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A horizontal fluid layer heated from below in the presence of a vertical magnetic field is considered.
A simple asymptotic analysis is presented which demonstrates that a convection mode attached to
the side walls of the layer sets in at Rayleigh numbers much below those required for the onset of
convection in the bulk of the layer. The analysis complements an earlier analysis by Houchens et al.
�J. Fluid Mech. 469, 189 �2002�� which derived expressions for the critical Rayleigh number for the
onset of convection in a vertical cylinder with an axial magnetic field in the cases of two aspect
ratios. © 2008 American Institute of Physics. �DOI: 10.1063/1.2837175�

I. INTRODUCTION

Side walls of a fluid layer heated from below usually
exert a stabilizing influence on the onset of convection. An
exception to this rule has been found in the case of a rotating
cylindrical layer where a side wall mode in the form of a
traveling convection wave may set in at Rayleigh numbers
R below those required for the onset of convection in the
bulk of the layer. This mode has been demonstrated experi-
mentally by Zhong et al.1 and investigated theoretically by
Goldstein et al.2 More recently another example for the de-
stabilizing influence of the side wall of a cylindrical layer
has been discovered by Houchens et al.3 �referred to by
HWW in the following� in the case when a vertical magnetic
field permeates the fluid.

The effect of a homogeneous vertical magnetic field on
Rayleigh–Bénard convection in a horizontal fluid layer
heated from below has been studied for a long time. Early
results have been reviewed in Chandrasekhar’s book4

�referred to by CH61 in the following�. As emphasized in
this book there exists a number of similarities between con-
vection in the presence of a vertical magnetic field and con-
vection in a layer rotating about a vertical axis. In this paper
we would like to show that this similarity extends to the
boundary layer nature of the side wall modes.

Using a boundary layer analysis Herrmann and Busse5

and Kuo and Cross6 have extended to the case of a straight
side wall the numerical analysis of Goldstein et al.2 of the
onset of side wall convection in a cylindrical layer. Similarly,
we intend to complement in this paper the numerical and
semianalytical analyses of HWW with a boundary layer
analysis at a straight side wall. This formulation of the prob-
lem permits the neglect of the aspect ratio parameter and
simplifies the mathematical analysis.

In the following we first formulate the problem and then
proceed through its analytical solution in Sec. III. The impli-
cations of the results will be discussed in the final section of
the paper.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

Since in the system considered here the fluid is electri-
cally conducting, the electrical properties of the side wall
enter the analysis in addition to the thermal ones. Following
HWW we shall restrict the attention to the case when the
electrical and the thermal conductivities are much lower than
those of the fluid. The top and bottom surfaces are supposed
to be stress-free and electrically insulating. In formulating
the mathematical problem we consider a horizontal layer of
height d of an electrically conducting fluid as shown in Fig.
1. The constant temperatures, T1 and T2 with T1�T2, are
prescribed at top and bottom boundaries, respectively. The
layer is permeated by a homogeneous vertical magnetic field
with the flux density B0. �, �, and � are thermal diffusivity,
electrical conductivity, and magnetic permeability of the
fluid. Using d, d2 /�, �T�T2−T1, B0 as scales for length,
time, temperature, and magnetic field strength, respectively,
the equation of motion, the continuity equation, the heat
equation for the deviation � of the temperature from the
static distribution, and the equation of magnetic induction
can be written in the form

��2 − P−1�t�u + R�k̂ + Q�k̂ · � +
�

�
b · ��b

= P−1�u · �u + �p� , �1a�

� · u = 0, �1b�

��t + u · ��� = u · k̂ + �2� , �1c�

�

�
��tb + u · �b − b · �u� = �2b + k̂ · �u , �1d�

� · b = 0, �1e�

where k̂ is the unit vector opposite to the direction of gravity
ge. We have introduced the dimensionless magnetic field in

the form B= k̂+�b /�, where ������−1 is the magnetic dif-
fusivity. The Boussinesq approximation has been assumed.a�Electronic mail: busse@uni-bayreuth.de.
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The three dimensionless parameters, the Rayleigh,
Prandtl, and Chandrasekhar numbers, are defined by

R = �ge�Td3/�	��, P = 	/�, Q = B0
2d2/
�	� . �2�

In these expressions � is the coefficient of thermal expan-
sion, 	 is the kinematic viscosity, and 
 is the density of the
fluid.

It is convenient to use the following general representa-
tion for the solenoidal fields u and b:

u = � � ��v � ı̂� + �w � ı̂ � �v + �w , �3�

b = � � ��h � ı̂� + �g � ı̂ � �h + �g , �4�

where ı̂ is the unit vector normal to the side wall and directed
into the fluid. In the following a Cartesian system of coordi-

nates will be used with the x-coordinate in the direction of ı̂
and the z-coordinate in the direction of k̂.

We anticipate that the onset of instability occurs in the
form of monotonously growing modes and that the critical
Rayleigh number will thus correspond to steady solutions of
the linearized equations �1�. We shall return to a discussion
of the possibility of the onset of oscillatory convection at the
end of this paper. Applying the operators � and � onto Eq.
�1a�, we obtain the following equations for the toroidal and
poloidal components of the magnetic and velocity fields. In
addition we rewrite Eq. �1c� for the temperature,

�4�2v + R�xz
2 � − Q�zz

2 �2v = 0, �5a�

�2�2w − R�y� + Q�z�2g = 0, �5b�

�2� − �yw + �xz
2 v = 0, �5c�

�2�2g + �z�2w = 0, �5d�

where �2��yy
2 +�zz

2 . Eliminating v, g, and � from Eqs. �5�
we obtain the following equation for w:

���4 − Q�zz
2 �2�2 − R��4 − Q�zz

2 ���xx
2 + �yy

2 �	w = 0. �6�

The boundary conditions at the stress-free and electri-
cally insulating top and bottom boundaries and at the rigid
sidewall are given by

�zv = �zzz
3 v = w = �zz

2 w = � = �zg = 0 at z = �
1
2 , �7�

�xv = v = w = �x� = g = 0 at x = 0. �8�

It is worth noting that a consideration of the boundary con-
dition for the poloidal function h is not necessary since the

equation �2�2h+�z�2v=0 has been used directly to elimi-
nate h in the derivation of Eq. �5a�.

III. ANALYSIS AND RESULTS

Without losing generality we propose a solution for Eq.
�5� of the form

v = 

j=1

5

Aj exp�− � jx + iy�sin��z� , �9a�

� = 

j=1

5

Bj exp�− � jx + iy�cos��z� , �9b�

w = 

j=1

5

Cj exp�− � jx + iy�cos��z� , �9c�

g = 

j=1

5

Gj exp�− � jx + iy�sin��z� . �9d�

The constants � j are the roots with positive real parts of the
equation

q̂j � � j
2 − 2 − �2, �10�

where q̂j, j= �1, . . . ,5	 are the five roots of

�q̂2 + Q�2�2q̂ − R�q̂2 + Q�2��q̂ + �2� = 0. �11�

The coefficients Aj, Bj, Cj, Gj, can be obtained in terms
of five unknowns Dj, j= �1, . . . ,5	,

Aj = Dj�2Rq̂j − �2 + �2��q̂j
2 + Q�2�q̂j	 , �12a�

Bj = Dj�2 + �2��− � j��q̂j
2 + Q�2�	 , �12b�

Cj = Djq̂j�i� j�R� , �12c�

Gj = Dj�i� j�
2R� . �12d�

The five unknowns Dj are determined by the boundary
conditions �8� at x=0,



j=1

5

q̂j�2R − �2 + �2��q̂j
2 + Q�2�	Dj = 0, �13a�



j=1

5

� jq̂j�2R − �2 + �2��q̂j
2 + Q�2�	Dj = 0, �13b�



j=1

5

� j�− � j��q̂j
2 + Q�2�	Dj = 0, �13c�



j=1

5

q̂j�i� j�R�Dj = 0, �13d�



j=1

5

�i� j�
2R�Dj = 0. �13e�
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FIG. 1. Geometrical configuration of the problem of wall-attached convec-
tion in the presence of a vertical magnetic field.
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In the limit of large Q it is convenient to introduce res-
caled quantities,

r � �4R, 	 j � �� j,

�14�
qj � 	 j

2 − �2�2 + �2�, j = 1, . . . ,5,

where � is defined by ���Q�2�−1/4. Using the rescaled vari-
ables we can rewrite Eq. �11� as

�q2 + 1���q2 + 1�q − r�q + �2�2�� = 0. �15�

The condition that the determinant of the homogeneous
system �13� vanishes becomes

D = �
	1�− 	1��q1

2 + 1�	 ¯

q1�2r − �2 + �2��q1
2 + 1�	 ¯

	1q1�2r − �2 + �2��q1
2 + 1�	 ¯

q1�i	1�r� ¯

i	1�2r ¯

� = 0, �16�

where the dots indicate the same columns as the first one
except that the subscript 1 is replaced by 2, 3, 4, and 5,
respectively.

In evaluating the roots of Eq. �15� we neglect terms of
the order �2 smaller than those retained. The roots of Eq.
�15� are thus given by

q1 =
�2�2r

1 − r
, q2,3 = � i�1 − r�, q4,5 = � i �17�

and the determinant �16� thus becomes

D

2r4�4 � − �
− 	1

2 − 	2
2 − 	3

2 0 0

q1B − �2q2 − �2q3 q42 q52

	1q1B − �2	2q2 − �2	3q3 	4q42 	5q52

q1	1r 	2q2 	3q3 	4q4 	5q5

	1r 	2 	3 	4 	5

� , �18�

where the abbreviation B��2�r−1�−�2� has been intro-
duced.

Using the relationships

	1 = ��2 + �2/�1 − r�, 	 j
2 = qj j = 2, . . . ,5, �19�

where again terms of the order �2 smaller than those retained
have been neglected we get the following simplified expres-
sion for the determinant D*�D / �2r4�4	1q2q3q4q5�:

D* = 	1�
− �2 − �2 2 2

− �2	2 − �2	3 	42 	52

	2 	3 	4 	5

	2
−1 	3

−1 	4
−1 	5

−1
�

− r�
− 1 − 1 0 0

− �2 − �2 2 2

− �2	2 − �2	3 	42 	52

	2 	3 	4 	5

� . �20�

Here we have anticipated that r will be of the order �
and have included only the terms of lowest order in � in the
first column of the determinant �18�. The evaluation of ex-
pression �20� finally yields

D* = �	5 − 	4��	3 − 	2��2 + �2� · �	1���2 + �2�

− 2r/4��2 − r2	 . �21�

After minimizing r with respect to  we obtain from the
condition that D* vanishes the final result

Rc = Q3/43�2�3�/2�1 + 3Q−1/4�3�/2 + ¯ � , �22�

corresponding to

c = ��2, �23�

where for the derivation of the second term inside the brack-
ets of expression �22� additional terms of the determinant
�18� have been taken into account which had not been in-
cluded in Eq. �20�.

Setting D1=1 we obtain the solution of Eqs. �13� in the
form

D2,3 = ��i − 1�
	1

2

2r�1 − r�
, D4,5��i − 1�

	1
2�2

2r2 . �24�

For the temperature � we can derive a particularly simple
expression,

� = − exp�i��2y�cos��z��3�2�3/2

· exp�− x��3	 − ���6 exp−
x

��2
�cos

x

��2
� ,

�25�

the wavy bracket of which has been plotted in Fig. 2.

IV. DISCUSSION

The result �22� indicates an onset of convection at the
side wall at a much lower Rayleigh number than is needed
for the onset in the bulk of the convection layer. For large
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values of Q and for the same stress-free conditions �7� the
Rayleigh number for the latter onset is given by

Rc = Q�2 �26�

according to CH61. The result �22� agrees quite well with the
finding Rc=68.25Q3/4 of HWW in the case of a cylinder with
a radius equal to its height. The fact that this value exceeds
the result �22� by about 6% must be expected since the as-
pect ratio is too small to realize the boundary layer character
of the solution.

The lowering of the power of Q with which the critical
Rayleigh number in the presence of a side wall increases
asymptotically is mainly caused by the fact that the tempera-
ture boundary condition permits convection to maintain a
wavenumber of the order unity as shown by relationship
�23�. This property contrasts with the critical wavenumber
�c= ��4Q /2�1/6 corresponding to the result �26� for an un-
bounded convection layer.

A search of the literature has not revealed any observa-
tional evidence for the surprisingly low critical Rayleigh
number �22�. This is not unexpected since convection flows
in liquid metals are notoriously difficult to observe. Most
recent experiments7–9 have focused on measurements of the
convective heat transport which also do not seem to have
indicated evidence for onset of convection below the critical
bulk Rayleigh number given by Eq. �26� for large Q. This
effect may be caused by the relatively low contribution of the
side wall mode to the heat transport or by the fact that the
electrical and thermal conductivities of the stainless steel
side walls were not sufficiently small in comparison to those
of the metallic liquid.

Neither the Prandtl number P nor the magnetic Prandtl
number Pm=	 /� have entered the analysis of this paper
since only steady convection in the limit of vanishing ampli-
tude has been considered. As discussed in CH61 oscillatory

onset of convection becomes possible in the bulk of the
convection layer for P� Pm. While the critical value of the
Rayleigh number can be lower for oscillatory onset than for
the monotonic one, it still grows in proportion to Q for large
Q. It is thus likely that even for P� Pm the side wall mode
will precede the onset of convection in the bulk. The possi-
bility of the existence of an oscillatory side wall has not yet
been investigated except in the limit � /��1 in which case a
more general analysis of the kind described in this paper has
eliminated such a possibility.

In contrast to a rotating convection layer where side wall
modes propagate in the retrograde direction1,2,5,6 relative to
the sense of rotation, side wall convection in the presence of
a vertical magnetic field is steady. This property allows a
direct application of the analysis to rectangular convection
layers. Singularities at the corners of the rectangle will have
a negligible effect as long as the horizontal dimensions are
sufficiently large in comparison to the height of the layer.

The support of thermal convection by side walls in the
presence of an applied magnetic field is of interest in the
field of crystal growth. Magnetic fields have been used to
suppress buoyancy driven flows in the case of Czochralski as
well as Bridgman processes as discussed in the review.10

Numerical computations will be required for the investiga-
tion of these more general configurations. But the simple
analytical model presented in this paper will be useful for the
elucidation of the mathematical structure of the problem.
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FIG. 2. Dependence of � as a function of x at z=y=0 for Q�2=1600.
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