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Abstract

The use of Euler equations in Geophysics and Astrophysics is reviewed. Recent developments and new applications are emphasized. Examples
are buoyancy columns in rotating fluids, possible preference for axisymmetric inertial convection at low Prandtl numbers, resonance properties of
precessing spheroidal fluid filled cavities, and the possible absence of turbulence in rotating shear flows in the limit of high Reynolds numbers.
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1. Introduction

Euler equations as well as their dissipative equivalent, the
Navier–Stokes equations, have been applied to a large variety
of problems in geophysics and astrophysics and through their
use an impressive progress in the understanding of dynamical
processes occurring in nature has been achieved. One of the
not yet fully understood aspects of these applications is the
close similarity between dynamical phenomena observed in
the atmosphere and oceans and their pendants in laboratory
experiments. This is surprising since the latter usually exhibit
laminar flows, while their natural equivalents are fully
turbulent. We shall return to this point at the end of this paper.

Fluid dynamics in geophysics and astrophysics is governed
by actions of Coriolis and buoyancy forces. Euler equations for
incompressible fluids seem to have even more applications in a
rotating system than in a non-rotating system. This is caused
by the property that in rotating fluids viscous dissipation is
confined to thin layers attached to the solid boundaries, called
Ekman layers, or to shear layers parallel to the axis of rotation,
called Stewartson layers. The description of fluid flows can thus
be simplified considerably in that the Euler equations govern
the dynamics in the bulk of the fluid, while modifications
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caused by viscous friction can be treated as perturbations. We
refer to Greenspan’s [1] book for details on the various ways
in which problems can be solved through expansions in powers
of the Ekman number E . This parameter is defined with the
kinematic viscosity ν of the fluid, the angular velocity Ω of
rotation, and a typical length scale h of the system in the
direction of the axis of rotation, E = ν/Ωh2. E is usually rather
small, say of the order 10−3 or less, in laboratory experiments
with rotating fluids.

A second property of rotating systems that facilitates
the description of dynamical processes on the basis of
dissipationless equations is the possible balance between
Coriolis and buoyancy forces. In contrast to non-rotating
systems where simple equilibria can only be obtained when the
hydrostatic balance, ∇ρ × ∇Φ = 0, is satisfied, a much wider
variety of equilibria can be attained in rotating fluids in the form
of the thermal wind balance,

2Ω · ∇v = ∇ρ × ∇Φ. (1)

Here v is the velocity field, ρ denotes the density distribution
of the fluid and Φ is the potential of the force acting on it.
Some examples for relationship (1) will be mentioned in the
following.

Since the applications of Euler equations in geophysics and
astrophysics go back nearly as far as their first publication in
1757, it is impossible to review all of them in a short article.
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Fig. 1. Sketches for the dynamics of Rossby waves.

The use of Euler equations flourished in the 19th century when
water waves were studied and the theory of the action of
tides and of precession on rotating fluids was developed. A
good access to these and other applications can be found in
Lamb’s [2] “Hydrodynamics”. Modern books on geophysical
and astrophysical fluid dynamics are those of (in alphabetical
order) Cushman-Roisin [3], Ghil and Childress [4], Gill [5],
McWilliams [6], Pedlosky [7], and Tassoul [8]. Most of these
books deal with problems in shallow fluid layers such as those
posed by the dynamics of oceans and of the atmosphere.

In the present paper we shall focus the attention on more
general configurations which are applicable to the dynamics
of the deep interiors of planets and stars. Some recent
developments will be reviewed which are not yet well known
and indeed are yet unpublished in parts. Magnetohydrodynamic
applications will not be considered in this paper. For these we
refer to the recent volume [9] and the book by Rüdiger and
Hollerbach [10].

2. Thermal Rossby waves

The basic theorem of rotating fluid dynamics is the
Proudman–Taylor theorem which states that steady small
amplitude motions of a barotropic rotating fluid do not vary in
the direction of the axis of rotation when viscous effects can
be neglected. “Small amplitude” means in this connection that
the vorticity of the motion is negligible in comparison to the
rotation rate of the system. The Proudman–Taylor condition is
a consequence of the complete balance between Coriolis force
and pressure gradient. This balance is also called geostrophic
balance since it holds in good approximation for the large scale
motions in the Earth’s atmosphere.

Two-dimensional fluid motions cannot often be accommo-
dated in physical reality and motions are thus forced to be-
come time dependent. In the simplest cases the motions assume
the form of propagating Rossby waves. As indicated in Fig. 1,
Rossby waves can be understood on the basis of the conserva-
tion of angular momentum. When a column of fluid (aligned
with the axis of rotation) moves into a shallower place it be-
comes compressed and, because of the conservation of mass, its
moment of inertia increases. To conserve angular momentum its
rotation relative to an inertial system must decrease. Relative to
the rotating system it thus acquires anticyclonic vorticity. The
opposite process happens when the column moves into a deeper
place where it gets stretched in the direction of the axis of rota-
tion and acquires cyclonic vorticity.

In the annular fluid layer of Fig. 1 the depth decreases with
increasing distance from the axis. A sinusoidal displacement
of the initially static fluid columns leads to a flow structure in
the form of vortices which tend to move the columns to new
positions as indicated by the dashed line in the lower plot of
the figure, i.e. the initial sinusoidal displacement propagates
as a wave in the prograde direction. A retrograde propagation
relative to the sense of rotation will be obtained when the depth
of the annular layer increases with distance from the axis.

A dispersion relation for Rossby waves can be derived when
the linearized Euler equations relative to a system rotating with
the constant angular velocity Ω are considered,

∂

∂t
v + 2 Ω × v = −∇π, (2a)

∇ · v = 0. (2b)

Assuming the small-gap limit of the annulus configuration we
introduce a cartesian system of coordinates with the x-, y-
and z-coordinates in the radial, azimuthal and axial directions,
respectively. The velocity field can then be written in the form

v = ∇ψ(x, y)× k exp{iωt} + · · · , (3)

where k is the unit vector in the z-direction and the dots
indicate higher-order contributions since the deviation from the
Proudman–Taylor condition are assumed to be small. By taking
the z-component of the curl of Eq. (2a) we obtain

−iω12ψ − 2Ωk · ∇vz = 0 (4)

where the two-dimensional Laplacian 12 ≡
∂2

∂x2 +
∂2

∂y2 has
been introduced. After averaging Eq. (4) over the height h of
the annulus and using the boundary conditions,

vz ± η
∂

∂y
ψ = 0 at z = ±h/2, (5)

we find

−iω12ψ +
4Ωη

h

∂

∂y
ψ = 0. (6)

The small parameter η is the tangent of the angle χ between
the top boundary and the equatorial plane of the annulus. For
simplicity the latter has been assumed as a plane of symmetry
of the configuration as is also indicated in Fig. 2. The analysis
of asymmetric configurations proceeds analogously since only
the variation of the height in the direction of the axis of rotation
matters.

A solution of Eq. (6) is easily obtained,

ψ(x, y) = cos(πx/d) exp{iαy}

corresponding to ω = −
4Ωηα

h(α2 + (π/d)2)
, (7)
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Fig. 2. Geometrical configuration of the rotating annulus.

which satisfies the boundary condition that the normal
component of the velocity field vanishes at the side walls,
x = ±d/2, of the annulus.

Thermal Rossby waves are generated as growing distur-
bances when a temperature difference, T2 − T1, and a gravity
force are applied in the x-direction such that a basic state with
an unstable density stratification is obtained. The geometrical
configuration is sketched in Fig. 2. In the experimental realiza-
tion of the problem [11] the centrifugal force Ω2r0 is used as
gravity and the temperature gradient must point outward in or-
der to create the unstable density stratification. For geophysical
applications one may think of the opposite directions for grav-
ity and temperature gradient, but the mathematical problem is
the same in both cases.

It is convenient to use a dimensionless description through
the introduction of d as length scale, d2/ν as time scale, and
(T2 − T1)/P as temperature scale where the Prandtl number
P is defined as the ratio between kinematic viscosity ν and
thermal diffusivity κ . The dimensionless equations for the
streamfunction ψ and for the deviation Θ of the temperature
from its static distribution assume the form

−iω12ψ + η∗
∂

∂y
ψ = R

∂

∂y
Θ, (8a)

iωPΘ +
∂

∂y
ψ = 0, (8b)

where the Rayleigh number R and the dimensionless rotation
parameter η∗ are defined by

R =
γ (T2 − T1)Ω2r0d3

νκ
, η∗

=
4Ωηd3

νh
. (9)

Here γ denotes the coefficient of thermal expansion. In keeping
with the philosophy of the Euler equations we have neglected
the thermal diffusion term in the linearized heat equation (8b).
Since the laboratory version of the problem has been chosen
the higher temperature T2 is assumed at the outer wall of the
Fig. 3. Move in the complex ω-plane of the eigenvalues ω1 and ω2 with
increasing R from their position at R = 0.

annulus. The solution for ψ of Eq. (8) has the same form as
that of Eq. (6) while the expressions for Θ and ω are given by

Θ = −
αψ

ωP
exp{iωt} = − cos(πx/d)

α

ωP
exp{iαy + iωt} (10)

corresponding to

ω1,2 = −
η∗α

2(α2 + π2)
±

√
(αη∗)2

4(π2 + α2)2
−

Rα2

P(π2 + α2)
. (11)

In the limit 0 ≤ R � η∗2 P/(π2
+ α2) we recover the angular

frequency of Rossby waves and in addition find the dispersion
relation for a slow mode,

ω1 = −
η∗α

(α2 + π2)
, ω2 = −

Rα

Pη∗
. (12)

In the case of the slow mode described by ω2 the part of
the Coriolis force that is not balanced by the pressure gradient
is balanced by the buoyancy column Θ . As R increases the
frequencies ω1 and ω2 move along the negative real axis in
the complex ω-plane as indicated in Fig. 3. When R exceeds
η∗2 P/4(π2

+ α2), ω1 acquires a negative imaginary part
indicating a growing instability, called the thermal Rossby
wave, while ω2 corresponds to a decaying mode.

When dissipative terms are added in Eq. (8) all modes will
decay except, possibly, the thermal Rossby wave. The critical
value Rc of the Rayleigh number for the onset of the latter
cannot be determined from Eq. (8) since it would correspond to
an infinite α. When viscous friction and thermal diffusion are
taken into account [12,13] the onset of thermal Rossby waves
in the presence of stress-free walls is described by

Rc = η
4
3
P (3 + π2η

−
2
3

P + · · ·), αc = η
1
3
P (1 + · · ·),

ωc = −
√

2η
2
3
P (1 + · · ·)/P with ηP ≡

η∗ P
√

2(1 + P)
. (13)

This result describes in good approximation the onset of con-
vection not only in rotating annuli, but in rotating fluid spheres
as well [12] since only the azimuthal length scale described by
α is important and the boundaries in the radial (i.e. perpendicu-
lar to the axis) direction do not enter the expressions in first ap-
proximation. For a more detailed discussion of the relationship
between the analytical result (13) and numerical solutions for
convection in rotating spheres see the recent review [14] where
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also the relevance of the convection flows for the generation of
planetary magnetic fields is discussed.

Here we want to return to the slow mode with its nearly
stagnant buoyancy column. While it is damped in the simple
annulus model, it becomes physically relevant when more
than one source of buoyancy is admitted. In the Earth’s core
chemical buoyancy is released in the form of light elements
in the neighborhood of the growing solid inner core and joins
the thermal buoyancy in driving convection in the liquid outer
core. This situation can be modeled in the rotating annulus
configuration when a compositional gradient, (C2 − C1)/d,
is added to the thermal gradient. A compositional Rayleigh
number, CR , can be defined in analogy to the definition (9) of R
by replacing γ (T2−T1) by γC (C2−C1). The diffusion equation
for the light elements is identical to the heat equation except
that the Laplace operator is multiplied by the factor 1/L where
L is the Lewis number. The latter denotes the ratio between
thermal and compositional diffusivities and is assumed to be
very large. In the limit |CR |α

Pη∗ � 1 the angular frequency of the
slow mode and the corresponding value of the Rayleigh number
R are given by [15],

ω = −
αCR

Pη∗
, Rc ≈

(π2
+ α2)3

α2 −
Pω2(π2

+ α2)

α2 . (14)

Since the last term can be neglected in the comparison with
the preceding term, we recover the critical Rayleigh number
for the onset of Rayleigh–Bénard convection in the absence of
rotation! The buoyancy provided by the compositional gradient
just serves to counteract the yet unbalanced portion of the
Coriolis force. Note that this balance works independently of
the sign of CR . Please also note that the factor CR/P is missing
in the second term on the right-hand side in Eq. (13b) of [15].

3. Inertial waves and inertial convection

Inertial oscillations and waves represent an important class
of solutions of the Euler equations in a rotating system.
Axisymmetric solutions in containers that are symmetric with
respect to the axis of rotation assume the form of standing
oscillations, while non-axisymmetric solutions propagate in the
form of waves. In contrast to Rossby waves which can be
regarded as the quasi geostrophic subset of inertial waves and
which propagate only in a single azimuthal direction, non-
axisymmetric inertial waves may propagate in both azimuthal
directions, albeit with different speeds. For an introduction to
the theory of inertial waves we refer to Greenspan’s [1] book.
Among more recent results we like to mention the simplified
representations of inertial waves in rotating spheres [16] and
spheroids [17]. The theory of inertial oscillations is not only
valid for incompressible fluids, but holds for barotropic fluids as
well [18] and thus can be applied to the Sun and other stars. An
unambiguous observational evidence for stellar inertial waves
has not yet been obtained, however.

Slight modifications of inertial waves through the introduc-
tion of buoyancy and dissipative effects can lead to instabili-
ties just as in the case of thermal Rossby waves. This property
has been used by Zhang [19] and by Busse and Simitev [20]
to obtain analytical solutions describing the onset of non-
axisymmetric thermal convection in rotating spheres heated
from within in the presence of a stress-free outer boundary. The
corresponding problem with a no-slip outer boundary has been
treated by Zhang [21]. We briefly study this problem here and
describe some new results for axisymmetric inertial convection.

We consider a homogeneously heated, self-gravitating fluid
sphere rotating with the constant angular velocity Ω about
an axis fixed in space. A static state thus exists with the
temperature distribution TS = T0 − βr2

0r2/2 and the gravity
field given by g = −γgr0r where r is the position vector
with respect to the center of the sphere and r is its length
measured in fractions of the radius r0 of the sphere. In addition
to the length r0, the time r2

0/ν and the temperature ν2/γgγ r4
0

are used as scales for the dimensionless description of the
problem. The density is assumed to be constant except in
the gravity term where its temperature dependence given by
γ ≡ −(d%/dT )/% = const. is taken into account. The basic
equations of motion and the heat equation for the deviation Θ
from the static temperature distribution are thus given by

∂t v + τk × v + ∇π = Θr + ∇
2v, (15a)

∇ · v = 0, (15b)

0 = Rr · v + ∇
2Θ − P∂tΘ, (15c)

where the Rayleigh number R, the Coriolis parameter τ and the
Prandtl number P are defined by

R =
γ γgβr6

0

νκ
, τ =

2Ωr2
0

ν
, P =

ν

κ
. (16)

We have neglected the nonlinear terms v · ∇v and v · ∇Θ in Eq.
(15) since we restrict the attention to the problem of the onset
of convection in the form of small disturbances. In the limit of
high τ the right-hand sides of Eq. (15) can be neglected and
the equation for inertial waves is obtained. For the description
of inertial wave solutions v0 we use the general representation
in terms of poloidal and toroidal components for the solenoidal
field v0,

v0 = ∇ × (∇( f exp{imφ + iωt})× r)

+ ∇(g exp{imφ + iωt})× r, (17)

where a spherical system of coordinates r, θ, φ has been
introduced and f, g are functions of r and θ . By multiplying
the (curl)2 and the curl of the inertial wave equation by r we
obtain two equations for f and g,

[iωL2 − imτ ]∇2 f − τQg = 0, (18a)

[iωL2 − imτ ]g + τQ f = 0, (18b)

where the operators L2 and Q are defined by

L2 ≡ (sin θ)−1∂θ (sin θ∂θ )− m2, (19a)

Q ≡ r cos θ∇2
− (L2 + r∂r )(cos θ∂r − r−1 sin θ∂θ ). (19b)

The only boundary condition to be satisfied by solutions of Eq.
(18) is f = 0 at r = 1.
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In the axisymmetric case m = 0 simple solutions of Eq. (18)
can be found such as

f = P1(r − r3), g = 2ir2τ P2/3ω with ω = ±
τ

√
5
, (20a)

f = P2(r
2
− r4),

g = iτ
(

P3
4
5

r3
− 3P1

(
r −

7
5

r3
))/

ω

with ω = ±τ

√
3
7
, (20b)

f = P1

(
r −

14
5

r3
+

9
5

r5
)

+ P3(r
3
− r5)

(
1
5

−
ω2

τ 2

)
7
3
,

g = i
(

P2

(
28
3

r2
− 12r4

)
ω

τ
+ P4r4

(
2τ
5ω

−
2ω
τ

))

with ω = ±τ

√
1
3

±

√
4
63
, (20c)

where the functions Pn = Pn(cos θ) are the Legendre
polynomials. A typical property of inertial modes with m =

0 is that solutions always exist with both signs of ω such
that they can be realized in the form of standing oscillations.
This property contrasts with that of non-axisymmetric modes
which always propagate in either the prograde or the retrograde
direction, but with different speeds.

In order to solve the full Eq. (15) by the perturbation
approach we first obtain an expression for Θ . Restricting
attention to the limit Pτ � 1, but allowing for either a fixed
temperature, Θ = 0 at r = 1 (case A), or a thermally insulating
boundary, ∂Θ/∂r = 0 at r = 1 (case B), we obtain

Θ = Pl(cos θ) exp{iωt}hl(r), (21)

with

hl(r) = l(l + 1)R
(

r l+4

(l + 5)(l + 4)− (l + 1)l

−
r l+2

(l + 3)(l + 2)− (l + 1)l
− cr l

)
, (22)

where the coefficient c is given by

c =


1

(l + 5)(l + 4)− (l + 1)l
−

1
(l + 3)(l + 2)− (l + 1)l

,

(l + 4)/ l

(l + 5)(l + 4)− (l + 1)l
−

(l + 2)/ l

(l + 3)(l + 2)− (l + 1)l
,

(23)

in the cases A and B, respectively. The expressions (22) and
(23) apply only for l = 1 and l = 2, i.e. for solutions (20a)
and (20b). For solution (20c) and all other axisymmetric inertial
oscillations more complex expressions must be expected.

When the perturbation expansion v = v0 + v1 + · · · is
inserted into Eq. (15a) it must be taken into account that the
perturbation v1 consists of two parts, v1 = vi + vb where vi
denotes the perturbation of the interior flow, while vb is the
Ekman boundary flow which is required because v0 does not
satisfy the viscous boundary condition. Assuming a stress-free
boundary we require
r · ∇(r × (v0 + vb)/r2) = 0 at r = 1. (24)

The solvability condition for the equation for v1 is obtained by
multiplying it with v∗

0 and averaging it over the fluid sphere,

0 = 〈Θr · v∗

0〉 + 〈v∗

0 · ∇
2(v0 + vb)〉, (25)

where the brackets 〈· · ·〉 indicate the average over the fluid
sphere and the ∗ indicates the complex conjugate. We have
also anticipated that there is no perturbation contribution to
the frequency since all terms in Eq. (25) are real. In the
evaluation of the integrals in Eq. (25) the remarkable result that
〈v∗

0 · ∇
2v0〉 = 0 holds for all inertial oscillations in rotating

spheroidal cavities [17] can be used. Otherwise the evaluation
proceeds as in Section 2 of [20] and yields in the case of
solution (20a) the analytical expression

R =
44 · (7 · 5 · 3)2

173 ∓ 99
≈ 4169.4 ± 2386.0, (26)

where the upper sign applies in the case A and the lower sign
in case B. For solution (20b) higher values of R are found
in both cases and the same must be expected for all other
axisymmetric solutions. Since the values (26) are only slightly
larger than those obtained in [20] for non-axisymmetric inertial
convection with m = 1 in the cases A and B, respectively,
a close competition of the latter mode and convection in the
form of the inertial oscillation (20a) must be expected at the
onset of convection for sufficiently small values of Pτ . Indeed,
numerical computations indicate that for intervals around Pτ =

20 and Pτ = 5 in the cases A and B, respectively, the
axisymmetric mode sets in at a lower value of the Rayleigh
number than all non-axisymmetric ones.

The axisymmetric convection described by the inertial wave
(20a) corresponds to a flow along the axis of rotation from south
to north in one phase of the cycle with a return flow along the
surface which owing to the Coriolis force yields a retrograde
(prograde) zonal flow in the northern (southern) hemisphere.
The Coriolis force acting on this zonal flow in turn causes a
reversal of the meridional circulation with the flow along the
axis directed from north to south in the second half of the cycle.
It will be of interest to find out whether such oscillations are
realized in rotating stars.

4. Solutions of nonlinear Euler equations

4.1. Baroclinic rotating stars

Ever since von Zeipel [22] formulated his famous
theorem that a hydrostatic equilibrium in rotating stars is
not possible, the state of motion in axisymmetric rotating
stars has been of considerable concern to astrophysicists.
Vogt [23], Eddington [24], and later Sweet [25] assumed
that low amplitude meridional circulations are realized, but
it soon became apparent that those motions break down
through the advection of angular momentum [26,8,27]. An
alternative resolution of von Zeipel’s paradox has been
proposed by Schwarzschild [28], Roxburgh [29], and others
who demonstrated that for a particular differential rotation
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which depends only on the distance from the center the
basic equations of stellar structure could be satisfied without
meridional circulations. It seems unlikely, however, that such
a special differential rotation could be attained from arbitrary
initial angular momentum distributions. Here we want to draw
attention to more general solutions of the Euler equations
that can accommodate angular momentum distributions with
arbitrary dependences on the distance from the axis.

To demonstrate the essential points we consider an idealized
star with most of its mass concentrated in the core and its energy
flux F dependent only on the temperature distribution such that

Φ = −g0r2
0/r and F = f (T )∇T (27)

can be assumed where r0 is the radius of the star and g0 is its
surface gravity. In the absence of motion in an inertial system
the hydrostatic equilibrium,

T = T (0)(r), p = p(0)(r), ρ = ρ(0)(r), (28)

is possible. In particular, it can be assumed that the boundary
condition T = ρ = 0 for p = 0 is satisfied. Since we assume
an ideal gas, p/ρ = RgT where Rg is the gas constant, solution
(28) satisfies the relationship

1

RgT (0)
∇Φ = −

1

p(0)
∇ p(0) = p(0)∇

1

p(0)
. (29)

We anticipate that in the presence of a motion of the form
v = ω(r, θ)k × r with θ = arccos(r · k/r), where k denotes
a constant unit vector, the thermodynamic variables can be
written in the form

T = T (0)(r), p = p(0) + p(1),

ρ = (p(0) + p(1))/RgT (0),
(30)

where p(1) is not necessarily small in comparison to p(0). The
nonlinear equation of motion now assumes the form

ρω2(k × r)× k = ∇ p(1) +
p(1)

RgT (0)
∇Φ

= p(0)∇
p(1)

p(0)
= p(0)∇

p(1) + p(0)

p(0)
, (31)

from which

ω2(k × r)× k/RgT (0) = ∇ ln
p(1) + p(0)

p(0)
, (32)

follows. Necessary and sufficient for a solution p(1) of Eq. (31)
is thus

ω2
= G(r sin θ)RgT (0)(r), (33)

where the arbitrary function G is sufficient to accommodate
all axisymmetric angular momentum distributions [27]. In
the special case of a constant function G a purely r -
dependent angular velocity ω is obtained as proposed by
Schwarzschild [28] and Roxburgh [29].

In Fig. 4 a sketch for an example of the solution (33) is
shown. Typically, the ellipticity of the isopycnals exceeds that
of the isobars which in turn exceeds that of the isotherms.
Fig. 4. Simple model of a rotating baroclinic star. Surfaces of constant
temperature (solid lines), of constant pressure (dashed lines) and constant
density (dash-dotted lines) are shown.

Fig. 5. Geometrical configuration of the precessing spheroidal cavity.

4.2. Flow in a precessing spheroidal cavity

The flow in a precessing spheroidal cavity is of considerable
geophysical interest since it applies to the liquid core of
the Earth. The solar–lunar precession of the Earth’s axis of
rotation about the normal of the ecliptic plane with a period of
25 700 years is a result of the torques exerted by Sun and Moon
on the equatorial bulge of the Earth. The ellipsoidal flattening
of the Earth’s figure caused by the centrifugal potential is
about 1/300. Owing to its higher density the ellipticity of the
iron core is lower than that of the Earth’s mantle. Hence the
precessional torques exerted on the latter by Sun and Moon are
larger than those acting on the core. There is thus an unbalanced
precessional torque exerted by the mantle on the core. This
situation can be modeled by a fluid filled spheroidal cavity
rotating about its figure axis in a system that is rotating about a
different axis as indicated in Fig. 5.
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The Euler equations relative to the frame of reference
precessing with the angular velocity Ω (mantle frame) are given
by

∂t v + v · ∇v + 2Ω × v + ∇π = 0, (34a)

∇ · v = 0. (34b)

The normal component of the velocity must vanish at the
boundary of the spheroidal cavity,

v · (r + ζk r · k) = 0 at |r|2 + ζ |k · r|2 = 1, (35)

where we have introduced the equatorial radius a of the cavity
as length scale and where the parameter ζ is related to the
ellipticity η = (a − c)/a through ζ = η(2 − η)/(1 − η)2.
The unit vector k indicates the figure axis of the cavity.

Sloudsky [30] and later independently Poincaré [31] derived
a steady solution with constant vorticity for the problem (34)
and (35),

v = ω × r + ∇Ψ with (36a)

ω = k · ω

(
k + k × (Ω × k)

2 + ζ

ζk · ω + 2k · Ω(1 + ζ )

)
, (36b)

Ψ =
ζk · r (Ω × k) · r k · ω

ζk · ω + 2k · Ω(1 + ζ )
. (36c)

There are two difficulties with this solution which occur also in
other applications of the Euler equations:

• The vorticity component in the direction of k remains
undetermined.

• The assumption of a constant vorticity vector in the interior
may not be correct, even in the limit of vanishing viscosity.

The first of these difficulties can be resolved when the
viscous Ekman layer is added to the solution (36). According
to the analysis of Busse [32] the expression (36b) becomes

ω = ω2

(
k + k

×
Ω2.62

√
Eω + (Ω × k)(ηω2

+ k · Ω + 0.259
√

E/ω)

(2.62
√

Eω)2 + (ηω2 + k · Ω + 0.259
√

E/ω)2

)
(37)

where E = ν/(a2ωc) is the Ekman number. In addition to the
length scale a we are using 1/ωc as time scale where ωc is the
angular velocity of the cavity. It has also been assumed that E ,
η, and |Ω | are small quantities. Expression (37) agrees with
the corresponding expression derived earlier by Stewartson and
Roberts [33], but is correct in the order ε2

≡ 1 − ω2 instead
of only in the order ε. In the limit E → 0 and for small η
and |Ω | expression (37) agrees with expression (36b) with the
implication ω2

= k · ω.
The assumption of a constant vorticity vector in the

limit of vanishing viscosity has been established by the
Prandtl–Batchelor theorem [34] in the case of a steady two-
dimensional vortex, but this theorem cannot be extended to
three-dimensional configurations in rotating systems even if
the flow is essentially two-dimensional. In general tangential
discontinuities and even divergences must be expected since
Fig. 6. Differential rotation in a precessing nearly spherical cavity as a function
of the distance from the axis. Results of the asymptotic analysis [32] (solid
lines) and from a numerical simulation for E = 10−6 [36] (dashed line) are
compared with the experimental measurement of Malkus [35] (dash-dotted
line). The dotted line indicates the cylindrical surface intersecting the boundary
at the critical latitudes.

they are admitted by the Euler equations. An example is the
deviation from the Sloudsky–Poincaré solution (36) caused by
the presence of the no-slip boundary as has been demonstrated
by Busse [32]. In this latter paper it is shown that the flow
of finite amplitude in the Ekman boundary layer causes a
cylindrical shear layer in the interior of the precessing cavity
at the distance

√
3/2 from the axis determined by ω in the case

of the sphere with the radius 1. This singularity is caused by the
fact that the thickness of the Ekman boundary layer diverges
like

√
E/|k · r − ω| at the critical latitudes given by k · r = ω.

In the case of a precessing sphere with |k − ω| � 1 these
latitudes are located at ±30◦. A theoretical profile in the limit
E → 0 together with a profile measured in the experiment
of Malkus [35] and a profile obtained by Noir et al. [36] in a
numerical simulation with E = 10−6 are shown in Fig. 6. A
visualization of the shear layer in the case of an oblate spheroid
can be seen in Fig. 7. To achieve a closer correspondence
between the asymptotic profile and the other curves shown
in Fig. 6 higher-order terms in the description of the Ekman
layer near its divergence need to be taken into account in the
asymptotic analysis.

The divergence of the Ekman layer at the critical latitudes
also causes the excitation of inertial waves [37] which in turn
spawn oscillatory internal shear layers which are oblique with
respect to the rotation axis of the fluid [38,39]; see also [40,
41]. With increasing amplitude of precession nonlinear effects
of these shear layers give rise to interior differential rotations
that are much more complex than that exhibited in Fig. 7; see,
for example, the experimental photographs of [42].

Of special interest is the possibility of a resonance in
expression (37) when Ω ·k is negative such that the denominator
can approach zero in the limit E → 0. Such a resonance
represents the excitation of the inertial spin-over mode. But this
inertial mode depends on the rotation vector of the fluid, not on
the prescribed rotation of the container. Owing to the implicit
nature of expression (37) for ω there does not exist a simple
linear resonance. Instead a complex nonlinear relationship in
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Fig. 7. Cylindrical shear layer in the precessing spherical cavity of the
experiment of [43]. The shear becomes visible through the alignment of tiny flat
particles. This photograph has been provided by the authors of [37]. A modified
version of the figure has been published in [37].
c© 2001, by the American Geophysical Union.

the dependence of ω admitting multiple solutions exist in the
neighborhood of Ω · k ≈ −η as has been shown by Noir
et al. [43]. These authors have investigated the resonance also
experimentally and have found that expression (37) describes
the measurements quite well even when the perturbation
parameter ε approaches the order unity as shown in Figs. 7
and 9 of [43]. This is much beyond the range of small ε for
which expression (37) had been derived originally. For a related
discussion with respect to the experiments of Malkus [35]
see [44].

5. The possible absence of turbulence in some shear flows
for Re → ∞

One of the most discussed problems in astrophysical
fluid dynamics is the problem of turbulence in accretion
disks. In the outer parts of the latter, where the electrical
conductivity is too low for the Lorentz force to play a significant
role, hydrodynamically generated turbulence is expected to
be responsible for an efficient outward transport of angular
momentum. This problem has focused the attention on the
onset of turbulence in flows between two coaxial cylinders with
radii r1 and r2 with r1 < r2 and associated constant angular
velocities Ω1 and Ω2 with Ω1 > Ω2 > 0. According to
Rayleigh’s criterion the basic solution Ω(r) depending solely
on the distance r from the axis is unstable with respect to
axisymmetric disturbances when the condition

d(r2Ω)
dr

< 0 (38)
is satisfied. In the small-gap limit this criterion can be written
in the form

τ < Re (39)

where the definitions

Re =
(Ω1 − Ω2)d(r2 + r1)

2ν
, τ =

(Ω1 + Ω2)d2

ν
(40)

have been introduced with the gap width d = r2 − r1. Criterion
(39) can be stated in a simple way: When shear vorticity and
global vorticity have opposite signs, the former must exceed
the latter in magnitude for instability.

Linear analysis of the stability with respect to infinitesimal
disturbances confirms criterions (38) and (39) for instability
at least for large values of Re. For lower values viscosity
contributes a stabilizing influence such that the criterion for
onset of infinitesimal disturbances in the small-gap limit
becomes

Re >
Re2

E

4τ
+ τ (41)

where RE is the energy stability limit for plane Couette
flow [45,46], RE = 2

√
1708. Here the value 1708 refers

to the well known critical value of the Rayleigh number for
the onset of Rayleigh–Bénard convection in a horizontal fluid
layer heated from below with no-slip boundaries. Experimental
observations and numerical simulations based on the nonlinear
Navier–Stokes equations agree with criterion (41) for the onset
of instability – even if disturbances of finite amplitude are
admitted – unless τ becomes small in comparison to RE [47–
49]. This does not exclude, however, the possibility of the
existence of yet unrealized turbulent states of flow when
the right-hand side of criterion (41) exceeds Re while τ is
sufficiently large, say τ & RE/2 is satisfied. A recent paper
on bounds for the momentum transport in rotating systems
considers this question [50].

It is a common notion among fluid dynamicists that all
shear flows become turbulent provided the Reynolds number
is sufficiently large and disturbances of finite amplitude are
admitted. The absence of any turbulent flow under stationary
conditions in the regime

−RE ≤ Re ≤
Re2

E

4τ
+ τ (42)

as proposed in [50] contradicts this notion since Re can become
arbitrarily large provided that τ becomes even larger. The
proof for this proposal is incomplete, however, and is actually
restricted to the neighborhood of τ = ReE/2 at which point the
right-hand side of inequality (42) becomes equal to ReE . If the
proposal is correct, however, as is suggested by the presently
available experimental and numerical evidence, then angular
velocity distributions Ω(r) with dΩ/dr ≤ 0 satisfying

d(r2Ω)
dr

≥ 0 (43)

are absolutely stable. Since the Keplerian velocity field
in accretion disks is governed by the balance between
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Fig. 8. Bimodal pattern in a cloud street (top, as seen from an airplane) and
shadowgraph image of bimodal convection in a laboratory experiment (bottom,
dark areas indicate rising hotter liquid, while bright areas indicate descending
colder liquid; for further details see [56]).

gravitational attraction and the centripetal force, Ω2r v 1/r2, it
satisfies (43) and accretion disks cannot be turbulent under the
idealized conditions considered here. In terms of the small-gap
limit, Re ≈ d2ν−1r |dΩ/dr | ≈ Ω3d2/2ν ≈ 3τ/4 grows only
in proportion to 3τ/4 asymptotically and thus cannot give rise
to turbulence according to criterion (42).

Of course, hydrodynamic turbulence in accretion disks
could be generated through additional effects such as a stable
density stratification in the direction normal to the disk.
Theoretical analyses [51–53] confirmed by recent experimental
work [54] support this idea in that they demonstrate that in a
Taylor–Couette system an axisymmetric density gradient in the
direction of gravity exerts a destabilizing influence on the onset
of instability such that Rayleigh’s criterion (38) is violated.

6. Bimodal convection in geophysics

In order to illustrate the close similarity between laboratory
flows and corresponding observed geophysical phenomena we
choose the case of bimodal convection since it is not as well
known as other examples such as von Karman vortex streets in
the wake of some oceanic islands, Kelvin–Helmholtz waves in
the atmosphere, or cloud patterns corresponding to convection
rolls and hexagonal cells. Bimodal convection originates from
an instability of convection rolls and is driven by the buoyancy
stored in the thermal boundary layers associated with a
convecting fluid layer [55]. It has been studied experimentally
by Busse & Whitehead [56] and its finite amplitude properties
have been analyzed numerically by Frick et al. [57]. A
laboratory shadowgraph image is shown in Fig. 8 together with
an observed example of bimodal structures in a cloud street.
Another observational example can be found in the recent
review [58]. This agreement between a laboratory convection
pattern and an atmospheric phenomenon is remarkable in
that bimodal convection is generated through a secondary
bifurcation in contrast to the other examples mentioned above
which correspond to primary bifurcations.

Since bimodal convection is usually observed only in fluids
with a Prandtl number P in excess of the order 10, it may be
surprising to observe this phenomenon in the atmosphere as air
is characterized by a Prandtl number of only 0.7. It must be
kept in mind, however, that the condensation of water vapor not
only acts as a convenient indicator of upward motions, but also
influences the thermodynamics of the convecting layer. The
latent heat liberated through the condensation of water droplets
causes an increase in the specific heat of the fluid which in turn
lowers the effective thermal diffusivity. Since P is defined as
the ratio of kinematic viscosity to thermal diffusivity it assumes
a high value for convection in the presence of clouds.

Another case of bimodal convection may be found in the
Earth’s mantle. Convection cells involving the whole mantle
are believed to be responsible for plate tectonics, i.e. for the
motion of crustal plates in the outermost region of the “solid”
Earth. Secondary motions beneath the plates appear to occur
in many places as has been pointed out by Richter [59] and
others. As in the case of laboratory bimodal convection (see
Fig. 8) the smaller secondary convection rolls are always
oriented at right angles to the larger primary convection rolls.
In this way the stabilizing effect of the shear of the primary
convection rolls on the secondary rolls is minimized. In the
case of the Earth’s mantle additional influences on convection
arise, of course, from the presence of the olivine–spinel and the
spinel–perovskite phase transitions at the depths of 400 km and
660 km, respectively.

7. Concluding remarks

In this review we have pointed out a few solutions of the
Euler equations which have been of recent interest in the field
of geophysical and astrophysical fluid dynamics. These simple
solutions can be realized in laboratory experiments and also be
applied to large scale fluid dynamical phenomena in geophysics
and astrophysics. The fact that the latter systems are usually in a
turbulent state of motion does not seem to affect the usefulness
of the laminar solutions. Since the interaction of the large scale
components of the velocity and buoyancy fields occurs rather
independently of the influence of the small scale motions, the
latter can roughly be taken into account as diffusive effects.
From this point of view it is not surprising that the employment
of eddy diffusivities has been quite successful in describing the
effects of turbulence in geophysical and astrophysical systems.
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