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A theoretical study is presented of convection in a horizontal fluid layer heated

from below or above which is periodically accelerated in its plane. The analysis

is based on Galerkin methods as well as on direct numerical simulations of the

underlying Boussinesq equations.

Shaking in a fixed direction breaks the original isotropy of the layer. At onset

of convection and at small acceleration we find longitudinal rolls, where the

roll axis aligns parallel to the acceleration direction. With increasing acceler-

ation amplitude a shear instability takes over and transverse rolls with the

axis perpendicular to the shaking direction nucleate at onset. In the nonlinear

regime the longitudinal rolls become unstable against transverse modulations

very close to onset which leads to a kind of domain chaos between patches of

symmetry degenerated oblique rolls.

In the case of circular shaking the system is isotropic in the time average sense,

however, with a broken chiral symmetry. The onset of convection corresponds to

the transverse roll case studied before with the roll axis selected spontaneously.

With increasing Rayleigh number a heteroclinic cycle is observed with the roll

changing its orientation periodically in time. At even higher Rayleigh number

this heteroclinc cycle becomes chaotic similarly as in the case of the Küppers-

Lortz instability.

1. Introduction

The topic of convection in fluid layers heated from below or from above that are

subjected to time periodic acceleration has received considerable attention in recent years.

The book by Gershuni and Lyubimov (1998) provides a good overview of the numerous

cases that are obtained as the direction of acceleration and the inclination of the layer

with respect to the horizontal are varied. The case of an extended horizontal layer in the
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presence of a periodic vertical acceleration has been of special interest since it preserves

the property of horizontal isotropy. It has been recently realized in experiments (Rogers

et al., 2000, 2003, 2005); the structure of convection exhibits square superlattices besides

other types of patterns in excellent agreement with the theoretical predictions.

Another special case is the horizontal fluid layer subjected to horizontal accelerations

which is the issue of this paper. This problem has first been considered by Gershuni

et al. (1996) for a fixed direction of the acceleration and for the single value P = 1

of the Prandtl number P in the linear regime. In the present paper we extend these

investigations in several ways. We first study the influence of variations of P on the onset

of convection and then proceed into the nonlinear regime to capture the stability of finite-

amplitude roll solutions. Particular attention will be devoted to the study of a rotation of

the acceleration direction in the horizontal plane with constant angular velocity. In this

case it must be expected that in the time average horizontally isotropic conditions prevail.

In particular chaotic forms of convection are found in this situation, which resemble the

domain chaos originating from the Küppers-Lortz instability (Küppers and Lortz (1969);

Clever and Busse (1979)) in a convection layer rotating about a vertical axis.

The problem of convection in the presence of time-periodic oscillations is of funda-

mental interest because of a wide variety of possible new convection patterns and the

transition to chaotic flows. The understanding of convective processes in the presence

non-stationary force fields has also practical relevance in space technologies such as the

growth of crystals (Kozlow et al. (2004)).

In section 2 we shall first discuss the mathematical formulation of our problem and

sketch briefly the numerical methods. In section 3 a linear stability analysis of the ho-

mogeneous basic state is used to describe the properties of the system at onset of con-

vection. We first deal with cases of uni-directional acceleration, before accelerations that

are isotropic in the time averaged sense will be considered. Various destabilization mech-

anism of convection roll patterns at finite amplitudes are analyzed in section 4. As a

consequence a complex spatio-temporal dynamics is excited which is addressed by fully

numerical simulations of the basic equations in section 5. The paper closes with a con-

cluding discussion in section 6.

The patterns and their stability depend sensitively on a variety of experimental control

parameters, like the dimensionless applied temperature gradient (Rayleigh number), the

Prandtl number, the frequency, the direction and the amplitude of the applied acceler-

ation. In selecting interesting regions in the parameter space we have been guided by

possibilities for experimental realisations in the laboratory.
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2. Mathematical background

We consider a horizontal fluid layer with fixed temperatures T = T1 and T = T2

prescribed at its upper and lower boundaries, respectively, that is subjected to a harmonic

acceleration G(t) with frequency Ω of the form

G(t) = −g(ez +
bxΩ2

g
ex sin Ωt+

byΩ2

g
ey cosΩt). (2.1)

where −gez is the acceleration of gravity opposite to the direction of the vertical unit

vector ez. The additional terms are caused by a periodic shaking of the fluid layer with

amplitudes bx, by in the horizontal directions described by the unit vectors ex and ey,

respectively. We employ the Boussinesq approximation in that all material properties are

regarded as constant, except for the temperature dependence of the density described by

ρ(T ) = ρ0 (1−α(T−T0)), which is kept only in the buoyancy terms. Here T0 = (T1+T2)/2

denotes the average temperature and α is the thermal expansion coefficient. We focus

the attention on systems with a large aspect ratio, where the lateral dimensions are much

larger than the layer height d.

We use d as length scale and the vertical diffusion time tv = d2/κ as time scale where

κ is the thermal diffusivity of the fluid. Furthermore νκ/αgd3 is chosen as scale for the

deviation Θ of the temperature from its purely conductive state with ν the kinematic

viscosity. We thus arrive at the following basic equations in dimensionless form:

P−1Dtv = −∇Π + (exGx sinωt+ eyGy cosωt)(Θ −Rz) + ezΘ + ∇2v, (2.2a)

DtΘ = R ez · v + ∇2Θ, with Dt =
∂

∂t
+ (v · ∇), (2.2b)

∇ · v = 0. (2.2c)

Here the Rayleigh number R, the Prandtl number P , the dimensionless frequency ω and

acceleration parameters Gx and Gy are defined by

R =
αg

νκ
(T2 − T1)d

3, P =
ν

κ
, ω =

Ωd2

κ
, Gx =

bxΩ2

g
, Gy =

byΩ
2

g
. (2.3)

All gradient terms on the right hand side of (2.2a) have been collected into −∇Π. In

the limit Gx = Gy = 0 the standard Rayleigh-Bénard convection (RBC) problem is

recovered.

The velocity field v can be decomposed as follows:

v = ex(RGxVx + Ux) + ey(RGyVy + Uy) + u, with u = v − v, (2.4)

where the overline indicates the horizontal average. The basic flow R(GxVx, GyVy , 0)

derives from equation (2.2a) for Θ = 0. Assuming an infinitely extended layer we obtain

the following analytical expressions for Vx, Vy which satisfy the no-slip conditions at
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z = ±0.5:

Vx(z, t) =
P

ω
[z cosωt+ Z1 cosωt+ Z2 sinωt] , (2.5a)

Vy(z, t) =
P

ω
[−z sinωt− Z1 sinωt+ Z2 cosωt] , (2.5b)

where

Z1 =
coshα cosβ − coshβ cosα

2(cos γ − cosh γ)
, Z2 =

sinhα sinβ − sinhβ sinα

2(cos γ − cosh γ)

and

α = γ(
1

2
+ z), β = γ(

1

2
− z), γ =

√

ω

2P
.

In the limit ω → 0, the solution for the basic flow corresponds to a time-periodic cubic

shear flow profile

Vx(z, t) =
1

6
(z3 −

z

4
) sinωt, Vy(z, t) =

1

6
(z3 −

z

4
) cosωt. (2.6)

Note the analogy to time-independent inclined layer convection (see e.g. Clever and Busse

1977; Daniels and Bodenschatz 2002). In this case a base flow profile, cubic in z, parallel

to the layer is also found.

The equations for the corrections Ux and Uy of the basic flow are obtained by a

horizontal average of (2.2a):

∂2

zzUx(z, t) = P−1∂tUx + P−1∂z(uzux) −GxΘsin(ωt), (2.7a)

∂2

zzUy(z, t) = P−1∂tUy + P−1∂z(uzuy) −GyΘcos(ωt). (2.7b)

Since the horizontal average of the solenoidal vector field u (2.4) vanishes the general

representation in terms of poloidal and toroidal components,

u = ∇× (∇f × ez) + ∇φ× ez ≡ δf + ηφ, (2.8)

can be used. The equations for the velocity potentials f and φ are obtained by operating

with δ and η on (2.2a):

∇4△2f + Gx sinωt∂2

xzΘ +Gy cosωt∂2

yzΘ −△2Θ

= P−1

(

δ · [(δf + ηφ) · ∇(δf + ηφ)]

+ [(RGxVx + Ux)∂x + (RGyVy + Uy)∂y + ∂t]∇
2△2f

− [(∂2

zz(RGxVx + Ux))∂x + (∂2

zz(RGyVy + Uy))∂y]△2f

)

, (2.9)

∇2△2φ + Gx sinωt∂yΘ −Gy cosωt∂xΘ

= P−1

(

η · [(δf + ηφ) · ∇(δf + ηφ)]

+ [(RGxVx + Ux)∂x + (RGyVy + Uy)∂y + ∂t]△2φ

− [(∂z(RGxVx + Ux))∂y − (∂z(RGyVy + Uy))∂x]△2f

)

, (2.10)
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where the two-dimensional Laplacian ∆2 = ∂2

xx +∂2

yy has been introduced. The equation

for Θ can now be written in the form

∇2Θ−R△2f = (δf + ηφ) · ∇Θ +

(

(RGxVx +Ux)∂x + (RGyVy +Uy)∂y + ∂t

)

Θ. (2.11)

Equations (2.7 -2.11) must be solved subject to the no-slip boundary conditions

f = ∂zf = φ = Θ = Ux = Uy = 0 at z = ±0.5. (2.12)

As a consequence of our restriction to large aspect ratio cells periodic boundary condi-

tions in the x, y plane are appropriate, which allow a description in terms of 2d-Fourier

expansions.

For simplicity, a symbolic notation for the Eqs.(2.7 -2.11) is used in the following,

C
∂

∂t
V (x, z, t) = LV (x, z, t) + N [V (x, z, t)|V (x, z, t)], withL ≡ A + RB, (2.13)

where the symbolic vector V = (Θ, f, φ,U) represents the different fields in our problem

and x = (x, y). The ground state corresponds to V (x, z, t) ≡ 0. The operators C, L are

linear differential operators, N describes the quadratic nonlinearities. Note that we have

made explicit the Rayleigh number R in the definition of L where the operators A,B

contain contributions periodic in time with the period 2π/ω.

In this paper we will mainly study ”roll” solutions of the problem posed by Eq. (2.13).

They are periodic in the plane (wavelength λ) along a certain direction, which includes

an angle χ with the x-axis, as well as periodic in time with frequency ω.

To construct the roll solutions we use a Galerkin representation: V (x, z, t) is expanded

into suitable complete sets of functions which ensure, that the spatial and temporal pe-

riodicities and the boundary conditions (2.12) are satisfied. In this way (2.13) is mapped

onto a system of nonlinear coupled ODE’s for the corresponding expansion coefficients.

For instance the temperature field is represented as:

Θ(x, z, t) =
∑

q

N
∑

n=1

Θ(q, n, t) exp[i q · x] sin[nπ(z +
1

2
)]. (2.14)

The q-vectors in Eq. (2.14) are given as integer multiples of the basis vector qr =

qr(cosχ, sinχ) with λ = (2π/qr) of the form q = mqr with −M 6 m 6 M .

For the velocity potentials f(x, z, t), φ(x, z, t) we use analogous representations, except

that for f the Chandrasekhar (1961) functions Cn(z) replace the trigonometric functions

in (2.14). The reality of all fields requires Θ(q, n, t) = Θ∗(−q, n, t), etc., where the star

indicates the complex conjugate.

By representing Θ(q, n, t) as the Fourier series:

Θ(q, n, t) =

K
∑

k=−K

θ(q, n|k) exp[i kω t] (2.15)



6 Pesch et al.

the periodicity of Θ in time, i.e. Θ(x, z, t) = Θ(x, z, t+ 2π/ω), is guaranteed as well. An

analogous expansion for f(q, n, t), φ(q, n, t) defines their expansion coefficients f(q, n|k)

and φ(q, n|k), respectively. The correction U(z, t) = (Ux, Uy, 0) of the basic flow is rep-

resented as follows:

U(z, t) =

N
∑

n=1

K
∑

k=−K

U(n|k) sin[nπ(z +
1

2
)] exp[i kω t]. (2.16)

The sums appearing for instance in (2.14, 2.15, 2.16) have to be truncated. For the

range of parameters considered in this paper we have mostly used the truncation pa-

rameters N = 5,K = 7,M = 3, which requires already the solution of 2040 nonlinear

equations for the expansion coefficients in the nonlinear regime. To test the accuracy

of our results we have increased N,K,M separately in steps of two, until the changes

remained less than 1%.

Let us first focus on the case of unidirectional shaking, Gy = 0. We have to distinguish

two relevant cases namely the longitudinal rolls (χ = π/2, qr = (0, p)), which depend

only on y and the transverse rolls (χ = 0, qr = (q, 0) which depend only on x.

For transverse rolls one deduces Uy = φ ≡ 0 from (2.7, 2.10). Furthermore inspection

of (2.7 -2.11) shows that the transformation:

Tx : (x, z, t) → (x +
π

q
, −z, t+

π

ω
) (2.17)

either reproduces or reverses the sign of the spatially and temporally periodic solutions,

Tx(Ux,Θ, f) → p (Ux,−Θ,−f) with p = ±1. (2.18)

Near onset the roll solutions show almost exclusively the even-parity (p = 1) signature.

The case of longitudinal rolls (χ = π/2)) is simpler. The fields Θ and f are not

influenced by shaking (i.e. they are time independent) and reduce thus to the standard

RBC solutions without shaking. In contrast to the transverse case φ and Uy are finite.

In close analogy to Tx a transformation Ty can be defined as

Ty : (y, z, t) → (y +
π

p
, −z, t+

π

ω
), (2.19)

which again either reproduces the periodic solutions or reverses their sign:

Ty(Ux, Uy,Θ, f, φ) → p (Ux, Uy,−Θ,−f, φ) with p = ±1. (2.20)

Near onset only the even parity case p = 1 is realized in our case.

We now turn to uniformly rotating acceleration with Gx = Gy which can be realized by

superimposing periodic shaking in two orthogonal directions with a phase shift of π/2 in

time (see (2.1)). Thus the longitudinal steady roll solution does not exist. On the other

hand, it is easy to see that the roll solution characterized by a wavevector q = (q, 0)

coincides with the transverse solution in the unidirectional case with respect to the Θ

and f components. In addition, however, we have a nonzero toroidal potential φ, which
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is slaved to Θ, f . Obviously the roll solutions are highly degenerate: for any solution

characterized by a basis wavevector qr = (q, 0) (see (2.14)) there exists a continuous

manifold of equivalent solutions of the same form with a rotated wave vector qr =

qr(cosχ, sinχ), where the arguments [i kωt] of the exponential functions inside the time

expansion of the form (2.15) are replaced by [i k(ωt+ χ)].

3. Linear analysis

In order to investigate the stability of the basic state we linearize (2.13) about V ≡ 0,

i.e. we neglect the nonlinearity N . There is no need to consider (2.10) since φ does not

enter the linearized versions of (2.9, 2.11). Once f and Θ have been determined the

toroidal contribution to the velocity u can be computed.

As a consequence of the explicit periodic time dependence of the linear operator the

linearized equations are solved with the Floquet ansatz:

V (x, z, t) = exp [σt+ iq · x]V lin(q, z, t); q = (q, p), x = (x, y) (3.1)

with V lin(q, z, t) = V lin(q, z, t+2π/ω). Thus we arrive at the linear eigenvalue problem:

σ(q, R) CV lin(q, z, t) = (A + RB − C
∂

∂t
)V lin(q, z, t). (3.2)

We are interested in the growth rate, σ0(q, R), i.e. the eigenvalue σ(q, R) with the largest

real part. The condition Re[σ0(q, R)] = 0 yields the neutral surface R0(q) with its mini-

mum values Rc (the critical Rayleigh number) at the critical wave vector qc.

Eq. (3.2) is solved by the Galerkin method as discussed in the preceding section,

which includes, for instance, the following ansatz for the temperature component, Θlin,

of V lin(q, z, t):

Θlin(q, z, t) =
N

∑

n=1

K
∑

k=−K

θlin(q, n|k)exp[i k ωt] sin nπ(z + 1/2). (3.3)

The analogous expansion for the f component of Vlin is characterized by the expan-

sion coefficients flin(q, n|k). Thus we arrive at a linear algebraic eigenvalue problem,

which yields σ0(q, R) and the corresponding expansion coefficients θlin, flin of the linear

eigenvector.

If the imaginary part of σ0(q, R) vanishes together with its real part at q = qc, R = Rc

the bifurcation is stationary; otherwise we speak of an oscillatory (Hopf) bifurcation. In

fact we did not find oscillatory bifurcations in the present system and Im[σ0(q, R0(q))] =

0 does hold near the minimum of the neutral curve (q ≈ qc) in all cases. Note that in this

case the neutral curve R = R0(q) can directly be identified with the smallest eigenvalue

λ̃ of the (generalized) eigenvalue problem (A − C∂/∂t + λ̃B)Vlin = 0 (see Eq. 3.2) and

can thus be calculated numerically without much effort.

At first inspection our general finding Im[σ0(qc, Rc)] = 0 looks surprising. Typically for
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the majority of periodically driven systems there exists the possibility of a subharmonic

bifurcation, i.e. Im[σ0(qc, Rc)] = ω/2. However, the driven oscillations investigated in

this paper belong to a category that does not exhibit subharmonic responses in contrast

to the case of a vertically oscillated convection layer ( Rogers et al. (2005)).

The origin for the absence of a subharmonic instability has been well elucidated in a

paper by Or(1996), see also Schulze (1999). When the representation (3.3) for Θ and the

corresponding ones forf and φ are inserted into the linearized equations (2.7 -2.11), one

arrives at the following linear system for the ”vector” v of the expansion coefficients:

dv

dθ
= [A + iP (θ)]v (3.4)

which is identical to Eq. (A.1) in Or (1997) or Eq. (2) in Schulze (1999) with θ = ωt.

The matrices A,P are real and the condition P (θ + π) = −P (θ) holds. Thus Eq.(3.4)

possesses the conjugate-translation symmetry according to which v∗(θ + π) = Kv(θ),

where K is an arbitrary complex constant. As a consequence subharmonic solutions are

precluded (Or (1997); Schulze (1999)).

As a result of the symmetries of our problem discussed before in connection with

equations (2.18, 2.20) the possible eigenvectors separate into two classes. The first one

(even parity, p = 1) is characterized by θ(qc, n|k) = f(qc, n|k) = 0 for even |k+n|, while

for the second, odd-parity class θ(qc, n|k) = f(qc, n|k) = 0 holds for odd |k+n|. As in the

standard RBC case the even parity-class yields almost exclusively the critical properties,

where we found the coefficient θ(qc, n = 1|k = 0) to be the leading one.

In the following we will separately investigate the case of unidirectional shaking (Gy =

0) and of circular shaking (Gx = Gy).

3.1. Linear analysis for unidirectional shaking

In this section we focus on the special case Gy = 0. There are two distinguished types of

solutions of the form (3.1):

• Longitudinal roll solutions with wavevector q = (0, p) which are time independent

and where the neutral curve Ry0(p) ≡ R0(q) and thus its minimum Ry0(pc) ≡ Ry = 1708

at the critical wavevector qc = (0, pc) with pc = 3.117 does not depend on the system

parameters. This solution is thus identical to the two-dimensional RBC solution in the

absence of shaking except for an additional oscillating component ux(y, z, t) of u arising

from the toroidal potential φ(y, z, t) (see (2.8, 2.10 )) an example of which is shown

in figure 1. Its sinusoidal dependence on time reflects the buoyancy of the horizontal

acceleration and the advection of the vertical velocity component of the longitudinal

rolls by the oscillatory base flow. The other velocity components are only affected when

the longitudinal rolls become unstable to three-dimensional disturbances in the nonlinear

regime as will be discussed in section 4.
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x

Figure 1. Velocity component ux (arbitrary units) parallel to the axis of longitudinal convection

rolls for Gx = 3.6, ω = 50 and P = 1. The solid, dash-dotted, dashed and dash-double dotted

lines show the z-profiles at y = 0 for the different times t = nπ/(2ω) with n = 0, 1, 2, 3,

respectively.

• Transverse roll solutions with q = (q, 0) for which the neutral curve Rx0(q) ≡ R0(q)

and its minimum Rx0(qc) ≡ Rx together with the critical wavevector qc = (qc, 0) become

complicated functions of the parameters Gx, P and ω.

The analysis of general 3d-solutions with q = (q, p) reveals that for arbitrary values of

the parameters Gx, P, ω either the longitudinal or the transverse roll solutions yield the

critical Rayleigh number. Since the longitudinal rolls are well understood from standard

RBC we shall restrict the discussion to the solutions of the transverse roll type.

In figures 2, 3, 4 the critical Rayleigh numbers Rx for the onset of transverse rolls have

been plotted as functions of Gx and ω for three different Prandtl numbers. The curves

for Rx always start Gx = 0 with the RBC value of Rx = 1708 and increase, owing to the

stabilizing influence of the shear, with increasing Gx as long as ω is sufficiently small. At

the same time the wavenumber q decreases in order to diminish the effect of the shear

on the convection rolls. For sufficiently high values of Gx, however, the time dependent

shear becomes destabilizing at Prandtl numbers of the order unity or less and leads to

decreasing values of Rx with increasing Gx. The transition from the stabilizing to the

destabilizing role of the shear is shifted to increasing values of Gx with increasing ω. For

values of ω in excess of 33 (50) in the cases of P = 0.5 (P = 1), this scenario is modified

in that Rx < Ry = 1708 already at small values of Gx as can be seen in figures 2 and 3.

The structure of the transverse roll solutions as a function of time is displayed in figures

5 and 6 for two exemplary cases. The graphs are based on the Galerkin solutions near

onset at ǫ = (R − Rx)/Rx = 0.2. While the spatial dependence in the weakly nonlinear

regime reflects the linear solutions at onset, we obtain in this way some finite amplitude

properties as well as, for instance, the modifications of the basic flow U . Although in

figure 5 the oscillatory shear exerts a stabilizing influence while the opposite effect occurs
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Figure 2. Critical Rayleigh numbers Rx for the onset of transverse roll convection at P = 0.5

as functions of Gx for different values of ω as indicated. Corresponding values of the critical

wavenumbers q (measured on the right ordinate) are given by the lower set of lines. Also indicated

by the thin short-dashed line is the value Ry = 1708 for the onset of longitudinal rolls.
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Figure 3. Same as figure 2, but in the case P = 1.

in the case of figure 6, the velocity structures are rather similar in both cases. Only the
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Figure 4. Critical Rayleigh numbers Rx (thin lines) for the onset of transverse roll convection

at P = 6 as functions of Gx for ω = 50. Corresponding values of the critical wavenumbers qc

(measured on the right ordinate) are given by the lower set of thick lines. Solid (dashed) lines

correspond to the even (odd) parity case.
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Figure 5. Lines of constant velocity vx in transverse roll convection at four different times

(upper row, t = nπ/2ω, n = 0, 1, 2, 3, from left to right) in the case Gx = 3.6, ω = 50 and P = 1.

Corresponding isotherms of Θ are displayed in the lower row. Solid (dashed) lines indicate

positive (negative) values.

fluctuating component of the temperature exhibits the inhibiting influence of the stronger

shearing action in the case of figure 6.

The rather rapid changes, kinks and even jumps in the dependence of the critical

Rayleigh number Rx on Gx for larger values of the latter parameter correspond to the
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Figure 6. Same as figure 5, but in the case Gx = 12.5, ω = 50 and P = 1.

appearance of double minima of the neutral curve Rx0(q) and are reflected in the jumps

of the critical wavenumber qc which also have been plotted in the figures. Jumps in

the values of Rx are obtained when the neutral curves Rx0(q) form isolas as shown for

example in figure 7 . The eigenfunctions Vlin(x, z, t) corresponding to the curves in figures

2 and 3 have always even parity. In the case of P = 6 as shown in figure 4, however,

the even-parity mode is replaced by the odd-parity mode as the preferred one when Gx

exceeds a value of the order unity. As the Prandtl number decreases the critical Rayleigh

number for the onset of the antisymmetric mode increases and for P < 2 the symmetric

mode is preferred. The curves of figure 4 have been plotted for only a single value of ω

since for other values the curves are rather similar except for a shift in Gx. In the case

ω = 40, for example, the antisymmetric mode replaces the symmetric one already at

Gx = 0.85.

Of some interest is also the onset of instability in the case of negative Rayleigh numbers,

i.e. in the presence of a stably stratified density distribution caused by heating from above.

The basic state is still described by the flow exRGxVx (2.7) and the corresponding linear

temperature profile, but T2−T1 and thus R are now negative. The results of the stability

analysis are shown in figures 8 and 9. Since the instability is caused by the shear of the

basic flow the relation −RxGx = const. may be expected for the critical Rayleigh number

−Rx. Because of the additional stabilizing buoyancy effects, however, |Rx| decreases with

increasing Gx more strongly than G−1

x .

The results for the onset of transverse roll instabilities for positive as well as negative

values of Rx can be compared with the corresponding results obtained in the case P = 1

by Gershuni et al. (1996). Good agreement has been found. It should be noted that
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Figure 7. Neutral curves R0x as functions of q for three values of Gx as indicated in the case

P = 1, ω = 50.
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Figure 8. The negative critical Rayleigh numbers −Rx (multiplied by Gx) for the onset of

transverse roll instabilities in the cases P = 0.5 (thin lines) and P = 1 (thick lines) as functions

of Gx for ω = 40 (solid lines), ω = 50 (dashed lines), ω = 60 (dash-dotted lines).

Gershuni et al. use R and RGx as independent parameters, while we have chosen R and

Gx.

3.2. Linear analysis for circular shaking

In this section we consider the critical properties in the case of circular shaking with

Gx = Gy. As already discussed at the end of Sect. 2 the transverse roll solutions for the

unidirectional acceleration describe the present situation as far as Θ and f are concerned.

As a consequence the linear results shown in Figures 2 through 10 can be directly used

in the circular case Gx = Gy. Figures 5 and 6, however, have to be supplemented by the

velocity component vy perpendicular to x, z-plane, which is shown in figure 10 for the

same parameters.
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Figure 9. Values of the critical wave numbers qc corresponding to the parameter values shown

in figure 8
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Figure 10. Lines of constant velocity component vy in the x, z-plane of transverse convection

rolls at Gx = Gy for the same times and parameters as displayed in figures 5 (upper row) and

6 (lower row).

4. Instabilities of convection rolls at finite amplitudes

To investigate the nonlinear regime we generate first the finite amplitude roll solutions

near onset for q = qc and R & R0(qc) = Rc in the framework of the familiar weakly
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nonlinear analysis, where one starts with the following ansatz:

Vroll(x, z, t) = A(qc, t)Vlin(qc, z, t) exp(iqc · x) + c.c.+ h.o.t.. (4.1)

Here h.o.t denotes higher-order terms and Vlin is the eigenvector for σ0(qc, R) (see (3.2)).

For the following it is convenient to extract the factor τ0(q) (the correlation time) from

the linear growthrate σ0(q, R) (see Sec. 3) and to use instead:

σ̃(q, R) ≡ τ0(q)σ0(q, R) ≈ ǫ−
R0(q) −Rc

Rc

,

with R = (1 + ǫ)Rc, τ
−1

0
(q) =

∂σ0(q, R)

∂ǫ

∣

∣

∣

ǫ=0

. (4.2)

Inserting (4.1) into the Boussinesq equations (2.7 -2.11) and systematically expanding

in terms of the small amplitude A(qc, t) up to cubic order one arrives at the amplitude

equation (Cross and Hohenberg (1993)):

τ0(qc)
d

dt
A(qc, R, t) = σ̃(qc, R)A− c|A|2A (4.3)

where σ̃(qc, R) = ǫ = (R−Rc)/Rc (see (4.2)). In all cases a positive cubic coefficient c has

been found. The bifurcation from the basic state is thus supercritical and the amplitude

is obtained as |A0|
2 = σ̃(qc, R)/c = ǫ/c.

The knowledge of A0 yields immediately the solution Vroll near onset. The latter

is then used as a convenient starting point to construct the fully nonlinear roll solu-

tions Vroll(x, z, t) in terms of a Galerkin expansion like (2.14, 2.15). A Newton-Raphson

method is used to determine the expansion coefficients.

The stability of rolls is examined as usual by a linearization of (2.13) about the steady

solution Vroll(x, z) with its spatial symmetry in the horizontal plane characterized by

the wavevector q,

V (x, z, t) = V roll(x, z, t) + exp [σnt+ is · x] δV (x, z, t). (4.4)

Here s = (sx, sy) denotes the Floquet wavevector and σn the disturbance growth rate.

Furthermore δV satisfies δV (x, z, t) = δV (x, z, t+2π/ω) and shares the spatial symme-

try with V .

In our numerical framework the perturbation δV (x, z, t) is represented as a Galerkin

ansatz of the type shown in (2.14). From (2.13) we thus arrive at a linear eigenvalue

problem for the corresponding expansion coefficients, which determines σn(q, R, s). The

lowest value of R for which the condition Re[σn(q, R, s)] = 0 holds determines the

secondary bifurcations from the roll state.

The nature of the destabilizing modes is characterized by the modulus |s| and the

angle ψ = ∡(s, q) between s and the wave vector q of the roll pattern. A comprehensive

exploration of the stability regimes of rolls is outside the scope of this paper in view of
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the numerous additional parameters Gx, Gy, ω, P in our problem. We have thus focussed

the attention on the stability analysis of rolls close to the onset without being exhaustive.

From our fully nonlinear stability analysis it has turned out, that the modulational

modes characterized by |s| → 0 are of particular importance. Due to the translational

invariance in the x, y plane any mode of the form δV = (ê · ∇)V(x, z, t), where ê is an

arbitrary unit vector in the horizontal plane, is marginally stable, i.e. σn(q, R, s → 0) = 0.

Since the cases s and −s (or ψ and ψ− 180o) are equivalent due to inversion symmetry,

we have Re[σn(q, R, s)] = c̃(q, ψ)s2 for s → 0 and thus c̃(R, q, ψ) = 0 determines the

long-wavelength stability limits of rolls in the R, q plane.

It is well known that modulational instabilities can be captured near onset in the

framework of the weakly nonlinear analysis. Using the ansatz

δV(x, z, t) = exp[σnt]
(

B1(qc + s, t)Vlin(qc + s, z, t) exp[i(qc + s) · x] +

B2(−qc + s, t)Vlin(−qc + s, z, t) exp[−i(qc − s) · x]
)

(4.5)

one arrives at the following algebraic linear eigenvalue problem

τ0(qc)σnB1 = σ̃1B1 − a11 |A0|
2B1 − ρ12 |A0|

2B2,

τ0(qc)σnB2 = σ̃2B2 − a22|A0|
2B2 − ρ21 |A0|

2B1 (4.6)

with σ̃1 = σ̃(qc + s, R) and σ̃2 = σ̃(−qc + s, R). With the help of our numerical codes we

are able to calculate all the coefficients in Eqs. (4.6) for an arbitrary set of our system

parameters and thus the maximal growthrate σn can be determined.

First we discuss the unidirectional shaking case. The stability of longitudinal rolls with

qc = (0, pc), Rc = 1708 is dominated near onset, according to the fully nonlinear Galerkin

stability analysis, by the wavy instability with ψ = 900 and s = (s, 0). The weakly

nonlinear approach (4.6) is well suited for understanding the instability mechanism. The

coefficients ai,i, ρi,j are real in this case and for symmetry reasons we have σ̃1 = σ̃2, a11 =

a22 and ρ12 = ρ21. We thus obtain for the maximal disturbance growth rate:

τ0σn = σ̃1 + (ρ12 − a11)|A0|
2. (4.7)

In the limit s→ 0 the following relations hold:

σ̃1 = ǫ−G2

xb1s
2 +O(s4) +O(G4

x),

ρ12 − a11 = −c+ (−f0 + f1G
2

x)s2 +O(s4) +O(G4

x). (4.8)

The coefficient f0 > 0 depends only on the Prandtl number, while b1 and f1 > 0 depend

in addition on ω. The coefficient b1 is positive for small ω, where Ry < Rx or equivalently

σ̃1 < 0 for ǫ = 0. When ω increases b1 decreases until it changes sign (e.g. for P = 1 at

ω = 50 in Fig. 11) when Rx = Ry. At larger ω where σn & 0 at ǫ = 0 and Ry < Rx the

longitudinal rolls are unstable immediately at onset at small Gx.
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For b1 > 0 the onset of the wavy instability requires a finite ǫ, ǫ > ǫwav, where ǫwav is

obtained from σn = 0 as

ǫwav =
cG2

xb1
−f0 + f1G2

x

+O(G4

x), (4.9)

whenever this expression possesses a positive right hand side, i.e. when G2

x > f0/f1. The

stability boundaries ǫ = ǫwav in the ω,Gx plane are shown in figure 11. They are nearly

indistinguishable from the full Galerkin results.

Let us consider the case P = 1 in more detail. It is sufficient to consider only the regime

ω < 50 (i.e. b1 < 0) to the left of the dashed-dotted vertical line in figure 11; for ω > 50

the longitudinal rolls are already unstable at ǫ = 0 with respect to the transverse ones

according to figure 3. For sufficiently large Gx the curves for different ǫ = ǫwav approach

the limit ǫwav = b1/f1 according to (4.9). Like b1 also f1 decreases with increasing ω,

while f0 stays constant. Approaching ω = 50, where b1 = 0, from below all stability

boundaries meet at Gx = f0/f1. For P = 2 the coefficient f1 is smaller and the stability

boundaries for small ω and Gx < 2.5 will be found only at much larger values of ǫ which

have not been calculated. The coefficient b1 vanishes in this case at ω ≈ 70, where all

ǫwav curves meet in analogy to the situation at P = 1.

As a general result, longitudinal rolls at moderate values of P become unstable almost

at onset, i.e. at very small ǫ. In principle this result is not surprising because of the

strong shearing action in our system. Similar results have been found in inclined layer

convection (Clever and Busse (1977); Daniels and Bodenschatz (2002)).

A detailed discussion of the wavy instability on the basis of amplitude equations has

been presented in Auer and Busse (1994, 1997). There the wavy instability of longitudinal

rolls induced by a steady shear flow ( which applies to the low-ω case in our system) has

been studied for arbitrary values of P and arbitrary wave numbers p ≈ pc. In particular

the connection to the familiar zig-zag instability line, ǫzz = b3 (pc − p), b3 > 0, in the

isotropic limit Gx → 0 has been established.

It is obvious that transverse rolls are unstable against the longitudinal ones in the case

of unidirectional shaking for not too large Gx since their critical Rayleigh number Rx is

larger than Ry = 1708. Conversely, for larger Gx we found the transverse rolls, which

bifurcate at threshold for moderate P (see Figs. 2, 3) to be stable near onset.

Let us now turn to the case of circular shaking where transverse rolls with q = qc =

(qc, 0) bifurcate at onset. The analysis of their stability has revealed a characteristic

shortwave instability, which is produced by a mode with wavevector q1 (|q1| = qc) that

includes with q an angle ψ̃ between 200 and 300. The instability sets in right at onset

for a wide range of ω and Gx = Gy, The solid line in Fig. 12 indicates the boundary

of this range . The angle ψ̃ of the fastest growing mode along the transition curve has
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Figure 11. Onset of the wavy instability of longitudinal convection rolls as a function of Gx

and of ω for P = 1 (thin lines) and P = 2 (thick lines). Positive growth rates are found for

P = 1 above the curves corresponding to ǫwav = 0.03 (solid line), ǫwav = 0.02 (dashed line),

ǫwav = 0.015 (dotted line), ǫwav = 0.01 (dash-double dotted line). To the right of vertical

dash-dotted vertical line tranverse rolls bifurcate at onset for P = 1
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Figure 12. Onset of the short wavelength Küppers -Lortz like instability of convection rolls in

the circular case as a function of Gx = Gy and of ω. Positive growth rates are found in the limit

ǫ → 0 above the solid line. The angle ψ̃ of the most unstable mode is indicated.

also been indicated. If one moves vertically up in the diagram at fixed ω the maximal

destabilization angle ψ̃ moves through a maximum.

Note that we have not investigated the subtle limiting behavior of the short wave

instability line at small ω. This problem would require an analytical WKB-type approach,
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which cannot be captured within our numerical method by a finite number of Galerkin

modes in the time domain.

The present short wave instability is accessible via a weakly nonlinear analysis as well.

We start with the ansatz:

δV(x, z, t) = exp[σnt]B(q1, t)Vlin(q1, z, t) exp(iq1 · x) (4.10)

with |q1| = qc. As before we arrive at the amplitude equation

τ0(q1)σnB = σ̃(q1, R)B − a11B |A0|
2, (4.11)

where σ̃(q1, R) depends only on the modulus |q1| = qc because of the isotropy in the case

of circular shaking. With the use of |A0|
2 = σ̃(q1, R)/c (see (4.3)) we obtain from (4.11):

τ0(q1)σn(q1, R) = σ̃(qc, R)(1 −
a11

c
). (4.12)

The condition a11/c = 1, where the cross coefficient a11 depends on all system parameters

and on ψ̃, reproduces to better than 1% the stability line in figure 12, above which

σn(q1, R) > 0 for ǫ→ 0.

Finally we like to mention that the present short-wavelength instability in the case

of circular shaking tends to rotate the original rolls by a positive angle ψ̃ indicated in

figure 12, while for a ideal isotropic system ±ψ̃ would be equivalent. That asymmetry

is to be expected since the chiral symmetry is broken by the rotating acceleration. The

close analogy to the Küppers-Lortz (KL) instability (Küppers and Lortz (1969); Clever

and Busse (1979)) in rotating RBC is obvious. In the latter case the chiral symmetry is

broken by the Coriolis force.

5. Numerical simulations in the nonlinear regime

In the previous section we have analyzed the stability of rolls near onset. To study

the saturation process of the instability we have employed direct fully 3-dimensional

numerical simulations of the basic Eqs. (2.7 -2.11). Our well tested code for standard

Rayleigh-Bénard convection (Pesch (1996); Bodenschatz et al. (2000)) has required only

minor modifications. The additional time-dependent linear acceleration terms are inte-

grated explicitly in time together with the quadratic nonlinearities . This approach has

already been used successfully for vertically shaken convection (Rogers et al. (2005)).

Since the direct simulations consume large amounts of computer resources we have

focused the attention on the parameter combination P = 1, Gx = 3.6 and ω = 50, which

would also be convenient for experimental studies as suggested by its use in the vertical

shaking case (Rogers et al. (2005)). According to Fig. 3 the longitudinal rolls bifurcate

at Ry = 1708 with qc = (0, pc) and pc = 3.116 while the onset of transverse rolls is at

Rx = 1773 for qc = (2.27, 0).

First numerical simulations in the unidirectional case for R = 1.015Rx ≈ 1800 have
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Figure 13. Representative snapshots of the temperature modulation Θ in the x, y-plane at

z = 0 for unidirectional shaking at ω = 50, Gx = 3.6, Gy = 0, R = 1.05Rc = 1862, qc = 2.32.

The time lapse between the pictures (from left to right) is 2tv

Figure 14. Representative snapshots of the heteroclinic orbit in the case of uniformly rotating

acceleration for Ω = 50, Gx = Gy = 3.6, R = 1.05Rc = 1862, qc = 2.32. The timelapse between

the pictures (from left to right) is: 2, 2, 4, 6, 4, 2, 2tv.

been carried out, where according to figure 11 longitudinal rolls should be unstable

against the wavy instability. Indeed, starting the simulations from random initial con-

ditions we did not find longitudinal rolls. Instead the system locked into an oblique roll

pattern with wavevector q with |q| = 2.6 which includes the angle χ = π/4 with the x

axis (see Fig. 13, 1. panel). We have confirmed the stability of this pattern for R 6 1800

by the Galerkin analysis. At R = 1810, however, the pattern becomes unstable against

long wavelength modulations with a wavevector s which includes with q an angle ψ

slightly less π/4. To study the impact of this instability we have performed a numerical

simulation at R = 1.05Rx = 1862. When the simulation is started with the oblique roll

pattern obtained at R = 1800 and superimposed noise, first the modulational instability

becomes visible (see Fig. 13, 2. panel). Continuing the simulation we arrive at a steady

dynamic state which is characterized by the coexistence of patches with q vectors that

are oriented mirror symmetrically with respect to the y-direction. As demonstrated in the

third and fourth panel of Fig. 13 the patches change chaotically their shape and location.

The beaded structure of some rolls points already to the excitation of the mode with the
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Figure 15. Snapshots of disordered patterns (time lapse 4tv) for

ω = 50, Gx = 3.6, P r = 1, ǫ = 0.4 after the destabilization of the heteroclinic orbit in Fig. 14.

respective mirror symmetric q. This scenario can be understood as follows: The wavy

instability of the longitudinal mode with wavevector q = (0, p) leads to the symmetry de-

generate oblique rolls with wavevectors q = (±q, p). By coincidence the simulations have

locked into one of these oblique rolls states in Fig. 13, first panel. When these oblique

rolls become unstable at R = 1860 the system restores the symmetry in the average by

producing coexisting patterns with either mode.

In a second set of simulations we have considered the case of circular shaking for the

same parameter combinations with Gx = Gy = 3.6 at R = 1862. According to Fig.

12 the transverse rolls that bifurcate at Rx = 1773 are unstable immediately at onset

against a KL-type short wavelength instability where one set of rolls is replaced by a

new one with the roll axis rotated by a fixed angle ψ ≈ 280 for the present parameters.

The corresponding simulations are shown in Fig. 14. A persistent rotation of the pattern

is seen as is commonly observed for the KL instability. The details are complicated and

the cycle passes through patterns with locally distorted rolls and their reconnections. It

is illuminating that the angle between the roll axes of the first and the last panel in the

series, where the patterns are practically uniform, is about 280 in line with Fig. 12. When

ǫ is increased the dynamics becomes increasingly disordered and chaotic (see Fig. 15).

6. Concluding remarks

In this work we have presented a comprehensive analysis of a Rayleigh-Bénard con-

vection setup subjected to a periodic acceleration in the plane. Besides considerably

extending an earlier linear analysis of Gershuni et al. (1996) we have investigated the

nonlinear regime for the first time. In particular we have identified some specific secondary

bifurcations that lead to complex spatio-temporal patterns. The work was partially mo-

tivated by recent investigations of a Rayleigh-Bénard system in the presence of vertical

oscillations, which is characterized by a variety of quasi-crystalline patterns in excellent
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agreement with experiments (Rogers et al. (2005)). It was thus tempting to break the

isotropy by uni-directional shaking in the plane and to consider the quasi-isotropic case

in the presence of a uniformly rotating acceleration. Because of the broken chiral sym-

metry in the latter case it has been possible to obtain domain-chaos by a Küppers-Lortz

type process in the absence of a Coriolis force.

Because of the numerous parameters of the problem we had to be selective in choosing

the examples for the numerical analysis. A guiding principle has been the possible real-

ization in laboratory experiments. Since it is important that inspite of a desirable large

aspect ratio the mass of the accelerated part of the apparatus remains small a low height

of the fluid layer is essential. This requirement is realized in convection experiments with

thin layers of compressed gases such as CO2 at pressures of the order of 40 bars, which

offer also the advantage that the shadowgraph method can be used for visualization. For

instance in the experiments of Rogers et al. (2005) on vertical acceleration of a con-

vection layer, a cell height d = 0.065cm at a mean temperature T0 = 308K was used,

which corresponds to a vertical diffusion time tv ≈ 1.65sec. Shaking the convection cell

with amplitude bx ≈ 1cm and frequency f = 4.75Hz corresponds in this case to the di-

mensionless quantities ω = 50 and Gx = 3.6, respectively. It should be emphasized that

smaller Prandtl numbers can be reached in gas mixtures (see e.g. Bajaj et al. (2002)) and

larger ones in experiments with a gas near its critical point (Assenheimer and Steinberg

(1997)).

While layers of pressurized gases offer obvious advantages, horizontal accelerations

of thicker layers of convecting liquids to explore larger P might also be attractive, in

particular since they can be performed at an ambient pressure. An experiment of this

kind has been performed by Kozlow et al. (2004). Unfortunately, only an extended

abstract is available which does not provide sufficient information for a comparison with

theory. It is hoped that some more systematic experiments can be realized in near future

in order to motivate further theoretical exploration of the rich phenomena exhibited by

convection in the presence of periodic acceleration.

The research reported in this paper has been supported by the Deutsche Forschungsge-

meinschaft (Pe 446/7− 1). The help of Dr. P. Akimov in the early stages of the research

is gratefully acknowledged.
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