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Magnetohydrodynamic �MHD� turbulence is studied from the Lagrangian viewpoint by following
fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent
diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent
single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD
turbulence, two-particle relative dispersion in the MHD case differs significantly from the
Navier-Stokes behavior. This observation is linked to the local anisotropy of MHD turbulence which
is clearly reflected by quantities measured in a Lagrangian frame of reference. In the MHD case the
Lagrangian structure functions display a lower level of intermittency as compared to the
Navier-Stokes case contrasting Eulerian results. This is not only true for short time increments
�H. Homann, R. Grauer, A. Busse, and W.-C. Müller, J. Plasma Phys. 73, 821 �2007�� but also holds
for increments up to the order of the integral time scale. The apparent discrepancy can be explained
by the difference in the characteristic shapes of fluid particle trajectories in the vicinity of most
singular dissipative structures. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2818770�

I. INTRODUCTION

During the last decade Lagrangian statistics of turbulent
flows have been receiving increasing attention as new experi-
mental techniques1–5 and high-resolution numerical
simulations6–8 have enabled detailed studies of the dynamics
of advected tracer particles.

The Lagrangian point of view is particularly suited for
the study of the diffusive characteristics of turbulent
flows.9,10 The diffusion and dispersion of tracer particles in
neutral fluids has been the subject of various experimental
�see, for example, Refs. 2, 11, and 12� and numerical studies
�see, e.g., Refs. 6, 7, and 13�. Related problems regarding the
turbulent diffusion of magnetic fields and the influence of
turbulent magnetic fields on particle diffusion have been in-
vestigated extensively in space and astrophysics, see, e.g.,
Refs. 14–19, as well as with regard to magnetically confined
nuclear-fusion plasmas �see, for example, Refs. 20–22�.
Moreover the investigation of Lagrangian velocity incre-
ments is a complementary approach that yields information
about intermittency and the spatial structure of turbulence
�see, e.g., Refs. 23 and 24�.

In this paper a first effort is presented to identify differ-
ences of the Lagrangian statistics of turbulence in electrically
conducting and electrically neutral media. To this end the
results of several direct numerical simulations of three-
dimensional incompressible and macroscopically isotropic
Navier-Stokes and MHD turbulence seeded with massless
point particles �tracers� are analyzed.

The organization of the paper is as follows: In Sec. II a

short overview of the numerical scheme used for tracking the
tracer particles is given. In Sec. III the diffusion of single
particles is discussed. In Sec. IV results regarding relative
dispersion of particle pairs are presented. Section V deals
with Lagrangian structure functions and their relation to the
characteristic shapes of particle trajectories near structures of
high dissipation. The conclusions are summarized in Sec. VI.

II. NUMERICAL METHOD

The incompressible MHD equations in dimensionless
�Alfvénic� units are given by

�t� = � � �v � � − b � �� � b�� + ��� , �1�

�tb = � � �v � b� + ��b , �2�

� · v = 0, �3�

� · b = 0. �4�

v is the velocity field, related to the vorticity by �=��v,
and b is the magnetic field. To obtain this form the MHD
equations in Gaussian units �see, for example, Ref. 25� are
normalized using a typical flow speed V0, a length scale
characteristic of its spatial variation L0, and a characteristic
magnetic field strength B0. The interaction parameter,
B0

2�4��0�−1 /V0
2, in front of the Lorentz force term is set to

unity by proper choice of B0. Here �0=1 is the uniform den-
sity of the fluid. The dimensionless kinematic viscosity �
and magnetic diffusivity � are formally reciprocals of the
kinetic and magnetic Reynolds number, respectively. In labo-
ratory units, these dimensionless numbers are Re=L0V0 /�*a�Electronic mail: Wolf.Mueller@ipp.mpg.de.
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and Rm=L0V0 /�*, where �*and �* are kinematic viscosity
and magnetic diffusivity given in dimensional units. The
Navier-Stokes equations are obtained by setting b=0 in Eqs.
�1�–�4�. The magnetic Prandtl number Prm=� /� is set to
unity.

A number of direct numerical simulations of macro-
scopically isotropic turbulence are conducted by solving the
incompressible MHD and Navier-Stokes equations by a stan-
dard pseudospectral method on a cubic grid with periodic
boundary conditions. The pseudospectral treatment of the
equations preserves the solenoidality of � and b down to
machine accuracy. The solenoidality of the velocity field is
ensured by its algebraic computation from the vorticity field
in Fourier space. The computational grid has a resolution of
5123 �MHD, NS� and 10243 �NS� grid points, respectively.
Numerical parameters are summarized in Table I. While
Run1 and Run2 use a leapfrog scheme Run3 and Run4 use a
Runge-Kutta scheme of third order. Aliasing errors are re-
duced by spherical mode truncation26 in Run1–Run3 and by
a high-order Fourier smoothing27 in Run4. The standard
small scale resolution requirement kmax�d�1.5 �Ref. 28� is
approximately met in all simulations.

In this paper the Kolmogorov length and time scales are
computed using the kinetic energy dissipation rate 	kin

=��VdV
2 in both the Navier-Stokes and the MHD case,

�d = � �3

	kin
�1/4

, �d = � �

	kin
�1/2

. �5�

This is motivated by the fact that the tracer particle dynamics
are determined by the turbulent velocity field. The effects of
the magnetic field are felt by the tracers indirectly via the
distortions of the velocity field due to the Lorentz force. Note
that the Kolmogorov length and time scales are denoted by
�d and �d in this paper to prevent confusion with the mag-
netic diffusivity �.

In order to obtain quasistationary turbulence a large
scale forcing is imposed by freezing all modes in the sphere
�k � �kf =2 starting from a fully developed turbulent state.
This leads to an energy transfer from frozen to freely evolv-
ing fluctuations via nonlinear interaction. In the resulting
quasistationary state the total energy E and energy dissipa-
tion rate 	 show only small fluctuations in time not exceed-
ing 10%. The Eulerian structure function scaling exponents
agree in the Navier-Stokes case within errors with experi-
ment �see, for example, Ref. 29� and in the MHD case with
numerical30 results. It has been checked that the large scale

forcing does not introduce significant anisotropy by regard-
ing direction-dependent Eulerian two-point statistics.

After a statistically stationary state is reached for both
the velocity and the magnetic field, up to five million tracer
particles are injected into the flow. In the case of simulations
Run1 and Run2 the initial particle configuration consists of
groups of tetrads 	��0 ,0 ,0� , �0,�0 ,0� , �0,0 ,�0�
 with an ini-
tial separation distance �0 that are placed on a randomly
deformed cubic superlattice with a maximum perturbation of
25% per superlattice cell. This configuration represents a
compromise between randomly distributed tetrads6 and a
space filling and uniform tetrad distribution.7 In both Run1
and Run2 there are five groups of tetrads with different initial
separation lengths �0 �see Table II� in order to probe differ-
ent length scales of the turbulent velocity field. In the case of
simulations of Run3 and Run4 the velocity field is seeded
with randomly distributed tracers as these runs are mainly
intended for the calculation of Lagrangian structure function
scaling exponents.

The particle trajectories are integrated in time according
to

dX�t�
dt

= V�t� = v�X�t�,t� �6�

using a midpoint method. The instantaneous particle veloci-
ties V�t� are computed by tricubic polynomial interpolation
of the velocity field v�x , t�, which has proven useful for high
Reynolds number flows.31 The mean relative interpolation
error has been estimated to be of the order of 0.1% by com-
paring tricubic interpolated values to Fourier-interpolated
values on a turbulent velocity field. Particle positions X�t�,
their velocities V�t�, and in the MHD case the magnetic field
B�t�=b�X�t� , t� at the instantaneous position of the particles
have been sampled at a rate of � 1

60�d for Run1, � 1
80�d for

Run2, � 1
3�d for Run3, and � 1

9�d for Run4.

TABLE I. Parameters of the numerical simulations: Taylor scale Reynolds number R=2 /3�15urmsE
3/2 / �	���1/2, root-mean-square velocity urms, and magnetic

field brms, kinetic energy dissipation rate 	kin, magnetic energy dissipation rate 	mag, 	=	kin+	mag, Kolmogorov length scale �d= ��3 /	kin�1/4, Kolmogorov time
scale �d= �� /	kin�1/2, resolution N3, number of tracer particles Np. Run1 and Run3: Navier-Stokes simulations, Run2 and Run4: MHD simulations.

R urms brms 	kin 	mag �=� dx �d �d N3 Np

190 0.82 ¯ 0.23 ¯ 8�10−4 1.23�10−2 6.9�10−3 5.9�10−2 5123 1.18�106 Run1

187 0.48 0.69 0.10 0.15 5�10−4 1.23�10−2 5.9�10−3 7.1�10−2 5123 1.18�106 Run2

316 0.18 ¯ 3.5�10−3
¯ 2�10−4 6.14�10−3 2.5�10−3 0.12 10243 5�106 Run3

185 0.22 0.32 1.0�10−2 1.5�10−2 3�10−4 1.23�10−3 7.1�10−3 0.17 5123 5�105 Run4

TABLE II. Particle groups and respective initial pair separations �0 in simu-
lations Run1 and Run2.

�0 �Run1� �0 �Run2� Np Pairs

Group 1 1.8�d 2.1�d 4.42�105 3.31�105

Group 2 3.9�d 4.6�d 4.42�105 3.31�105

Group 3 7.9�d 9.2�d 1.86�105 1.39�105

Group 4 20�d 23�d 5.52�105 4.17�104

Group 5 98�d 115�d 5.52�105 4.17�104
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III. DIFFUSION STATISTICS

The diffusion of single particles relative to a fixed source
due to advection by a turbulent velocity field is characterized
by the Lagrangian integral time scale

TL = �
0

�

d�
�V�t�V�t + ���

V2�
. �7�

TL is the autocorrelation time of the Lagrangian velocity cal-
culated over all tracer trajectories. It was introduced by
Taylor32 to divide the single particle diffusion process in two
time ranges with asymptotic behavior. The Lagrangian time
scale TL in Run1 and Run2 is of the same order of magni-
tude, TL�16�d in the hydrodynamic and TL�15�d in the
magnetohydrodynamic case. The mean square displacement
of the particles from their initial positions �X�t�−X�0��2� is
expected to grow quadratically with time for t�TL �ballistic
scaling� and to show a diffusive dependence �t for t�TL.32

In both simulations ballistic scaling is found �see Fig. 1� up
to about TL and diffusive behavior for t�50�d. For t�70�d

finite-size effects as well as the influence of the large-scale
forcing can be observed, as the particles have traveled then
on average distances of half of the size of the periodic simu-
lation volume.

The normalized turbulent diffusion coefficient defined
by

Dturb�t*� = �
0

t*
d�

V�t�V�t + ���
V2�t��

, �8�

where ·� denotes averaging over all tracer trajectories in-
creases rapidly in the interval 0� t*�50�d and then reaches
its saturation value TL.

With regard to turbulent single-particle diffusion no sig-
nificant differences between the Navier-Stokes and the MHD
system are observed. The slight offset in Fig. 1 can be ex-
plained by the lower level of kinetic energy in the magneto-
hydrodynamic case. This difference cannot be compensated
entirely by the applied Kolmogorov normalization as the ki-

netic energy dissipation rate 	kin is not linearly dependent on
the kinetic energy. We do not find a slowing down of diffu-
sion for MHD turbulence predicted analytically.34 However,
in the cited work a delta-correlation in time of the velocity
field has been assumed which neglects the dynamically im-
portant adaptation of the small scale velocity fluctuations to
the magnetic field structure �see below�.

IV. TWO-PARTICLE RELATIVE DISPERSION

In contrast to turbulent diffusion of single tracers the
relative motion of two particles �in the following denoted by
the subscripts 1 and 2� is better suited for the investigation of
the structural differences of the velocity field in the Navier-
Stokes and the MHD system. In addition the dispersive prop-
erties of turbulence have great practical significance with re-
gard to, e.g., the turbulent transport of passive contaminants
and, in the MHD case, the stretching of magnetic field lines.

A. Separation distance

In homogeneous turbulence which is studied here the
statistics of relative dispersion does not depend on the abso-
lute position of the particles but only on their separation
��t�=X1�t�−X2�t�.

In the short time limit t�TL the mean squared relative
dispersion ���t�−�0�2� is expected to grow quadratically
with time since the relative velocity of the particles is ap-
proximately constant. In the large-time limit t�TL the
particle-pair velocities become statistically independent; this
results ultimately in a diffusive scaling of the mean square
relative dispersion6,35

���t� − �0�2� � �t2, for t � TL,

t , for t � TL.
�9�

We observe for both Run1 and Run2 t2-scaling of the
mean square relative dispersion shown in Fig. 2 for times up
to �d. For t�160�d an approach to the diffusive limit is seen.

FIG. 1. Evolution of mean-square distance to initial position �X�t�−X0�2�
for turbulent single-particle diffusion in Navier-Stokes �black, Run1� and
MHD �gray, Run2� turbulence. The dashed lines indicate ballistic scaling
�t2 and diffusive scaling �t. See also Ref. 33.

FIG. 2. Evolution of mean-square relative dispersion in Navier-Stokes
�black� and MHD turbulence �gray�. The behavior for three different initial
pair-separations is shown; solid: group 1, dashed: group 3, dot-dashed:
group 5. The thin lines denote ballistic �t2 and diffusive scaling �t. See
also Ref. 33.
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Full decorrelation of the particle pair velocities is inhibited
by the periodicity of the finite simulation volume. At inter-
mediate times a period of acceleration is observed. The ac-
celeration period is visibly delayed in the magnetohydrody-
namic case; this feature will be investigated below in more
detail.

For particles with initial separations in the inertial range
there exist in the Navier-Stokes case predictions of
Richardson36 and Obukhov,37

�2�t�� = g	kint
3, t0 � t � TL, �10�

with the Richardson constant g, as well as of Batchelor35

���t� − �0�2� = 11
3 C2�	kin�0�2/3t2, t � t0, �11�

where t0= ��0
2 /	kin�1/3 can be interpreted as the time scale on

which the eddies of size �0 evolve. The curves ���t�−�0�2�
scaled by �0

2/3 of groups 4 and 5 almost collapse in both the
Navier-Stokes and the MHD case on short time scales t
�5�d. However, no exact Batchelor-scaling including all
prefactors is observed which is probably due to the limited
extent of the inertial range. Furthermore Richardson scaling
entails ��t���0 for t� t0 with ��t� in the inertial range and
an approach of the pair separation curves to one universal
scaling law independent of �0. Hence, no Richardson scaling
is found due to the moderate Reynolds numbers attained in
our simulations. This is not unexpected in view of the fact
that even in experiments at considerably higher Reynolds
numbers no Richardson scaling has been observed.38 The
Lyapunov exponent which characterizes the chaotic separa-
tion of infinitesimally close trajectories has not been com-
puted as the calculation of the finite time Lyapunov exponent
would have increased the computational cost considerably,
exhausting the available resources. The alternative approach
using the finite size Lyapunov exponent39 would involve the
discussion of exit-time statistics which is beyond the scope
of this paper.

For comparison with experiments and other numerical
simulations an estimate of the value of the Richardson con-
stant g in the Navier-Stokes case has been made employing
the method used in Refs. 6, 7, 12, and 13 by fitting a straight
line to �2�1/3 �not shown�. The linear portion of the curve of
group 2 which is closest to an approximate t3 scaling gives
g�0.50±0.05. This result is of the same order of magnitude
as found in previous studies.6,7,12,40 However, the value of g
must be treated with caution as no clear Richardson scaling
is observed.

The probability density function �pdf� of the particle
separation distance P��� �see Fig. 3� first introduced by
Richardson36 as distance-neighbor function represents a
comprehensive diagnostic of the pair-dispersion process. It
exhibits a rapid change of shape in time also observed in
Ref. 6.

The differences between the hydrodynamic and the
MHD case are identified more easily in the time evolution of
the skewness and flatness of the pdf of the separation dis-
tance defined as S�= �3� / �2�3/2 �see Fig. 4� and K�

= �4� / �2�2 �see Fig. 5�, respectively.

FIG. 3. The probability density function of the separation distance � in the
Navier-Stokes �a� and MHD case �b� for the smallest initial separations
�0=1.8�d �Navier-Stokes case� and �0=2.1�d �MHD case� at t=0.5�d �solid
line�, t=2�d �dotted line�, t=8�d �short dashed line�, 32�d �dot-dashed line�,
and 128�d �long dashed line�.

FIG. 4. The skewness of the pdf of the separation distance � for the smallest
initial separations �0=1.8�d �Navier-Stokes case, black� and �0=2.1�d

�MHD case, gray�. The horizontal line is the appropriate chi-squared result
of 0.49.
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In the short time limit negative �NS� and small �MHD�
skewness and finite flatness are observed, since the relative
velocity behaves on these time scales like a Eulerian velocity
increment.6 In the long time limit the particle-pair displace-
ments become statistically independent and the pdf of �2 is
expected to approach a chi-squared distribution with three
degrees of freedom �giving values for the skewness and flat-
ness of the pdf of the separation distance of 0.49 and 3.1,
respectively41�.

At intermediate times the separation process is highly
non-Gaussian in the Navier-Stokes case as also observed in
Refs. 6 and 7 as well as in the MHD case. The maxima of
flatness and skewness are in the MHD case even higher than
in the Navier-Stokes case and they are reached at a later
time.

For short times t��d the level of intermittency, that is
the aberration of the skewness and flatness from the corre-
sponding chi-squared or Gaussian results, is visibly higher in
the MHD case. Furthermore the period with high flatness and
skewness values lasts longer in the MHD case.

The observed short-time behavior for times t��d is ex-
plicable since the velocity fields are approximately constant
in time during this period. The relative dispersion process is
accordingly dominated by the spatial properties of the veloc-
ity fields as obtained by a Eulerian diagnostic.6 To clarify
this point and for comparison with the Lagrangian observa-
tions the probability density function of the Eulerian longi-
tudinal velocity increments P��v�� with �v�= �v�x+ � �
−v�x�� · � /� for an increment length of �=dx is shown in
Fig. 6. In the Navier-Stokes case a skewness of −0.54±0.04
is found which agrees within errors with experimental
results42 and a flatness of 6.6±0.3. In the MHD case the
probability density function is decidedly less skewed with a
skewness of −0.18±0.06 and the tails are more pronounced
�flatness 9.0±0.5� than in the Navier-Stokes case.

Skewness and flatness of the pdf of the separation dis-
tance show a rapid increase on short time scales because a
particle pair with high initial relative velocity is more likely

to separate quickly. The separation process is apparently to
some extend self-energizing as particle pairs with higher
separation length are more likely to experience high velocity
differences and will continue to separate even more rapidly.
In the MHD case a higher number of particle pairs exist with
extremely high relative velocities due to the pronounced tails
of P��v��. Therefore skewness and flatness attain higher val-
ues on short time scales t��d in the MHD simulation com-
pared to the NS values. In the subsequent time range from
�d� t�5�d flatness and skewness are approximately constant
in the MHD case while in the Navier-Stokes case they rise to
their maximum values.

In order to investigate the effect of the magnetic field in

the MHD case we introduce the quantity B̄= �b�X1 , t�
+b�X2 , t�� /2 as a rough proxy for the value of the local mean
magnetic field at the particle pair position. In the MHD case
the particle separation vector shows a tendency to align with
the local magnetic field proxy in the above-mentioned time
interval ��d� t�5�d� due to the anisotropy of the relative

velocity with respect to B̄ �see Sec. IV B�. This can be ob-
served in Fig. 7 where the probability density function of the

angle �= � �� , B̄� is shown.

In the case of an isotropic random orientation of � and B̄
one would expect a sinusoidal distribution

P��� =
�

360° sin��� . �12�

As the direction of B̄ does not figure in the initial tetrad
distribution P��� starts from an approximately sinusoidal
distribution at t=0. With increasing time the orientations par-

allel and antiparallel to B̄ become more and more favored.
As a result of the alignment process the maximum values of
flatness and skewness of the pdf of the separation distance
are reached belatedly in the MHD case.

At t�8�d P��� has reached a quasistationary state, and

no further increase of the alignment between � and B̄ can be
observed. The particle pairs continue to separate while the
particle pair separation vector still shows a preferential align-

FIG. 5. The flatness of the pdf of the separation distance � for the smallest
initial separations �0=1.8�d �Navier-Stokes case, black� and �0=2.1�d

�MHD case, gray�. The horizontal line is the appropriate chi-squared result
of 3.1.

FIG. 6. Probability density functions of the Eulerian longitudinal increments
of the velocity field �v� measured over a distance of �=dx in the Navier-
Stokes �black� and the MHD �gray� case.
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ment to the local mean magnetic field proxy. For long times
the tracer movements become increasingly uncorrelated due
to their growing separation distance. Eventually the differ-
ences between the NS and MHD system in the relative dis-
persion process become less pronounced as the skewness and
flatness approach their theoretically predicted large time
values.

B. Relative velocity

Studying the relative velocity of particle pairs yields fur-
ther insight into the relative dispersion process. The relative
velocity of a pair of tracer particles can be split into two parts

U�t� = V1�t� − V2�t� = U��t���t�/��t� + U��t� , �13�

where U� is the component of the relative velocity parallel to
the instantaneous particle separation vector � and U� is the
perpendicular part. U� changes the length of the particle
separation vector �, whereas U� alters the direction of �.

The mean parallel velocity �see Fig. 8� which is the

separation velocity by which the particle pairs are torn apart
shows significant differences between the MHD case and the
Navier-Stokes case. On short time scales a continuous in-
crease of the separation velocity can be observed in Fig. 8.
Then the growth of the separation velocity is slowed down as
the particle pairs start to sense the temporal fluctuations of
the velocity field, this time interval ranging roughly from �d

to 10�d will be called the “slowing down period” in the fol-
lowing, although no actual deceleration takes place in the
Navier-Stokes case. On larger time scales the separation ve-
locity rises again more rapidly as the mean separation dis-
tance grows and the particles are dispersed by the more co-
herent large scale eddies. The separation velocity attains a
maximum value at t�90�d �at t�150�d in the MHD case�
and starts to decrease because of the periodicity of the simu-
lation volume. The maximum of the separation velocity is
reached later in the MHD case compared to the NS system
because the mean separation distance reaches half of the
length of the simulation volume at a later time. This is for
two reasons: the lower kinetic energy in the MHD case as
compared to the NS system and the slowing down period
delaying particle spreading. The intermediate slowing down
period is much more pronounced in the MHD case. While in
the Navier-Stokes case the separation velocity still increases
considerably in this time interval the separation velocity is
approximately constant in the MHD case.

A similar behavior can be seen in the root-mean-square
transverse velocity which is shown in Fig. 9 and which mea-
sures change of orientation of the separation vector �. In the
time interval of 0.5�d� t�2�d the transverse velocity de-
creases in the MHD case. For later times U�

2 �1/2 grows con-
tinuously to its saturation value. A slight decrease of U�

2 �1/2

can be observed on short time scales t��d in the Navier-
Stokes case as well �see also Ref. 6� which can be attributed
to the influence of temporal fluctuations of the velocity field.
However, the decrease observed in the MHD case is much
more pronounced.

The reason for the differences in the time evolution of

FIG. 7. Probability density function of the angle � between the separation
vector � of particles in group 1 and the proxy of the local mean magnetic

field B̄ at the times �d �long dashed�, 4�d �dot-dashed�, 8�d �short dashed�,
and 64�d �solid�. The thin line denotes a sinusoidal distribution indicating

isotropic random orientation of B̄ and �.

FIG. 8. Mean parallel velocity normalized by vd=�d /�d using the same
symbols as in Fig. 2. Black lines: Navier-Stokes case, gray lines: MHD case.

FIG. 9. Root-mean-square transverse relative velocity normalized by vd

=�d /�d �the z-component is shown, the same behavior is observed for the x
and y-components� using the same symbols as in Fig. 2. Black lines: Navier-
Stokes case, gray lines: MHD case.
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the relative velocity must be sought in the effect of the local
mean magnetic field on the relative dispersion process. Al-
though macroscopically the MHD system has no mean mag-
netic field, on small spatial scales the slowly evolving large
scale magnetic field fluctuations act like a mean magnetic
field. It is a well known fact that in magnetohydrodynamic
turbulence turbulent eddies are anisotropic with respect to a
mean magnetic field.43–48 As the fluid elements travel on av-
erage preferentially along the magnetic lines of force the
relative dispersion is significantly reduced in the field-
perpendicular direction. Motions across field lines trigger
quasi-oscillatory flow patterns which are supposed to drive
the energy cascade44 but apparently do not lead to an effec-
tive separation of the particle pairs. This anisotropy causes
the alignment of the particle separation vector � to the local

mean magnetic field proxy B̄ as observed in Fig. 7.
In order to support this conjecture the pdf of the angle

�= � �U , B̄� for particle group 1 is shown at several points in

time in Fig. 10 where B̄ is the local mean magnetic field
proxy defined in the previous subsection. In the case of an
isotropic random orientation of the velocity field with respect

to B̄ a sinusoidal distribution �see Eq. �12�� would be ex-
pected. We observe, however, that on short time scales the
distribution of the angle P��� exhibits a clear deviation from

this behavior favoring velocities aligned with B̄. A trend to-
wards an isotropic distribution can be observed for large
times which is due to the increase of the mean particle sepa-

ration. The proxy B̄ is for large particle separations no longer
a good approximation for the local mean magnetic field and
becomes statistically independent of the separation velocity.
Furthermore the effect of the magnetic field on large scale
velocity fluctuations is not as pronounced as on fluctuations
on smaller scales with significantly less kinetic energy.

As the particles start to separate preferentially along B̄
the relative dispersion in field perpendicular direction is re-
duced. This causes the observed plateau of the separation
velocity shown in Fig. 8.

The B̄-perpendicular fluctuations of the velocity field
contribute largely to the transverse relative velocity. As in the
Navier-Stokes case the effect of temporal fluctuations prob-
ably leads to a decrease of U�

2 �1/2 on short time scales. A
further effect which might explain why the decrease of
U�

2 �1/2 is considerably higher in the MHD case is the ob-

served alignment of the particle pair separation vector with B̄
which takes place in approximately the same time range. As
the separation vectors align with the local mean magnetic

field the B̄-parallel velocity fluctuations start to dominate the
tracer dynamics and the influence of the field perpendicular
velocity fluctuations decreases. As the mean separation dis-
tance is approximately constant in this time range �for par-
ticles of group 1 the mean separation distance has grown by
t=2�d only by a factor of 1.5� this results in a decrease of
U�

2 �1/2.
A closer comparison of the time evolution of the relative

velocities can be made by regarding skewness and flatness of

FIG. 10. Probability density function of the angle � between the relative
velocity of particles in group 1 and the proxy of the local mean magnetic

field B̄ for the times as in Fig. 7. The thin line denotes a sinusoidal distri-

bution indicating isotropic random orientation of V and B̄. See also Ref. 33.

FIG. 11. The skewness of P�U�� for the Navier-Stokes �black line� and the
MHD case �gray line� for group 1. The dashed horizontal line indicates the
Gaussian value of zero.

FIG. 12. The flatness of P�U�� for the Navier-Stokes �black line� and the
MHD case �gray line� for group 1. The dashed horizontal line indicates the
Gaussian value of 3.
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the pdfs of the parallel and transverse relative velocity com-
ponents shown in Figs. 11–13. In the Navier-Stokes case we
find basically the same time dependence that has been ob-
served in previous simulations.6,7 The skewness of P�U��
�see Fig. 11� rises from a negative value close to −0.54 ob-
served in the probability density function of the Eulerian
velocity increments �see Sec. IV A� to positive values. Both,
skewness and flatness, reach their peak values which indicate
the highest level of intermittency at t�4�d and approach
Gaussian values in the long time limit. In the MHD case the
period of maximal values in flatness and skewness starts ear-
lier and lasts longer. Furthermore we discern two peaks, the
first at about t�0.5�d and the second around 8�d. For t
�10�d we see again an approach to Gaussian values. Figure
13 shows the flatness for the pdf of the transverse component
of the relative velocity which exhibits a pronounced decrease
in the MHD case in the time range 0.1�d� t�1�d. In addi-
tion the maximum of the flatness is reached later than in the
MHD case.

For a possible explanation of this behavior it is neces-
sary to discern several time ranges. In the period of time
which lasts approximately up to 0.5�d the motion of fluid
particles is dominated by the spatial Eulerian characteristics
of the turbulent velocity field which are discussed in the
previous subsection. In MHD turbulence the pdf of the Eu-
lerian velocity increments is not as negatively skewed as in
the Navier-Stokes case and has a higher flatness. Therefore
particle pairs with high separation velocities are more abun-
dant in the MHD case in this time range. As a result skew-
ness and flatness of P�U�� �see Figs. 11 and 12� as well as the
flatness of P�U�� �see Fig. 13� are considerably higher �see
Sec. IV A�.

In the subsequent interval of time 0.5�d� t�2�d, the
particle pairs begin to sense the turbulent fluctuations of the
velocity field. As explained above the presence of the local
mean magnetic field leads to a reduction of the dispersion in
field-perpendicular direction and a slowing down of the rela-
tive dispersion process in the MHD case. Furthermore it
must be taken into account that for a particle pair separation

vector aligned to B̄ the component of the separation vector in

the B̄-parallel direction is considerably larger than the per-

pendicular part. Therefore the influence of the B̄ perpendicu-
lar fluctuations of the velocity field on the particle pair de-

creases relative to the influence of the B̄-parallel component
of the fluctuations. In addition it has been found that on
small spatial scales turbulent fluctuations parallel to a mean
magnetic field are smoother than the perpendicular fluctua-
tions �see, e.g., Ref. 43�. As a result the values of K�U�� and
S�U�� stagnate and the flatness of the pdf of the transverse
relative velocity decreases.

Once the separation process gains speed again the values
of flatness and skewness increase as well and basically the
same qualitative behavior as in the Navier-Stokes case can
be observed. In the last time range t�10�d an approach to
Gaussian statistics can be observed as the particle velocities
V1 and V2 become increasingly uncorrelated. A perfect deco-
rrelation cannot be attained due to the finite extend of the
simulation cube.

Particle pairs with higher initial separations of groups 2,
3, and 4 show a similar behavior as members of group 1.
With rising initial separation the intermittency of the relative
velocity decreases as also observed in Ref. 6. In the MHD
case the alignment of the separation vector with the local
mean magnetic field takes longer time which is why the
above-mentioned time ranges are shifted to larger times. The
particle pairs of group 5 with the highest initial separation
show no intermittent behavior as their dynamics is domi-
nated from the start by more coherent eddies at large scales.

C. Error estimation

Lagrangian statistics are known to be susceptible to ex-
treme events in the fluctuating turbulent fields �see, e.g.,
Refs. 6 and 40�. As a test for the reliability of the results
within our statistical sample an estimate of the statistical
error is calculated. The sample is divided into six suben-
sembles of equal size and the maximum and minimum val-
ues of the separation distance and the skewness of the pdf of
the relative velocity are calculated. In the Navier-Stokes case
we find a maximum relative error of approximately 14% for
the skewness of the pdf of the separation distance and ap-
proximately 19% for the skewness of the pdf of the longitu-
dinal relative velocity. In the MHD case we find a maximum
relative error of approximately 18% for both the separation
skewness and the longitudinal relative velocity skewness.
These errors are of the same order of magnitude as in previ-
ous numerical studies for the hydrodynamic case �see, for
example, Refs. 6 and 7�.

The periodicity of the simulation volume as well as the
large scale forcing unavoidably affect the long time statistics
of the Lagrangian tracers. These effects become visible for
t�70�d.

V. TRAJECTORIES AND STRUCTURE FUNCTIONS

To get an impression of the different behavior of passive
tracer particles in MHD and Navier-Stokes turbulence it is
instructive to look at their trajectories directly. For the most

FIG. 13. The flatness of P�U�,z� for the Navier-Stokes �black line� and the
MHD case �gray line� for group 1. The dashed horizontal line indicates the
Gaussian value of 3.

122303-8 Busse et al. Phys. Plasmas 14, 122303 �2007�

Downloaded 23 Jun 2008 to 132.180.92.142. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



part they are rather straight and uneventful. However, near
highly dissipative structures, i.e., vortex filaments in the hy-
drodynamic case and vortex- and current-sheets in the MHD
case, the tracer trajectories show characteristic shapes and
the tracer particles experience high accelerations. In the hy-
drodynamic case the fluid particles tend to follow spiraling
paths near vortex filaments �see Fig. 14� which is the so-
called vortex trapping observed in numerical simulations.49

In the MHD case particles are often accelerated along vortex
sheets and tend to show bends in their trajectories �see Fig.
15� in the vicinity of the vortex sheets. We observe two sce-
narios which cause high accelerations of tracer particles. In
the first scenario tracers move along a sheet and hit another
sheet nearly perpendicularly. The sudden change in the di-

rection of the trajectory implies high accelerations in a nearly
point-like section of the path �see Ref. 8�. In the second
scenario tracers move along a bended vortex-sheet. Here also
high accelerations occur in a small section of the trajectory
compared to the size of the entire sheet. These two scenarios
might also be related as can be seen in Fig. 15. As vortex and
current sheets often appear in close vicinity to each other and
have similar shapes a clear identification of the primary
cause, i.e., current or vortex sheet, of the characteristic tra-
jectories is not always possible.

By measuring the velocity increments along the particle
trajectories one can calculate the Lagrangian velocity struc-
ture functions which are generally believed to display self-
similar scaling in time

Sp
L��� = �Vi�t + �� − Vi�t��p� � ��p

L
. �14�

For the second order structure function one expects by di-
mensional analysis �p

L=1,50

S2
L��� = C0	kin� , �15�

where C0 is the Lagrangian Kolmogorov constant.
This approach is motivated by the well-established im-

portance of the Eulerian structure functions which involve
spatial instead of temporal increments. Generally, structure
functions supply a scale-dependent diagnostic of the turbu-
lent fluctuations. This property renders them useful for mea-
suring the intermittency of a turbulent field, i.e., the occur-
rence of extreme events on a fluctuating background. A
general problem in the measurement of Lagrangian structure
function scaling exponents from direct numerical simulations
at the presently achievable resolutions51 is the absence of a
Lagrangian inertial range �see Fig. 16�. Recently it was
shown52 that a different Lagrangian increment derived from
a Corrsin-type approximation yields a significantly larger
scaling range than the standard increment. However, in this
paper we stick to the conventional definition to allow com-
parison with other studies on Lagrangian two-point incre-
ments.

FIG. 14. �Color� Particle trajectory �blue corresponding to low acceleration,
red to high acceleration� near a vortex filament in Navier-Stokes turbulence.
The filament is shown at one instant in time.

FIG. 15. �Color� Particle trajectory �blue corresponding to low acceleration,
red to high acceleration� near vortex sheets in MHD turbulence.

FIG. 16. Second order Lagrangian structure function normalized by kinetic
energy dissipation rate 	kin and time increment � for the hydrodynamic
�black� and the MHD case �gray�. Note that no scaling range can be
observed.
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One has to add that even at high Reynolds numbers an
inertial scaling of the Lagrangian structure functions does
not necessarily occur as the velocity increments calculated
for a single particle may be affected by the nonuniversal
large scale structure of the turbulent fields.

For want of a clear scaling range we selected the region
where the second order structure function scales approxi-
mately linear in t to measure the relative scaling exponents
�p

L /�2
L using extended self-similarity.53

Due to the considerable duration of the simulation runs
we were able to calculate the Lagrangian structure functions
at several different points of time t separated by several TL in
order to ensure statistical independence of the different
samples. The resulting relative ESS-exponents for two inde-
pendent simulations each in the Navier-Stokes and MHD-
case are shown in Table III. The results in the Navier-Stokes
case agree within errors with recent experimental
findings.5,54

In Ref. 49 the scaling range has been chosen for time
increments �=20�d−50�d which results in different values
for the structure function scaling exponents. However, it has
to be noted that for larger time increments � the influence of
the large scale forcing and the periodic boundary conditions
can affect the structure functions. Therefore we have chosen
to follow the approach of Xu et al., in Ref. 54 in the selec-
tion of our scaling range. Note that the Lagrangian structure
functions show a more intermittent behavior in the Navier-

Stokes case than in the MHD case for larger time increments
as well. This can be seen from Fig. 17. Here, the logarithmic
derivative of relative Lagrangian structures functions are
given for two different orders in Navier-Stokes and MHD
turbulence. Whatever range one chooses for evaluating the
scaling exponents the MHD values are larger than the
Navier-Stokes ones. A second qualitative conclusion can be
drawn from Fig. 17. The Navier-Stokes functions display a
pronounced knee at a few Kolmogorov times. This can be
attributed to trapping events of tracers in coherent vortex
filaments �see Ref. 55�. The corresponding MHD functions
display no knee. This is in line with the observation that in
MHD turbulence no trapping events occur.

The lower degree of intermittency indicated by the La-
grangian structure functions in the MHD case is surprising as
the MHD Eulerian structure functions show a higher degree
of intermittency than in the Navier-Stokes case.30 This appar-
ent contradiction can be explained by regarding the particle
trajectories. In hydrodynamic turbulence particle trapping
events have been found to enhance the intermittency of the
Lagrangian structure functions for times up to 10�d.49 In our
MHD-runs we could not observe particle trapping events.
The corresponding bended trajectories near vortex sheets do
not have a similar intermittency enhancing effect. Although
the particles experience large accelerations near vortex
sheets, a deflected particle shows basically a single large
velocity increment as the direction of its velocity is turned
�see Fig. 18� whereas a trapped particle gyrating rapidly ex-
periences many large velocity increments because its veloc-
ity changes its direction perpetually �see Fig. 19�.

From the second order structure function normalized by
	kin� one can estimate the value of the Lagrangian Kolmog-
orov constant C0 in Eq. �15�. The Lagrangian Kolmogorov
constant plays an important role in the stochastic modelling
of Lagrangian statistics �see, for example, Ref. 10�. In the
Navier-Stokes case we find a value of C0=4.9±0.2 �Run1�
which is of the same order of magnitude as previously mea-
sured experimental and numerical values �see, for example,
Refs. 6 and 56�. In the MHD case the value of C0 is some-
what smaller, C0=3.9±0.2 �Run2�. The respective values for
Run3 and Run4 are consistent with these findings. As this

FIG. 17. Logarithmic derivative of relative structure functions for Run3 and
Run4.

FIG. 18. Time dependence of velocity �z-direction� for particle trajectory
shown in Fig. 15 �MHD case�.

TABLE III. Relative ESS-exponents calculated with respect to the second
order structure function averaged over all three velocity components.

Navier-Stokes case MHD case

p Run1 Run3 Run2 Run4

1 0.58±0.006 0.57±0.006 0.527±0.004 0.52±0.004

2 1 1 1 1

3 1.28±0.02 1.31±0.02 1.41±0.02 1.41±0.02

4 1.46±0.06 1.50±0.06 1.76±0.04 1.76±0.06

5 1.58±0.12 1.70±0.10 2.05±0.08 2.06±0.12

6 1.67±0.19 1.82±0.14 2.30±0.13 2.30±0.21
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parameter is of importance in some statistical models of rela-
tive dispersion10 the lower value in the MHD case might be
connected to the slower relative dispersion discussed in
Sec. IV.

VI. CONCLUSIONS

This paper presents a detailed comparison of the La-
grangian statistics of incompressible and macroscopically
isotropic Navier-Stokes and MHD turbulence. To this end
data generated by several high-resolution direct numerical
simulations is analyzed.

Simple diffusion does not exhibit significant differences
between the MHD and the Navier-Stokes system, whereas
for the relative dispersion of particle pairs many qualitative
differences are observed. Both the particle pair distance and
the relative velocity show a different time evolution in the
MHD case. Due to the constricting effect of the local mean
magnetic field the relative dispersion is slowed down. The
anisotropy of the small scale turbulent eddies with respect to
the local mean magnetic field leads to an alignment of the
particle-pair separation vector with the local mean magnetic
field. This shows that even in cases where no global mean
magnetic field exists the large scale fluctuations of the mag-
netic field lead to an anisotropy in the relative dispersion
process.

The tracer particle trajectories show near structures of
high dissipation characteristic shapes. In the Navier-Stokes
case near vortex filaments spiraling trajectories are found,
whereas in the MHD case deflected trajectories are observed
near vortex sheets. This difference in the characteristic
shapes of the trajectories might be responsible for the lower
level of intermittency of the Lagrangian structure functions
in the MHD case compared to the Navier-Stokes case.
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