ2

2
, (2)

ra
1 = ra

2 = r̄ =
r1 +r2

2
. (3)

Hereφa
1,2 andra

1,2 are the orientation angles and the center of mass positions after the collision.
We assume that the alignment through inelastic interaction occurs only if the initial angle

4 Since in thein vitro experiments of [11, 12, 20] the polymerization/depolymerization processes were inhibited,
we focus here on the case of fixed filament lengthL.
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difference|φ1 −φ2| is smaller than a certain maximum interaction angleφ0. For |φ1 −φ2|> φ0,
the angles and the positions are unchanged. The analysis of [17, 19] showed that in the spatially
homogeneous case, the rods exhibited a spontaneous orientation transition if the density of
the motors (or of the filaments) exceeded a critical density. Furthermore, for even higher
densities, another instability was predicted which is isotropic and leads to inhomogeneous
density variations.

The dynamics of this model can be described by the master equation for the probability
distribution functionP(r, φ, t) to find a rod at positionr with orientationn= (cosφ, sinφ):

∂P(r, φ, t)

∂t
=
∂2P(r, φ, t)

∂φ2
+ ∂i Di j ∂ j P(r, φ, t)+I(r, φ, t) . (4)

The first two terms on the right-hand side describe rotational and translational diffusion, with
an anisotropic diffusion matrix of the form

Di j =
1

Dr
[D‖ni n j + D⊥(δi j − ni n j )] . (5)

The rotational,Dr, parallel,D‖, and perpendicular,D⊥, diffusion coefficients for rigid rods in a
viscous fluid are well known [21]. The third term in equation (4) is the collision integral,

I(r, φ, t)=

∫ ∫
dr1dr2

∫ φ0

−φ0

dφ1dφ2W(r1 − r2,n1,n2)P(r1, φ1)P(r2, φ2)

×
[
δ(φ−φa

1)δ
(
r− ra

1

)
− δ(φ−φ1)δ (r− r1)

]
, (6)

where the localization of spatial interactions is introduced through a certain probabilistic kernel
W(r1 − r2,n1,n2) [17, 19].

The kernelW, expressing the probability of interaction between the rods as a function of
the distance between their midpoints and their orientations, can be obtained from the following
conditions: (i) since the size of motors is small compared to the length of filaments, two rods
interact only if they intersect; (ii) due to translational and rotational invariance, the kernel
depends only on differencesφ1 −φ2 andr1 − r2; (iii) the kernel is invariant with respect to
permutationsn1 → n2, r1 → r2. The kernel can be represented as a product of two parts: a
part W0 which accounts for spatial localization due to the overlap condition of the filaments,
and a part describing the motor-induced collision anisotropy.

The first part can be derived from the intersection condition between two rods with
orientationsn1,2. It is easy to verify that the rods overlap if

|(r1 − r2)×n1|6 L|n1 ×n2|/2, (7)

|(r1 − r2)×n2|6 L|n1 ×n2|/2, (8)

holds. This overlap condition can be expressed in terms of discontinuous2-functions,

W0 = Wn2(L|n1 ×n2| − 2|(r1 − r2)×n1|)2 (L|n1 ×n2| − 2|(r1 − r2)×n2|), (9)

whereWn is a normalization constant, so that
∫

W0 dr = 1. Since this discontinuous kernel is
difficult for calculations, the2-functions can be approximated by smooth Gaussians yielding

W0(r1 − r2,n1,n2)∼ exp

[
−4
((r1 − r2)×n1)

2 + ((r1 − r2)×n2)
2

b2|n1 ×n2|
2

]
, (10)
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whereb is a cutoff length of orderb. L. It is convenient to transform the kernel to the following
representation (the integral of the kernel is normalized to 1):

W0(r1 − r2, ψ)=
4

πb2 sinψ
exp

[
−

2R2
‖

b2 cos2(ψ/2)
−

2R2
⊥

b2 sin2(ψ/2)

]
= W0(R, ψ), (11)

whereψ = φ1 −φ2 is the difference of the orientation angles, andR‖ = (r1 − r2) · n̄ and
R⊥ = −(r1 − r2)× n̄ are two vectors parallel and perpendicular to the bisector directionn̄.
The cutoff lengthb introduced above can be estimated, for example, by comparison of the
characteristic kernel width

∫
R2W0(R)dR for the kernels given by equations (9) and (10) for

some typical angle, sayψ = π/2. Equating both integrals, one finds thatB2
= b2/L2

= 2/3.5

Finally, the complete kernel can be represented in the form

W(r1 − r2,n1,n2)= gW0(r1 − r2, ψ)

(
1 +

β

L
(r1 − r2) · (n1 −n2)

)
. (12)

Hereg is the interaction rate proportional to the motor density (which can be scaled away) and
the last term∝ β describes the anisotropic contribution to the kernel, which is associated to the
increase of motor density towards the polar end of the filament due to dwelling of the motors.
Accordingly, the constantβ can be related to the dwell time [19].

Near the threshold of the orientation instability mentioned above,ρ & ρc, the master
equation can be systematically reduced to equations for the coarse-grained local density of
filamentsρ and the coarse-grained local orientationτ

ρ =

∫ π

−π

P(r, φ, t)dφ , τ = 〈n〉 =
1

2π

∫
n P(r, φ, t)dφ, (13)

by means of a bifurcation analysis.

3. Effects of cross-links in the model

The effect of cross-links on the motor-induced interaction of filaments is twofold. Firstly, the
simultaneous action of a static cross-link, serving as a hinge, and a motor moving along both
filaments results in a fast and complete alignment of the filaments, as shown in figure1. This
justifies the assumption of fully inelastic collisions for the rods’ interaction. Note that without
cross-links the overall change in the relative orientation of the filaments is much smaller: the
angle between filaments decreases only by 25–30% in average, see the discussion in [19].
Complete alignment also can occur for the case of simultaneous action of two motors moving
in opposite direction, as in experiments on kinesin–NCD mixtures reported in [12]6, and even
for two motors of the same type moving in the same direction but with a different speed due to
variability of the properties and the stochastic character of the motion. Secondly, the cross-links
inhibit relative sliding of rods in the course of alignment, restricting the motion to rotation only.
Thus, in contrast to the situation considered in [17, 19] and described by equation (3), in the

5 In our previous works [17, 19], we used a somewhat simpler expression for the kernel,W0 ∼ exp[− |r1 −

r2|
2/b2]. As we have verified, this simplified approximation did not change the results on a qualitative level,

affecting only numerical prefactors of some nonlinear terms.
6 In these experiments, multimeric motor complexes have been prepared from kinesin (a plus-end directed motor)
and NCD (a minus-end directed motor), see [12] for details.
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Figure 1. Sketch of the interaction between two filaments, a cross-link and a
molecular motor. After the interaction, the motor (shown as a red sphere moving
in the direction of the red arrow) aligns the filaments along the bisectorn̄, but the
midpoint positions do not coincide due to the cross-link (blue sphere).

presence of a cross-link the midpoints of the rodswill not coincideafter the interaction. In fact,
the distancesS1,2 from the midpoints to the cross-link point do not change, as it is shown in
figure1.

To describe the interaction rules in the presence of a cross-link, we express the radius-
vector of an arbitrary point on a filamentRi via the position of its midpointri , the filament
orientationni , and the distance from the center of massS, Ri = ni Si +ri . The intersection
point of two rods is given by the conditionR∗

= R1 = R2, which fixes the values ofS1,2 to

S1,2 =
(r2 − r1)×n2,1

n1 ×n2
. (14)

Due to the cross-link, the values ofS1,2 do not change during the interaction. Since the filaments
become oriented along the bisector directionn̄, the distance of the two filament midpoints from
the total center of mass will be1S= (S1 − S2). Therefore, instead of equations (2) and (3), we
obtain the interaction rules

φa
1 = φa

2 = φ̄ =
φ1 +φ2

2
, (15)

ra
1,2 =

r1 +r2

2
± η
n̄1S

2
=
r1 +r2

2
± η
n̄((r1 − r2) · n̄)

2 cosψ
. (16)

Here, we have introduced the parameterη interpolating between two cases: the case with cross-
links present corresponds toη = 1; for η = 0 the previous model, equations (2) and (3), is
recovered. Thus the value ofη can be roughly interpreted as the effective strength of cross-
links or an effective fraction of cross-links with respect to motors.

The interaction rules, equations (15) and (16), can be used to evaluate the collision integral,
equation (6). Omitting lengthy calculations (see the appendix for details) after expanding the
master equation (4) near the threshold of the orientation instability, we arrive at the following
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set of nonlinear equations for the coarse-grained densityρ and orientationτ :

∂tρ = Dρ∇
2ρ− ζ∇4ρ−

φ0B2

64π

(
1− η2

)
∇

2ρ2

−
πφ0B2

16

[
(S[φ0] + (1− 2S[φ0])η

2)∇2τ 2 + 2
(
S[φ0] − η2

)
∂i ∂ j (τi τ j )

]
, (17)

∂tτ = ε(ρ− ρc)τ − A|τ |2τ + Dτ1∇
2τ + Dτ2∇∇ · τ +

B2ρ0

4π
∇

2τ

−H

[
1

16π
∇ρ2

−

(
π −

8

3

)
τ (∇ · τ )−

8

3
(τ · ∇)τ

]
, (18)

with S[x] = sin(x)/x andB = b/L. The constantsA, ε and the critical densityρc are functions
of the maximum interaction angleφ0 and the inelasticity coefficientγ :

A = 2φ0
(S[φ0(2γ − 1)] − S[φ0]) (S[φ0(γ + 1)] + S[φ0(γ − 2)] − S(2φ0)− S(φ0))

2/φ0 − (S[2φ0(γ − 1)] + S[2φ0γ ] − S[2φ0] − 1)ρ/2π
,

ε =
φ0

π

[
S[φ0(γ − 1)] + S[φ0γ ] − S(φ0)− 1

]
, ρc =

1

ε
. (19)

In the following, we consider the caseφ0 = π as motivated below. Then the density equa-
tion (17) becomes somewhat simpler sinceS[φ0] = 0. We have introduced rescaled diffusion
coefficients, namelyDρ = (D‖ + D⊥)/(2Dr L2)= 1/32, Dτ1 = (D‖ + 3D⊥)/(4Dr L2)= 5/192
andDτ 2 = (D‖ − D⊥)/(2Dr L2)= 1/96. In order to scale out the motor densityg, we rescaled
density and orientation vector,gρ → ρ, gτ → τ . Also length is normalized byr→ r/L and
time by t → t/Dr L2. The anisotropic contribution proportional toH = βb2/L2

= βB2 is due
to the polar distribution of the motors along the interacting filaments, while the anisotropic
contribution in theρ-equation is due to the cross-links. The isotropic higher order diffusion
termζ∇4ρ was included for regularization purposes of the equation at very short wavelengths.
Assuming additionallyγ = 1/2 (i.e. totally inelastic collisions, as justified above), one obtains
from equation (19): ε = 4/π − 1 ≈ 0.273, A ≈ 2.18 and the critical densityρc ≈ 3.663.

A sketch of the phase diagram for equations (17) and (18) in the plane of the motor-
induced anisotropy parameterH and the mean densityρ0 is shown in figure2. A uniform
isotropic state,ρ = ρ0 andτ = 0, loses its stability ifρ0 > ρc, independent of the value ofH .
In the spatially uniform case, orientation modulations grow into a polar state with nonzero
|τ | = [ε(ρ0 − ρc)/A]1/2 and arbitrary orientation ofτ . Recall that the densityρ0 is scaled by
the ‘collision rate’g, and thus is proportional to both the density of tubules and the density of
motors. This implies that either increasing the number of motors or the number of filaments can
induce the polar phase. However, in extended systems, the growth of spatially inhomogeneous
modes leads to the formation of a complex state characterized by disordered arrays of vortices
or asters depending on the value of the anisotropy parameterH [17, 19]. Vortices are stable
only for small values of the anisotropy parameterH ; the stability limit of vortices, indicated
by the black solid line, terminates at a critical point atH = Hc. The vortex–aster-competition
is governed predominantly by theτ -equation, equation (18), and thus prevails whether cross-
links are present or not. In the case without cross-links,η = 0, for densitiesρ > ρd, the
homogeneous oriented state loses its stability with respect to density fluctuations as implied
by the green dashed line in figure2. If cross-links are present however,η = 1, the density
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Density
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Figure 2. Sketch of the phase diagram of the rescaled densityρ0 (being the
product of motor and filament density) against anisotropy parameterH in the
absence of cross-links. Aboveρc, the polar state is formed. Beyondρd, given by
equation (22), an isotropic density instability occurs. Depending on parameters,
the density instability may happen also prior to the orientation instability, i.e.
ρd < ρc. In betweenρc andρd, asters are stable above the critical line (solid black
line) while vortices are linearly stable below this line. The critical line terminates
at the pointH = Hc. In the presence of cross-links, forφ0 = π bundles occur
throughout the polar phases, i.e. beyond the red line. However, they are in
nonlinear coexistence with the asters/vortices.

instability is (to leading order) independent of the value of filament density and thus bundles can
be found throughout the polar phase, i.e. for allρ > ρc, where they are in complicated nonlinear
competition with the aster and vortex defects.

4. Instability of the homogeneous polar state

For η = 0, equations (17) and (18) reduce to the model without cross-links studied in [17, 19].
As it was shown in [17, 19], this equation exhibits an isotropic density instability ifρ > ρd as
calculated below. In the presence of cross-links (η = 1), the term in equation (17) proportional
to ∇

2ρ2 which is responsible for the density instability vanishes, and instead a new anisotropic
term∂i ∂ j (τi τ j ) appears. This term couples the density and orientation perturbations already in
the linear order. As we will show in the following, this new cross-link-induced anisotropic
coupling modifies the density instability so it becomes transverse to the direction of polar
orientation (in both the linear and nonlinear regime).

Let us investigate the linear stability of the homogeneous polar solution of equations (17)
and (18), describing a state with densityρ0 and polar orientationτ 0 given by ε(ρ− ρc)=

A|τ 0|
2. Without loss of generality we setτ 0 along x-direction, τ 0 = (|τ 0|,0). Linearizing

the model equations around this state by making the ansatz{ρ, τx, τy} = {ρ0, τ0,0} +
{δρ, δτx, δτy}exp[σ(k)t + ikxx + ikyy], one can deduce the linear growth ratesσ as a function of
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the modulation wavenumberskx, ky. For simplicity we setH = 0 here. Finite but small values
of H introduce a small drift but only slightly affect the growth rates.

First consider the case without cross-links (η = 0). Then equations (17) and (18) reduce to
the model of [17, 19]. There are three linear modes in the system. The two largest growth rates
for long-wave perturbations are associated to a transverse orientational mode and to a mixed
density-orientation mode. The third mode, related to the modulus of the orientation, is always
damped. To leading order inkx, ky the transverse orientational mode reads

στ = −

(
Dτ1 +

B2ρ0

4π

)
k2

x −

(
Dτ1 + Dτ2 +

B2ρ0

4π

)
k2

y, (20)

and is thus always damped. For the mixed density mode one obtains

σρ = −

(
Dρ −

B2ρ0

32

)
(k2

x + k2
y). (21)

Thus a density instability occurs at

ρ0 > ρd =
32Dρ

B2
, (22)

as already described in [17, 19], which to leading order is isotropic. Note that depending on
the model parameters the density instability forη = 0 may also occur prior to the orientation
instability, i.e.ρd can be smaller thanρc.

A similar analysis can be done in the presence of cross-links,η = 1. While the orientational
mode remains unchanged, for the mixed density mode one now obtains

σρ = −

(
Dρ +

B2π2ε

16A

)
k2

x −

(
Dρ −

B2π2ε

16A

)
k2

y . (23)

For perturbations inx-direction, i.e. parallel to the polar orientation, the density mode is
damped. However, using the estimates from above,ε ≈ 0.273, A = 2.18, Dρ = 1/32 andB2

≈

2/3, one obtains that the coefficient in front ofky is negative:Dρ −
B2π2ε

16A < 0, i.e. transverse
perturbations (i.e. with smallkx and finiteky) areunstable.

Although this linear analysis reveals the possibility of a transverse instability in the
presence of cross-links, it is not clear if the density modulations perpendicular to the filament
orientation really lead to bundle-like structures in the nonlinear regime. To investigate the long-
term development of this instability, we performed numerical simulations of the full set of
equations (17) and (18), as described below.

5. Numerical studies

In order to study the system beyond the linear regime, we performed numerical investigations
of equations (17) and (18). The studies were conducted in a 80L × 80L periodic domain,
for different values of the parameterη characterizing the concentration of cross-links. Small
amplitude noise was used as an initial condition for theτ field, andρ = ρ0 + noise for the
density field. Representative results forη = 0,1 are presented in figure3. In both situations, the
simulations were performed in the regime where the homogeneous oriented state is unstable
with respect to density fluctuations. However, depending on the value of the parameterη,
the manifestation of the instability is different. Forη = 0 (without cross-links), the numerical
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(a) (b)

Figure 3. Composite image of the density (color code: black low density, bright
yellow high density) and the filament orientation field (arrows). (a) The model
of [19] (η = 0) for ρ0 = 5 in the region of the isotropic density instability. Here,
the filament orientation is uncorrelated with the density gradient. (b) The model
with cross-links (η = 1) for a density ofρ0 = 6 displays pronounced bundles,
and the local filament orientation is predominantly along the bundles. Other
parameter values:H = 0.005, B2

= 0.6 andζ = 0.04.

(a) (b) (c)

Figure 4. (a) Composite image of the density (color code: black low density,
red high density) and orientation field (arrows) for the model with cross-links,
same parameters as in figure3(b) but at an early stage of evolution. (b) Structure
observed in microtubule-kinesin-NCD mixtures from Surreyet al [12]. Here,
the two oppositely directed motors can be effectively mapped to the case of
motor and cross-link. (c) Experiment on actomyosin by Smithet al [20], where
ATP-depleted oligomeric myosin-motors become cross-links.

solution shows that the filament orientation and density gradients are mostly uncorrelated, cf
figure3(a).

In contrast, forη = 1 (with cross-links), we observed that the instability indeed resulted
in the formation of anisotropic bundles with the filaments’ orientation predominantly along
the bundles, as shown in figure3(b). The bundles show a tendency to coarsen with time:
small bundles coalesce into bigger bundles. The overall pattern is reminiscent of experimental
observations of self-organization in both microtubules interacting with a mixture of motors of
two different directions (kinesin and NCD) [12] and experiments on actomyosin where ATP-
depleted myosin motors become cross-links, cf figure4.
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Figure 5. The effective inelasticity factorε as a function of the initial angle
between two rigid filaments1φ/π , see [19] for details.

In order to characterize the degree of alignment quantitatively, we calculated the alignment
coefficient between the density gradient∇ρ and the orientationτ :

C = 2〈sin2(φρ −φτ )〉 − 1, (24)

whereφρ andφτ are the angles between∇ρ and thex-axis andτ and thex-axis correspondingly.
The alignment coefficientC = 1 if the vectors∇ρ andτ are everywhere perpendicular, and
C = −1 if they are parallel or antiparallel.

We find an alignment coefficient ofC = −0.0045 for the image shown in figure3(a) and
corresponding toη = 0 (no cross-links), confirming that the fieldsτ and∇ρ are practically
uncorrelated. For the situation shown in figure3(b) and corresponding toη = 1 (cross-links),
we obtained a much larger value ofC ≈ 0.188, implying that the density gradient and the
orientation are predominantly orthogonal. That means that density modulations are transverse
to the orientation within a bundle.

6. Conclusions

As we have demonstrated above, the effect of cross-links on the organization of polar filaments
is twofold. Firstly, the cross-links, acting as hinges, allow zipping and result in the alignment of
polar filaments by directional motion of molecular motors. Secondly, the ensuing polar state is
unstable with respect to transverse density perturbations yielding bundles of oriented filaments,
in contrast to the case without cross-links in which the density instability is isotropic.

This result has a simple physical interpretation. In the absence of cross-links the motors
tend to bring together the mid-point positions of microtubules, triggering an isotropic density
instability. This instability is a direct counterpart of the aggregation or clustering in a gas
of inelastic or sticky particles [24]. With a cross-link holding two filaments together at the
intersection point, however, the motion of the filaments along the bisector is suppressed whereas
the angular aggregation proceeds unopposed (furthermore, in fact it becomes much more
effective). Thus cross-links turn the isotropic instability into a transversal one.
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There are two experiments related to the model described here. The experiments on
microtubules in the presence of two oppositely directed motor species, as reported in [12],
appear to produce the same qualitative result as the case of a single motor species mixed
with cross-links. This is because two motors moving from an initial intersection point in
opposite directions along filaments also lead to their complete alignment. Additionally, our
analysis possibly sheds new light on the interpretation of recent experiments by Smithet al [20]
on actin–myosin mixtures. In this experiment, no patterns were observed in a situation with
abundant ATP. However, long dense bundles of actin filaments were observed when ATP was
depleted by the multi-headed myosin motor constructs, for which it is known that in the absence
of ATP they rigidly attach to the actin filaments and effectively become static cross-links. Also in
accordance with this interpretation, reinjection of ATP into the motor–filament solution resulted
in a consequent dissolution of the bundles and homogenized the system anew.

This experimental result can be interpreted as follows. As mentioned earlier, in the absence
of cross-links, the interaction of one motor with a filament pair does not result in complete
alignment. In fact, the average decrease of the relative angle is of the order of 25–30% only,
corresponding to a value of the restitution coefficient ofγ ≈ 0.85 or to a value of the effective
inelasticity factorε = 2γ − 1 ≈ 0.7. Since the inelasticity factor approaches 1 at largeψ (see
figure5), it effectively produces a cutoff interaction angle of the order ofφ0 ≈ 0.6π . Filament
flexibility only slightly decreases this value [23]. Using the above values forγ andφ0, one
finds from equation (19) that the critical density needed for the orientational instability is about
ρc0 ≈ 15.7. However, in the presence of cross-links, the interaction becomes fully inelastic, and
is described by the restitution coefficientγ = 1/2. Also, the interaction leads to a complete
alignment for any initial angle, so we can takeφ0 = π . The critical density for these conditions
(γ = 1/2, φ0 = π ) isρc1 ≈ 3.66, which is more then four times smaller. Thus in the experiments,
even if without cross-links the motor density was not high enough to trigger the orientation
transition, due to the cross-linking by ATP-depleted motors the system is likely driven beyond
the threshold of orientation transition. Moreover, the oriented state is typically unstable with
respect to a transverse instability leading to bundle formation, implying that bundles are
competing with aster-like structures as the experimental pictures suggest.

We have shown that a small amount of cross-links (in the order of one cross-
link per filament pair) can be easily included in the microscopic theory based on
instantaneous collisions [17], see the sketch in figure1. Another microscopic theory, based
on phenomenological motor-induced active currents, has been proposed earlier [15]. However,
the implementation of cross-links in the active currents is less obvious than in the collision
rules equation (16). For higher filament/cross-link densities than can be captured by a binary
interaction approach, either the phenomenological active gel theory introduced in [16] or
statistical models [6, 8, 22] should be used. While pattern formation can be studied also in
the framework of the active gel theory, the statistical models are focused on the viscoelastic
properties, and so far have not been used to address patterns.

The inclusion of cross-links in the model of filament interaction via molecular motors [17],
was straightforward and yielded nontrivial results. However, further generalizations of the
model are needed. Firstly, instead of the parameterη interpolating between the cases with and
without cross-links, an additional field for the density of cross-links should be introduced. In the
case of the actomyosin system, where ATP-depleted motors are acting like cross-links, this field
might be coupled via some simple reaction kinetics to the active motor density. Secondly the
role of filament flexibility is worth investigating in some detail (cf [23]). Furthermore, it is well
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known thatin vivo, the cytoskeletal filaments are often met in a state of constant polymerization
and depolymerization by means of ATP and GTP (guanosine triphosphate) hydrolysis, another
nonequilibrium process that is known to lead to structure formation [25]–[27]. The competition
of the two main nonequilibrium processes in the cytoskeleton, active transport of the filaments
by molecular motors and active polymerization of the filaments themselves, might lead to new
and surprising behavior. Finally, for higher cross-link or filament densities, networks of cross-
linked or entangled filaments should form and alter the structure formation processes discussed
here, a subject which will be addressed in [28].
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Appendix. Evaluation of the collision integral

The first term of the collision integral, equation (6), can be simplified by integrating out the
δ-function after having expressedφ1 by φ1 = 2φ−φ2 andr1 by

r1 = r +
cos(ψ/2)

η + cos(ψ/2)
(r− r2)−

η

η + cos(ψ/2)
Â(r− r2), (A.1)

whereψ = φ1 −φ2 as defined in the main text and where we have introduced the matrix

Â =

(
cos(2φ̄) sin(2φ̄)
sin(2φ̄) − cos(2φ̄)

)
. (A.2)

(Note that after integrating overδ(φ− φ̄) the angle in the matrixÂ becomesφ.) Then one
substitutesw = 2(φ−φ2) andξ = r1 − r2.

In the second term, theδ-function leads toφ = φ1. After the suitable substitutionw =

φ−φ2 this impliesφ̄ = φ−w/2 . Finally, one obtains the following simple form

I =

∫
dξ

∫ φ0

−φ0

dwW(ξ, w)
[
P(r + Â1ξ, φ +w/2)P(r− Â2ξ, φ−w/2)

−P(r, φ)P(r− ξ, φ−w)
]
, (A.3)

with

Â1 =
2 cos(w/2)1̂− η(1̂ + Â)

4 cos(w/2)
, Â2 =

2 cos(w/2)1̂ +η(1̂ + Â)

4 cos(w/2)
. (A.4)

In the case ofη = 0, i.e. in the absence of cross-links, one regainsÂ1 = Â2 = 1/2 as in the
model of [19].

To evaluate the spatial integral, one has to transform to the coordinatesR = (R‖, R⊥)

introduced in the kernel, equation (11). These are connected toξ via a simple rotation,(
R‖

R⊥

)
= R̂φ̄

(
ξx

ξy

)
, R̂φ̄ =

(
cosφ̄ sinφ̄
− sinφ̄ cosφ̄

)
, (A.5)
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and the collision integral becomes

I =

∫
dR‖dR⊥

∫ φ0

−φ0

dwW(R, w)
[
P(r + Â1R̂φξ, φ +w/2)P(r− Â2R̂φξ, φ−w/2)

−P(r, φ)P(r− R̂φ−w/2ξ, φ−w)
]
. (A.6)
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