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Experimental and theoretical investigations of undulation patterns in high-pressure
inclined layer gas convection at a Prandtl number near unity are reported. Particular
focus is given to the competition between the spatiotemporal chaotic state of
undulation chaos and stationary patterns of ordered undulations. In experiments,
a competition and bistability between the two states is observed, with ordered
undulations most prevalent at higher Rayleigh number. The spectral pattern entropy,
spatial correlation lengths and defect statistics are used to characterize the competing
states. The experiments are complemented by a theoretical analysis of the Oberbeck–
Boussinesq equations. The stability region of the ordered undulations as a function
of their wave vectors and the Rayleigh number is obtained with Galerkin techniques.
In addition, direct numerical simulations are used to investigate the spatiotemporal
dynamics. In the simulations, both ordered undulations and undulation chaos were
observed dependent on initial conditions. Experiment and theory are found to agree
well.

1. Introduction
Many spatially extended pattern-forming systems show non-transient steady states

in which spatial and temporal correlations fall off quickly; such states are often
described as exhibiting “spatiotemporal chaos” (STC). Due to the coupling of spatial
and temporal degrees of freedom, STC is richer than the purely temporal chaos
observed in many low-dimensional nonlinear systems. While spatiotemporally chaotic
phenomena have received a great deal of attention in recent years, our understanding
of STC is far from satisfactory (Cross & Hohenberg 1994; Gollub 1994; Egolf,
Melnikov & Bodenschatz 1998; Egolf et al. 2000; Gollub & Cross 2000; Bodenschatz,
Pesch & Ahlers 2000; Daniels & Bodenschatz 2002). One important issue is to
reveal universal mechanisms underlying STC phenomena in quite diverse systems.
In this paper, we focus on striped patterns observed, for instance, in the shifting
patterns of sand dunes, in cloud street formations and in many biological systems
(Cross & Hohenberg 1993). A well-investigated manifestation of STC in this setting
is commonly described as defect turbulence, in which the creation, annihilation
and motion of topological point defects (dislocations) continually change the local
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Figure 1. Sample shadowgraph images of a convection cell inclined by an angle γ = 30◦ and
at Prandtl number P = 1.1 ± 0.04 with reduced driving ε = 0.17 above onset. Uphill is left;
the images have been Fourier-filtered to remove higher harmonics. (a) Undulation chaos (UC)
and (b) ordered undulations (OU) (Daniels & Bodenschatz 2002†).

wavenumber and orientation of the stripes (Coullet et al. 1987; Rehberg, Rasenat &
Steinberg 1989; Ramazza et al. 1992; Bodenschatz et al. 2000; Daniels & Bodenschatz
2002; Young & Riecke 2003). Another feature is the bistability and competition
between STC and well-ordered structures. Both may coexist in the same experimental
snapshot, while in other cases the system switches between the two chaotically. While
such a scenario seems to be common in many pattern-forming systems, only a few
cases have been investigated in detail (Cakmur et al. 1997; Echebarria & Riecke
2000).

Here, we study anisotropic stripe (roll) patterns in thermal convection of an inclined
fluid layer (Daniels, Plapp & Bodenschatz 2000). In particular, we present a detailed
experimental study of the bistability between ordered undulations (OU) of stripes and
the defect turbulent state of undulation chaos (UC)) (see figure 1). The analysis is
supported by numerical simulations (Brausch 2001) of the full Oberbeck–Boussinesq
equations where the OU and UC attractors were explored in a controlled manner. We
characterize these two states in terms of the pattern entropy, spatial correlation length
and defect density. These measures are found to be correlated with each other and are
well suited to distinguish UC from OU. Along with these standard measures of STC,
we determine the local wave vector of the patterns and describe the undulations of the
stripes in terms of three characteristic amplitudes. These additional quantities allow
a refined discrimination of OU and UC and fit well into the theoretically determined
stability island of undulations.

2. Inclined layer convection
Rayleigh–Bénard convection (the thermal instability of a thin horizontal fluid layer

heated from below) and its variants have been particularly fruitful in the investigation
of pattern formation in extended systems (Bodenschatz et al. 2000). Experimentally,
the use of compressed gases has allowed the construction of shallow convection cells
with large lateral extent and fast time scales (de Bruyn et al. 1996; Bodenschatz et al.

† Movies of undulation chaos are available in AIP EPAPS Document No. EPAPS: E-PRLTAO-
88-001203.



Ordered undulations and undulation chaos 263

x̂

ẑ
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Figure 2. Schematic of a convection cell of thickness d inclined by an angle γ subject to
a temperature difference �T = T1 − T2 with associated coordinate system. U0 indicates the
induced shearflow (see text).

2000). In addition, the underlying fluid dynamical equations (Oberbeck–Boussinesq)
are well established and numerical techniques have been developed to simulate systems
with many convection rolls (Pesch 1996; Bodenschatz et al. 2000; Paul et al. 2004).

One natural variation of Rayleigh–Bénard convection is inclined layer convection,
in which the thin fluid layer is additionally tilted by an angle γ with respect to
horizontal, causing a shear flow that breaks the rotational isotropy of the layer. This
situation is common in nature as convective systems are often inclined with respect to
gravity. As shown schematically in figure 2, the component of gravity parallel to the
layer generates a cubic shear flow profile, U0(z), upwards along the hotter (lower) plate
and downward along the cooler (upper) plate. Therefore, inclined layer convection
may also serve as a prototype system for convective systems in the presence of shear
flow.

As in standard Rayleigh–Bénard convection, the fluid becomes unstable to
convection rolls above a critical temperature difference, �Tc. We use the reduced
control parameter ε ≡ (�T/�Tc) − 1 to measure the distance from the primary
instability for fixed angle of inclination γ . For a Prandtl number P = ν/κ ≈ 1 (with
kinematic viscosity ν and thermal diffusivity κ) both buoyancy- and shear-driven
instabilities are observed, which evolve into numerous spatiotemporally chaotic states
(Daniels et al. 2000). In figure 3, we have reproduced the part of the phase diagram
relevant for the patterns examined in this paper.

At small angles of inclination, buoyancy provides the primary instability and the
convection rolls are aligned with the shear-flow direction (longitudinal rolls) (Clever
1973). Above a critical angle γc2 (≈ 78◦ for the parameter regime presented here),
the primary instability is shear flow driven and the rolls align perpendicularly to the
shear-flow direction (transverse rolls) (Hart 1971a, b; Clever & Busse 1977; Ruth
1980; Ruth, Raithby & Hollands 1980).

Over a range of intermediate angles (15◦ � γ � 70◦), transverse modes trigger a
secondary bifurcation of longitudinal rolls to three-dimensional undulation patterns
(Clever & Busse 1977) slightly above onset (see the dashed line in figure 3 at ε ≈ 0.016.)
A tertiary instability to a state of crawling rolls (at ε ≈ 0.3) limits the existence region
of undulations from above. For a more detailed discussion of the phase diagram, see
Daniels et al. (2000).

Experimentally, we observed chaotic undulation patterns in the regime between the
lower dashed and the upper solid destabilization line (from now on referred to as
UC), where undulating convection rolls perpetually break and reconnect via moving
point defects. Here, we restricted our investigations to a fixed angle of γ = 30◦ for a
range of ε well inside the stability regime shown in figure 3.
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Figure 3. Phase diagram for inclined layer convection at P = 1.07 (after Daniels et al. 2000).
Data points (and solid lines as guides to the eye) are observed boundaries between the different
morphologies. The dashed line is the Galerkin prediction for the instability of longitudinal
rolls to OU. The grey arrow represents the region of data collection in this paper.

inclined layer convection can serve as a paradigm for a class of anisotropic pattern-
forming systems such as liquid-crystal convection (Kramer & Pesch 1995), Taylor–
Couette flow (Tagg 1994), annular convection (Kurt, Busse & Pesch 2004), sand ripples
(Blondeaux 1990; Hansen et al. 2001), or optical pattern formation (Ramazza et al.
1992) which also exhibit defect turbulence. In addition, it may relate to shear-flow-
driven instabilities as observed in cloud street formation (Kelly 1994), Taylor–Couette
flow (Andereck, Liu & Swinney 1986), Poisseuille–Bénard convection (Kelly 1977; Yu,
Chang & Lin 1997; Müller, Lücke & Kamps 1992), or turbulent bursting in Couette
flow (Bottin et al. 1998).

From here, we now proceed in § 3 to explain our experimental setup and data
collection. In § 4, we present a theoretical analysis of inclined layer convection with
an investigation of the stability of undulations and direct numerical solutions of the
Oberbeck–Boussinesq equations. This analysis provides the theoretical framework we
then use in § 5 to perform a detailed investigation of the experimentally observed
nonlinear states, including the competition between OC and UC. Finally, in § 6 we
present a discussion of the results and give an outlook.

3. Experiment
We conducted our experiments in a thin layer of compressed CO2 within a

rectangular cell of height d =(388 ± 2) µm and dimensions (100 × 203)d . The CO2

gas was 99.99 % pure and the pressure was (56.5 ± 0.01) bar regulated to ±55 mbar.
The mean temperature of the convection cell was held constant at (28 ± 0.05) ◦C
regulated to ± 0.3 mK. For these conditions, the Prandtl number was P =1.1 ± 0.04
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as determined from a materials property program (de Bruyn et al. 1996). The
characteristic vertical diffusion time was τv = d2/κ =(1.532±0.015) s. The experiments
were conducted at a fixed inclination angle of γ = (30.00 ± 0.02)◦. We obtained images
of the convection pattern using a digital CCD camera, via the usual shadowgraph
technique (de Bruyn et al. 1996; Trainoff & Cannell 2002).

We collected data at 17 equally spaced values of ε between 0.04 and 0.22, each
reached by quasi-static temperature increases from below. At each ε, we recorded at
least 400 series of 100 images (at 3 frames per second), with each series separated
from others by at least 100τv to guarantee statistical independence. These runs are
later referred to as short runs. For the lowest value of ε = 0.04, we recorded up to 600
series to cope with the reduced number of defects present in that regime. In addition,
we collected data while decreasing the temperature quasi-statically from ε =0.12 to
ε = 0.06 to check for hysteresis, which was not observed. Particularly long time series
were recorded at ε = 0.08 (one run) and 0.17 (two runs). These consisted of six-hour
(1.4 × 104τv) runs with three pictures taken per second. These runs are later referred
to as long runs.

Figure 4(a) shows a sample Fourier-filtered shadowgraph image of the complete
experimental cell at ε = 0.08. While on first sight the pattern appears to be uniformly
composed of UC, detailed investigation demonstrates that this is not the case. In
figure 4(b) we have superimposed 400 statistically independent images at the same ε

(one from each short run). Clearly visible are grey regions, such as within the white-
framed subregion, where the average looks almost structureless. There exist also long-
term ordered regions such as the strong black/white roll patches near the boundaries.
Other spatiotemporally chaotic systems (Ning, Ecke & Ahlers 1993; Gluckman et al.
1993) also exhibit similar behaviour due to the presence of boundaries.

Another method of characterizing the spatiotemporal homogeneity of a ‘chaotic’
pattern is to superimpose defect trajectories obtained for statistically independent
frames (see § 5.1 for details on defect detection). An example is shown in figure 4(c),
where we superimpose defect trajectories for 50 statistically independent short runs.
Defects with positive (negative) topological charge are white (black). Again, far away
from the boundaries (within the marked subregion), persistent and homogeneous
creation and annihilation of point defects were observed. In contrast, other regions
were either rarely traversed by defects or were preferentially traversed by defects of
like charge. In addition, favoured spots along the boundaries preferentially seeded
defects of the same charge, which then followed similar trajectories. Thus, to minimize
the impact of these effects and to utilize as ideal a cell as possible, the data presented
in this paper were taken only from the subregion of dimension 51d × 63d marked by
the white box.

4. Theoretical description
We base our theoretical description on the standard Oberbeck–Boussinesq equations

(OBE), slightly generalized to cover the inclination of the fluid layer. As in the
experiments, we concentrate on systems with large aspect ratio, i.e. with the lateral
dimensions of the cell in the (x, y)-plane � its height d in the z-direction. Thus,
we adopt the usual idealization of periodic horizontal boundary conditions, which
are incorporated numerically by switching from position space to two-dimensional
Fourier space.

First, the onset of inclined layer convection is obtained by a standard linear
stability analysis of the base state. Then, in the nonlinear regime, we investigate the
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Figure 4. (a) Example convection cell, (b) average of 400 statistically independent images,
and (c) defect trajectories for fifty statistically independent short runs. White (black) are defects
with positive (negative) topological charge. The nearly homogeneous subregion (51d × 63d)
used in all analyses is marked by a white box. Uphill is at the left. ε = 0.08, P = 1.1 ± 0.04 and
γ = 30◦.

stability of periodic solutions using both weakly nonlinear and multimode Galerkin
approaches. Most important for the interpretation of the (weakly) disordered states
in the experiments have been fully three-dimensional solutions of the OBE.

4.1. Basic equations

As shown in figure 2, the convection cell is subjected to a temperature difference
�T ≡ (T1 − T2) > 0 between the hot (bottom) and cold (top) plate and is inclined by
an angle γ . In a coordinate system aligned with the cell, the gravity vector is given
by g = −g( ẑ cos γ + ŷ sin γ ), where g is the acceleration due to gravity. As usual we
introduce the Rayleigh number R as a non-dimensionless measure for �T :

R ≡ αg cos γ�T d3

νκ
(4.1)
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with α the thermal expansion coefficient, ν the kinematic viscosity, κ the thermal
diffusivity. Please note that R depends on γ .

The OBE become dimensionless if lengths are measured in units of d , time in units
of the thermal diffusion time τv ≡ d2/κ , temperatures in units of �T/R and velocities
in units of d/τv . Thus, we arrive at the following non-dimensional form of the OBE:

∇2u + θ ẑ + (−Rz + θ) ŷ tan γ − ∇π = P −1

[
∂

∂t
u + (u · ∇)u

]
, (4.2a)

∇2θ + Ru · ẑ =
∂θ

∂t
+ (u∇)θ. (4.2b)

(�T/R)θ denotes the deviation from the linear temperature profile 1
2
(T1+T2)−�T z

(−1/2 < z < 1/2) of the basic non-convecting state. Terms which can be expressed as
gradients are included in the pressure term ∇π. We assume incompressibility of the
velocity field, u, i.e. ∇ · u = 0. Furthermore, θ and u are required to vanish at z = ±1/2
(rigid boundary conditions).

Even below the onset of convection, the OBE provide a base flow with a cubic
mean-flow profile U0(z) (in dimensionless units):

U0(z) =
R tan γ

6

(
z3 − z

4

)
ŷ, (4.3)

as illustrated in figure 2. Above the onset of convection, it is useful to split the
solenoidal velocity field u into three parts using

u ≡ U0(z) + v(x, y, z; t) + U(z, t). (4.4)

The term v(x, y, z; t) is derived from a poloidal–toroidal decomposition of u
in the form v = vpol + vtor ≡ ∇ × ∇ × ( ẑχ) + ∇ × ẑζ with the poloidal (toroidal)
velocity potentials χ (ζ ). This decomposition automatically fulfills ∇ · v =0. The
field vpol(x, y, z; t) describes the periodic convection rolls with their (nearly circular)
streamlines and vanishing vertical vorticity Ωz = (∇ × u)z, while vtor is associated with
finite Ωz.

Convection also leads to a modification U(z, t) (see (4.4)) of the basic shear-flow
profile U0(z). The governing equations for U(z, t) = (Ux(z, t), Uy(z, t), 0), derive from
a horizontal average of (4.2a) and read as follows:(

∂2
zz − P −1∂t

)
Ux + P −1∂z[vxvz] = 0, (4.5a)(

∂2
zz − P −1∂t

)
Uy + P −1∂z[vyvz] + θ sin γ = 0. (4.5b)

Here, the overline denotes an in-plane average (the q = 0 component in Fourier space)
of the corresponding terms. Note that (4.2) become γ -independent for longitudinal
rolls which vary only in the x-direction. Thus the onset of longitudinal rolls and
their structure (but not their stability) can be deduced immediately from the standard
Rayleigh–Bénard problem without inclination (Clever 1973).

While vtor vanishes in perfectly-periodic roll patterns, it is usually excited by any
imperfections, such as roll curvature or pattern defects. In contrast to vpol , the
Hagen–Poisseuille-like z-profile of vtor is even in z, and is often referred to as mean
flow. Other fields can thus be efficiently advected by vtor , typically leading to further
enhancement of some initial perturbation. For Prandtl number of order unity and
below, the resulting positive feedback is the source of spatiotemporal complexity as
observed in defect turbulence (Daniels & Bodenschatz 2002) and spiral defect chaos
(Morris et al. 1993).
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4.2. Periodic solutions

It is convenient to substitute (4.4) into (4.2) and to use a condensed notation for the
resulting OBE equations:

C ∂

∂t
V (x, z, t) = LV (x, z, t) + N(V , V ). (4.6)

The fields χ , ζ , θ , u have been collected into a symbolical vector V . The letters C
and L represent the resulting linear operators and N the quadratic nonlinearities in
(4.2) and (4.5).

The first step in any theoretical investigation is the linear stability analysis of the
base state V = 0. Neglecting N in (4.6), we arrive at a linear eigenvalue problem
which diagonalizes in Fourier space via the ansatz V (x, z, t)= eλteiq·x V lin(q, z) with
x = (x, y) and q = (q, p). The eigenvalue λ(q, R) = σ + iω with the largest real part
provides the growth rate σ (q, R). The condition σ (q, R) = 0 describes the neutral
stability curve R0(q) which has a minimum at Rc = R0(qc) for the critical wave vector
qc. In the present case, we find ω = 0, so the bifurcation is stationary.

In contrast to isotropic systems, where σ (q) and R0(q) depend only on the modulus
of q, the anisotropy causes them to depend in addition on the angle between q and
ŷ. Inspection of (4.2) shows that the control parameter R appears not only explicitly
in the buoyancy term of (4.2b), but also in the coefficient P −1R tan γ arising from the
U0 contributions (see (4.3)) to the advection terms (see (4.4)).

Where buoyancy prevails (γ less than the critical angle γc2(P )), we find longitudinal
rolls at the onset of convection, with qc = (qc, 0). The threshold Rc = 1708 (defined
according to (4.1)) and qc = 3.117 are γ -independent. In contrast, for γ >γc2 the
instability is shear flow driven and transverse rolls with qc = (0, pc) are selected. This
critical behaviour at threshold was discussed in Hart (1971a, b); Clever (1973); Clever
& Busse (1977); Ruth et al. (1980).

We use Galerkin methods to study ideal periodic convection patterns in the
nonlinear regime. All fields are expanded in two-dimensional Fourier series with
respect to the (x, y)-coordinate plane and in suitable test functions in z fulfilling the
rigid boundary conditions at z = ± 1/2. For instance, the θ component of V reads

θ(x, z; t) =
∑
k,m

[
exp [i(kqx + mpy)]

∑
n

ck,m;n(t) Sn(z)

]
(4.7)

with Sn(z) = sin(nπ(z + 1/2)). To ensure real-valued θ , we require c−k,−m;n = c∗
k,m;n.

The fields χ, ζ are analogously represented except that we use the Chandrasekhar
functions Cn(z) (Chandrasekhar 1961) instead of the Sn(z) for χ .

For longitudinal rolls (q ‖ x̂), all coefficients with m 	=0 vanish; conversely, for
transverse rolls (q ⊥ x̂) all coefficients with k 	= 0 vanish. By inserting (4.7) and the
analogous expansions for χ, ζ, u into (4.6) and truncating the series one arrives
at a nonlinear algebraic system for the their expansion coefficients. This system of
equations is solved using a Newton–Raphson iteration scheme and subsequently
tested for stability with respect to linear perturbations. Using the standard Floquet
ansatz, the θ perturbation reads for instance

δθ(x, z; t) = eσn teisx
∑
k,m

[
exp [i(kqx + mpy)]

∑
n

δck,m;nSn(z)

]
, (4.8)
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with s = (sx, sy). Positive nonlinear growth rates Re[σn(q, s, R, P )] signal secondary
instabilities of the periodic convection patterns. Our numerical results agree with all
those published previously in the literature (e.g. Clever & Busse 1977).

This paper investigates the secondary modulational wavy (zig-zag undulation)
instability of longitudinal rolls at R = Ru(γ, P ). This instability is initially characterized
by transverse undulations along the roll axis at large wavelength (sx = 0 and sy → 0)
as first described in Clever & Busse (1977), Ruth et al. (1980); it develops for R � Ru

slightly above Rc, i.e. at a small reduced control parameter εu(P, γ ) ≡ (Ru − Rc)/Rc.
For example, εu = 0.016 for γ = 30◦ on the dashed line in figure 3.

Weakly nonlinear analysis provides some insight into the underlying physical
mechanisms of the instability, particularly the final-amplitude state. We utilize a
set of coupled, complex amplitude equations, which can be expected to work reliably
for small ε.

We use the following ansatz for the solution of (4.6):

V (x, z, t) = A(t)V lin(q1, z)e
iq1x +B(t)V lin(q2, z)e

iq2x − C(t)V lin(q3, z)e
iq3x +c.c. + h.o.t.

(4.9)

with q1 = (q, 0), q2 = (q, p) and q3 = (q, −p). The first term describes longitudinal rolls
of wavenumber q and complex amplitude A(t), while the additional terms provide
transverse modulations with wavenumbers ±p and complex amplitudes B(t) and C(t)
with |B| = |C|. Note that the wave vectors q i span a resonant tetrad obeying

q1 = q2 + q3 − q1. (4.10)

We insert (4.9) into (4.6) and retain terms up to cubic order in the amplitudes A, B, C.
After projecting onto the left linear eigenvectors V lin(q i , z) the system reduces to a
set of three coupled amplitude equations, the general structure of which is predictable
from symmetry arguments:

d

dt
A = (σA − b11|A|2 − b12|B|2 − b12|C|2)A + ρ1A

∗BC, (4.11a)

d

dt
B = (σB − b21|A|2 − b22|B|2 − b23|C|2)B + ρ2AAC∗, (4.11b)

d

dt
C = (σC − b21|A|2 − b23|B|2 − b22|C|2)C + ρ2AAB∗. (4.11c)

The linear growth rates are defined as: σA(R) = σ (q1, R), σB(R) = σC(R) = σ (q2,
R) < σA. We calculate all the nonlinear coupling coefficients bij > 0 and the cross-
coupling coefficients ρi > 0 which characterize the resonant triad coupling. It is
convenient to characterize the complex amplitudes by their moduli and phases:

A = |A| exp(iφA), B = |B| exp(iφB), C = |C| exp(iφC). (4.12)

Two phases can be arbitrarily chosen due to translational invariance in the x̂, ŷ
directions and the choice φA = 0, φB = 0 leading to real A, B is convenient. The
growth rate of the undulations is obtained by a linear stability analysis of the
longitudinal-roll solutions (|A|2 = σa/b11 for σa > 0). From (4.11) we arrive at a linear
eigenvalue problem for the B and C with the maximal growth rate σu(R) ≡ σB(R) +
(σA(R) + cos(φC)ρ2 + b21)/b11. In good agreement with the Galerkin analysis, wavy
solutions with |A| > 0 and |B| = |C| > 0 bifurcate at R =Ru, where σu(R) crosses zero.
σu(R) is maximal for φC = 0 since ρ2 > 0.

In more physical terms, the undulation solution creates horizontal variations of
the mid-plane temperature field, which correspond to the experimentally obtained
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Figure 5. Stability islands for ordered undulations at P = 1.14 and γ = 30◦ in the
(q, p)-plane at increasing values of ε.

shadowgraph pictures. It is convenient to normalize the temperature component
of V lin(q, z) to unity at the midplane (z = 0). Thus, we arrive from (4.9) at the
following representation for the mid-plane temperature ψR field of an ideal undulated
pattern:

ψR(x, y) = Re[eiqx(A(q, p) + B(q, p)eipy − C(q, p)e−ipy) + h.o.t.)]. (4.13)

with real A, B and C =B and higher-order terms neglected. It is illuminating that,
slightly above the instability, ψR as presented in (4.13) can be considered as a phase
modulation of the longitudinal-roll pattern. In fact, a modulated longitudinal-roll
pattern 2A cos(qx + φ(y)) with φ(y) = (2B/A) sin(py) and (2B/A) � 1 corresponds to
(4.13) in a leading-order expansion with respect to B/A.

The amplitudes A and B =C obtained from (4.11) and the resulting approximate
solution V according to (4.9) are convenient for generating the full nonlinear Newton
iteration scheme. In this way, we construct fully three-dimensional OU solutions of
the OBE of the type described in (4.7) for R >Ru. The subsequent linear stability
analysis (see (4.8)) yields the stability regions of the OU.

Figure 5 shows the representative results for P = 1.14 and θ = 30◦. The OU at a
given ε are stable within certain regions (islands) in the (q, p)-space. These islands
shrink with decreasing ε, becoming arbitrarily small as ε approaches εu. In this limit,



Ordered undulations and undulation chaos 271

the island is located at q ≈ qc and p ≈ 0 and its area approaches zero. The islands
reach their maximal size for 0.1 � ε � 0.2, before they shrink again as the transition
to crawling rolls is approached.

The limits of the islands in figure 5 are given by amplitude instabilities (s =0
in (4.8)) at the low-p boundary of the islands and long-wavelength modulational
instabilities (|s| � qc) at the high-p boundary. In the former case, the amplitude A is
virtually unaffected, whereas the other amplitudes in (4.13) are perturbed as follows:
B → B + δ, C → C − δ, with |δ| � B . Due to the asymmetry B 	= C, a non-vanishing
component Ux develops, i.e. a mean flow which probably drives the defect-turbulent
state. By analogy to the aligning effect of the basic profile U0 on the longitudinal
rolls, Ux will tend to turn the roll axis as well.

In contrast to the amplitude instabilities, the modulational instabilities (which
involve finite Floquet vectors s) will change the basic periodicity of the undulation
solutions. The main consequence of such a perturbation involves a mean-flow (along
x̂) contribution to vtor , which presumably induces defect chaos as well.

4.3. Simulations

Since the Galerkin method is restricted to the analysis of stationary periodic states
and their stability, direct numerical simulations of the OBE are needed to investigate
the time evolution of complex patterns. For that purpose, a previously developed
code (Decker, Pesch & Weber 1994; Pesch 1996) was generalized to cover inclination
(Brausch 2001). This code represents all fields by an appropriate Galerkin ansatz like
(4.7) and treats the (x, y)-dependence in Fourier space by a pseudospectral technique.
By using a small (<10) number of modes in the ẑ-direction, reliable simulations
of large-aspect-ratio systems can be conducted on common computer clusters in a
reasonable time. In the (x, y)-plane, our simulations covered areas up to 40d × 75d ,
where we used up to 384 Fourier modes in either direction. Periodic boundary
conditions have been used except in a few cases, where we introduced subcritical ε

ramps to suppress convection at the sidewalls to approximate experimental conditions.
We typically found the same bulk behaviour in both cases for simulation domains of
size 40d × 40d or greater.

The time integration in the simulations was started either from random initial
conditions (to scan the manifold of nonlinearly selected solutions) or from previously
calculated Galerkin solutions with superimposed noise to check for stability.
A representative example of stationary OU is shown in figure 6; the system
chose wavenumbers q = 1.05qc = 3.26 and p = 0.16qc =0.5, which are inside the
corresponding stability island in figure 5. The resulting amplitude ratio B/A= 0.59
(as specified in (4.13)) agrees with the Galerkin result to within 2 %. In fact,
OU were always selected for small ε < 0.03 when starting from random initial
conditions. At larger ε OU could still be obtained by starting from a stable periodic
Galerkin OU with a small amount of superimposed noise with a signal-to-noise
ratio of 10−4. This is demonstrated in figure 7(a). Here we started at ε = 0.10
and q = 1.05qc = 3.28, p = 0.31qc = 1.02 inside the corresponding stability region in
figure 5 and recovered the ideal Galerkin solution with B/A= 0.94. However, the
basin of attraction of the OU shrinks with increasing ε and the simulations starting
from random initial conditions typically settle into UC, as for example shown in
figure 7(b). The ensuing bistability between stationary perfectly ordered solutions
and dynamic weakly defect turbulent ones at larger ε is the main theme of this
paper.
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Figure 6. Simulation at γ = 30 and ε = 0.025 (R = 1750). (a) Stationary OU after 105 iterations
(2000tv), starting from random initial conditions. (b) Fourier spectrum of (a): pattern locked
perfectly into the resonant tetrad described by the amplitude equations.

(a) (b) (c)

Figure 7. Convection patterns at ε = 0.10 and γ = 30◦. (a) Numerical simulation started from
the Galerkin solution with superimposed Gaussian noise, showing perfect OU after reaching
steady state. (b) Numerical simulation started from Gaussian noise, with subcritical ε-ramp
simulating lateral boundaries. OU are visible in the upper left and UC in the lower right.
(c) Fourier-filtered shadowgraph image of homogeneous subregion of experimental cell.

5. Analysis of complex undulation patterns
In this section we discuss several approaches to characterizing STC in general and

the onset of chaotic undulations in particular. Section 5.1 explains how we identify
all topological defects in a shadowgraph image and generate a time series of the
total number of defects, N(t), from the consecutive images of an experimental run.
Section 5.2 deals with the pattern entropy S(t) and the transverse correlation length
ξ (t). Finally, in § 5.3 we discuss the statistical properties of the amplitudes A, B, C,
defined in (4.9).

5.1. Identification of defects

A shadowgraph (or simulation) image can be understood as the real part ψR of
a complex field ψ(x, y) = |ψ(x, y)| exp[iφ(x, y)] with modulus |ψ | and phase φ. To
construct ψ(x, y), we demodulate the image as illustrated in figure 8: after a two-
dimensional Fourier transformation, half of the modes in the Fourier plane are set to
zero (see figure 8a). A subsequent inverse Fourier transformation recovers ψ(x, y).
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Figure 8. Four views of a demodulated experimental convection pattern showing undulations
and defects. (a) Power spectrum ψ of experimental images, with the shaded region of Fourier
space discarded during reconstruction of the complex field so that ψ(q, p) = 0 for q < 0, where
(q, p) are wavenumbers associated with (x̂, ŷ)-directions. (b) Real part ψR of a Fourier-filtered
shadowgraph image at ε =0.10 with negative (left) and positive (right) defects. Uphill direction
is at the left side of the page. (c) Phase field φ: black is φ =0 and white is φ = 2π. The arrow
indicates an integration loop around a defect as given in (5.1). (d) Modulus of image, |ψ |.

As already discussed above the characteristic feature of a UC pattern is undulating
stripes containing topological point defects (dislocations) where an additional roll
segment ends inside the bulk of the pattern. Defects locally change the spacing
and orientation of the rolls and correspond to a simple root of ψ(x, y) ≡ ψR + iψI ,
where the subscripts represent the real and imaginary parts (Bodenschatz, Pesch &
Kramer 1988; Rasenat, Steinberg & Rehberg 1990; Walter, Pesch & Bodenschatz
2004). Moreover, complex analysis requires that the topological charge (or ‘winding
number’) n, defined by ∮

∇φ · ds = ±n2π (5.1)

becomes non-zero; only point defects with |n| =1 are found in UC.
To locate the zeros in ψ we have used the following efficient algorithm, suggested

by Egolf (private communication), which uses the fact that both ψR and ψI vanish at
each defect. To begin, we formed a set of four binary fields for ψR(i, j ) at each pixel
((i, j ) ∈ �) of the plane:

ψ̃
�i,�j
R (i, j ) =

{
1, ψR(i + �i, j + �j ) > 0

0, otherwise,
(5.2)

where (�i, �j ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} denote the neighbouring pixels of (i, j ).

The four binary fields ψ̃
(i,j )
R are then logically combined at each point to produce a

new binary field ψR(i, j ):

ψR =
(
ψ̃0,0

R ⊕ ψ̃0,1
R

)
∨

(
ψ̃0,0

R ⊕ ψ̃1,0
R

)
∨

(
ψ̃0,0

R ⊕ ψ̃1,1
R

)
, (5.3)
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where ⊕ is the XOR (exclusive OR) logical operator and ∨ is the OR logical
operator. Analogously, we define the new binary field ψI (i, j ). All points (i, j ), where
ψR(i, j ) =ψI (i, j ) = 1, serve as candidates for a defect. To ensure that such a point
is indeed a defect, the contour integral in (5.1) is evaluated by traversing its eight
nearest neighbours. A defect candidate is accepted if the contour integral yields ±2π,
assigning the appropriate sign to the defect based on the sign of the integral. Counting
the defects (i.e. the zeros of ψ(x, y)) for a time series of frames yields N(t).

5.2. Global stochastic properties of UC

This continues the analysis of the representative case of inclination angle γ =30◦.
A prominent feature of the experiments is that at higher ε(� 0.10) the competing
attractors – OU with few defects and UC with many as shown in figure 1 – are
alternately visited in time, while the system remains persistently chaotic at lower
ε. A similar bistability was also found in the case of (isotropic) Rayleigh–Bénard
convection: Cakmur et al. (1997) observed competition between ideal rolls (IR) and
the spatiotemporally chaotic state of spiral defect chaos (SDC). In that case, however,
a transition from SDC to IR was observed by decreasing ε. There, the analysis of the
spectral entropy S(t) (Neufeld & Friedrich 1994) was illuminating, and the concept
is applied here as well. S(t) is defined as

S(t) = −〈P (q, p, t) lnP (q, p, t)〉, (5.4)

where P (q, p, t) is the normalized spectral distribution function that describes the
power in the mode with wave vector (q, p) at time t and the average 〈 · 〉 is performed
over the (q, p)-plane.

The function S(t) provides a measure for order in a pattern: we have S = ln 6 for
OU described by the six modes of (4.13) while a disordered pattern has more modes
excited and S > ln 6. In fact, within anisotropic patterns (such as undulations) the
pattern entropy is even better suited for characterizing disorder than it is in isotropic
systems. For instance, for convection in a horizontal layer (ordinary Rayleigh–Bénard
convection), target or spiral patterns are commonly observed. The spatial power
spectrum of these patterns shows a densely filled annulus of excited modes (and thus
a high value for S) even though the state is well ordered. In the inclined case in which
the symmetry is broken such states do not exist.

Further characterization of the relative order of the pattern is possible using the
correlation length ξ in the transverse ( ŷ) direction obtained from the half-width at
half-maximum of the spatial autocorrelation functions, as demonstrated in figure 9.
In figure 9(a), the pattern is disordered, the spatial autocorrelation function is sharply
peaked at the origin and ξ is only a few d . In figure 9(b), the pattern is highly ordered
and shows correlations that fall off with a correlation length approaching the length
of the cell. Furthermore, in line with the theoretical analysis in § 5.3, inspection of
figure 9 shows that the wavelength of the spatial oscillations of the autocorrelation
function along the ŷ-direction in the disordered case is about twice the value in the
ordered case.

Figure 10 shows example time traces of N(t), S(t) and ξ (t) for ε = 0.08 in the UC
regime and also for ε = 0.17, well above the transition to competition between UC
and OU. The dashed vertical lines for the case ε = 0.17 mark the times of the images
shown in figure 1, which exemplify the cases of high S (disordered UC) and low S

(ordered OU), respectively. For each time series of the quantities X = S(t), N (t), ξ (t)
we obtain the time average 〈X〉 and the standard deviations ΣX ≡

√
〈X2〉 − 〈X〉2.
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(a) (b)

Figure 9. Spatial autocorrelations 〈M(r)M(r − r0)〉 of the modulus M = |ψ | of the complex
demodulation functions ψ associated with the images shown in figure 1: (a) UC and (b) OU.
Images are rotated by 6◦ clockwise with respect to the coordinate system shown in figure 1,
due to a slight misalignment of the experimental cell.
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Figure 10. Time trace of: (a, d) spectral entropy S, (b, e) number of defects N , and (c, f )
transverse correlation length ξ at ε = 0.08 (a, b, c) and ε = 0.17 (d, e, f ), extracted from
shadowgraph images. Data were sampled every 10 seconds (6.5τv). In (d) dashed line (i)
corresponds to the time of the image in figure 1(a) (UC) and line (ii) to figure 1(b)(OU).

For ε = 0.17, the quantities S(t), N(t), and ξ (t) show considerably larger fluctuations
than at ε =0.08. In fact, at higher ε the system alternately visits the OU and UC
states, and we observed a number of instances where the system remained in the OU
state for more than 500τv . In ordered patterns, the values of N(t) and S(t) are smaller
than in the disordered state, while ξ (t) shows the opposite behaviour. To quantify the
relation among these quantities, in figure 11 we show the temporal cross-correlations
CX,Y (�t) = 〈(X(t + �t) − 〈X〉)(Y (t) − 〈Y 〉)〉/(ΣXΣY ) for X, Y ∈ S(t), N (t), and ξ (t).
In all cases, the cross-correlations at ε = 0.17 are more pronounced, in line with the
larger fluctuations of S(t), N(t), ξ (t) seen in figure 10. The cross-correlation curves
are consistent with our general physical picture: the maximum in the S–N curve at
�t = 0 expresses the strong correlation between S, N at equal time while the minima
in the N–ξ , ξ–S curves at �t = 0 denote the strong anticorrelation. The secondary
extrema at |�t | ≈ 500tv in figure 11 might reflect an average internal frequency (all
visible to some extent in figure 10) associated with the switching between more and
less ordered states. This would account for the observed anticorrelation between S
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Figure 11. Cross-correlations C(S,N ), C(N, ξ ), C(ξ, S) of spectral entropy S(t), number of
defects N (t) and correlation length ξ (t) from left to right.
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Figure 12. (a) Mean correlation length 〈ξ〉 and (b) its standard deviation Σξ as a function
of ε. (c) Mean spectral entropy 〈S〉, and (d) its standard deviation ΣS as a function of ε.
Solid lines ∝ √

ε − εu are plotted as guides to the eye. Triangles are for short runs in which
temperature steps between them were either increasing (�) or decreasing (�).

and N with a time delay of �t ≈ 500tv and the corresponding correlations apparent
in the N–ξ , ξ–S curves. Much longer experimental runs would be needed to quantify
this phenomenon and the underlying mechanism; with such runs, we would expect
the asymmetry of the cross-correlation functions between negative and positive �t to
vanish as well.

The transition to increasing order, i.e. the appearance of long-living OU states for
ε ≈ 0.1 is a peculiar one, in that the system does not remain in the new ordered
state but intermittently returns to the chaotic state. To characterize this transition
we measured the quantities 〈S〉, 〈ξ〉, ΣS and Σξ at each ε; see in figure 12. All four
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plots exhibit changes near a transition point εt ≈ 0.1. For instance 〈ξ〉(ε) increases
sharply there, indicating that the size of ordered regions is strongly growing for ε > εt .
Both ΣS(ε) and Σξ (ε) show that the fluctuations increase in magnitude as well when
ε > εt . No hysteresis was observed across this transition. Note that this transition also
corresponds to previously described (Daniels & Bodenschatz 2002, 2003) changes in
the defect dynamics above ε = 0.10: for instance a decrease in the temporal velocity
correlation.

5.3. Local amplitude analysis

The analyses presented above are not specific to UC. Thus, we have used an
additional method to characterize slightly disordered undulation patterns. The idea is
to use the ansatz in (4.13) locally, i.e. with real space- and time-dependent quantities
(q, p, A, B, C). The first step is to extract from our experimental images the complex
function ψ(x, y) as explained at the beginning of the present section (see figure. 8).
Then q(x, y) is obtained by the local wavenumber method described in Egolf et al.
(1998), by calculating

q(x, y) =

√
−∂2

xψ(x, y)

ψ(x, y)
. (5.5)

Near zeros of ψ(x, y), for instance at topological defects, the wave-vector field
q(x, y) is ill-defined and yields unphysically large values, which can safely be identified
and neglected. To determine the local undulation wavenumber p(x, y) we use the
squared modulus of ψ , which can be locally well parameterized by the following
analytical expression (see (4.13)):

|ψ |2(x, y) = A2 + B2 + C2 − 2BC cos (2py) + 2A(B − C) cos (py). (5.6)

Consequently, the local wavenumber analysis applied to each line of |ψ |2(x, y)
(see figure 8d) reveals the local undulation wavenumber p(x, y), which is constant
for an ideally ordered undulation pattern. According to (5.6), the periodicity of |ψ |2
along the ŷ-direction is characterized by the local wavelength λy = π/p(x, y) in the
disordered case B 	= C. For B ≈ C, (5.6) reduces to

|ψ |2 = A2 + 2C2 − 2C2 cos (2py) (5.7)

and the corresponding wavelength in the ordered case is thus reduced by a factor of
2, so that λy = π/(2p(x, y)). This feature is reflected in the autocorrelation function
of |ψ(x, y)| (see figure 9) and has been mentioned there already.

Figure 13 shows sample wavenumber distributions of (q, p) for the experimental
convection patterns cells together with the stability islands from figure 5. The mean
values of q, p (the small circle) are in the stable regime. We previously observed
the mean value of p to be proportional to

√
ε − εu, where εu agrees with the

Galerkin prediction for the onset of OU (Daniels & Bodenschatz 2002). The mean
roll wavenumber q does not vary significantly with ε. Inspection of figure 13(a) shows
that the distribution of the q, p values overlaps with the stability regions in a wide
range, and the most probable value (circle) is within the stable regime. Near defects,
the undulation patterns are strongly deformed and local wavenumbers can be pushed
outside the stability regions.

Further insight arises from distributions of the amplitudes A, B and C. For an
ideal undulation pattern characterized by the constant wavenumbers q, p we also
know the amplitudes A and B =C according (4.11). As demonstrated in figure 13(b)
the ratio C/A varies significantly with wavenumber. Thus, it is not surprising that a
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Figure 13. (a) Stability islands at ε = 0.1 from figure 5, showing sample wavenumber
distributions for each of the images in figure 7. Peaks of the distributions are given by
symbols; lines are the half-maximum of the distributions showing UC. (b) Corresponding
theoretical amplitude ratios |C/A| for q = 3.1, 3.3, 3.5 within the stable region.

disordered pattern with a fairly wide range of local q, p values (as shown in figure 13)
is characterized by a broad distribution of the amplitudes A, B 	=C as well.

We determined A, B and C from the local maxima and minima of the experimental
|ψ |2. Simple analysis of (5.6) shows that for B 	= C the minima of |ψ |2 within λy =2π/p

differ in magnitude, while the maximal values are equal. This can be seen in figure 8(d),
where the vertical minimal stripes differ in their greyscale values from the adjacent
ones. We have recorded the differences of these neighbouring minima along each row
of the |ψ |2 images. A local fit to (5.6) yields the local values of B/A and C/A. Thus,
we obtain an ensemble of B/A and C/A values over the whole (x, y)-plane, from
which we obtain the median values shown below. The neighborhoods of defects, where
the analysis fails, were left out. By comparing only the differences of neighbouring
minima but not their locations, we lose any phase information of the cosine functions
in (5.6), which in any case would be lost in the vicinity of defects. Also note that
the transformation y → y + π/p results in B ↔ C. Thus, there is no conceptional
difference between the two cases B <C and B >C in our dataset, and they have been
combined to improve statistics. We have chosen the convention B <C to present the
amplitude ratios. An advantage of our amplitude analysis is its independence from
q(x, y) and p(x, y). Furthermore, the procedure is not sensitive to a small tilts of the
overall undulation pattern.

As shown in figure 14, the median value of |C/A| is observed to be low (0.2) near
onset and rise with ε. For small ε the peak in |B/C| is near the ideal OU value
B/C = 1. With increasing ε the intermittently visited UC states are responsible for an
increasing asymmetry B 	=C, which is then reflected in the average ratio in figure 14
as well. The averages of the ratios C/A and B/C shown in figure 14 are obtained
from a sequence of the corresponding distribution functions, examples of which are
shown in figure 15. We observe that the distributions become slightly narrower at the
higher ε, which might indicate the increased prevalence of OU.

One feature not important for the present analysis is a weak drift of the experimental
patterns down the cell (Daniels & Bodenschatz 2002). This is also the reason why
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Figure 15. Histograms of |C/A| and |B/C| at two values of ε. Averaged experimental points
(solid) are taken over 500 images, with comparison to single images (dashed, dotted) as
specified in legend for ε = 0.17.

undulations are mostly invisible in the time-averaged image shown in figure 4(b). We
associate the drifting behaviour with non-Boussinesq effects, which combined with
the effect of the basic shear render the growth rates of σB, σC of the oblique modes
in (4.11b) and (4.11c) complex. Between ε = 0.08 and ε = 0.17 a drift speed of about
0.05d/τv has been measured, which is substantially smaller than the value d/τv ≈ 1
observed above γc2. The difference may be partially accounted for by the strength of
the shear flow, which is greater for steeper inclinations.

6. Discussion
The central topic of this work is the analysis of the competition between OU and

UC. The Galerkin analysis of the OBE demonstrates the existence of linearly stable
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undulation patterns above the wavy instability up to fairly large ε. As shown in
figure 5 the wavenumbers q, p, which characterize the three dominant modes A, B, C

(equation 4.13) cover a finite region in q-space, which is maximal near ε =0.1. The
linear stability of OU is confirmed by direct simulations of the OBE when starting
from a Galerkin solution with noise (see figure 7a). However, the basin of attraction of
the OU shrinks with increasing ε. At small ε starting from random initial conditions
the system selects OU (see figure 7a), albeit after a long transient. In contrast, at
larger ε the system seems to remain in a UC state that competes with regions of OU
(see figure 7b). Within the spatial and temporal limitations of our simulation we are
unable to determine whether we observe UC as a long-lived transient or as a truly
asymptotically selected state.

In the experiment we do not observe ideal OU in any regime. At small ε, for
instance at ε =0.08, the number of defects N in our sample area (the box in figure 4)
varies between 3 and 18; the average is about N = 10 with fluctuations between these
extrema (see figure 10b). For larger ε the situation is different (see figure 10d). We
find an intermittent switching between states with very few defects (∼4 in figure 1b)
and others with many (up to N � 25), as in figure 1(a). On the other hand, the system
can remain for long times in either of these states, switching intermittently between
them.

We interpret this scenario as reflecting the competition between OU and UC states.
Defects distort the patterns and may even produce regions of the cells where part
of the the wavenumber distribution lies outside the stability regions. The creation
of defects and their dynamics is a well-known mechanism allowing the system to
return to the stable regime. In the optimal case, this is achieved when oppositely
charged defects annihilate each other or move to the boundaries. This process takes
time and is susceptible to imperfections in the cell (particularly the boundaries), but
there are also cases (such as SDC; Bodenschatz et al. 2000) where the system never
settles down to the stable attractor but switches intermittently back and forth between
almost perfect ordered and strongly disordered states as in our case.

In contrast to similar and previously studied anisotropic systems like the
electrohydrodynamic instability in nematic liquid crystals (Rasenat et al. 1990), the
basic equations in inclined layer convection are simple enough to be amenable
to a precise theoretical analysis. Therefore, we have been able to characterize the
ideally ordered undulation patterns and their stability in three dimensions, and the
evolution of these states into those with higher complexity has been described by
direct numerical solutions of the underlying Boussinesq equations. In addition, we
have analysed experimental results from the same regime using a variety of pattern
analysis methods, including defect statistics and correlation functions, providing a
means of direct comparison of theory, simulation and experiment. Through these
analyses, we have demonstrated the crucial importance of topological defects in the
competition between chaotic and well-ordered patterns. While numerical simulations
demonstrate stable ordered undulations over a range of ε above the secondary
instability, such a state is only intermittently accessible in experiments. Interestingly,
this ordered state is more prevalent at higher driving, where the stability region for
the undulations is largest.

Motivated by the theoretical analysis, we have analysed our system using not only
established methods, but also quantities specifically tailored for the particular type of
disorder discussed in this paper. In this way, we have arrived at a reduced dynamical
description in terms of the undulation amplitudes, which represent the complexity
of the actual system in a clear manner. An interesting extension to this approach
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would be to map these complex spatiotemporal dynamics to a system of generic
Ginzburg–Landau equations; for a recent example see Madruga, Riecke & Pesch
(2006).
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