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Instabilities in a two-dimensional polar filament–motor system
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Abstract. The dynamical interaction between filaments and motor proteins is known for their propensity
to selforganize into spatiotemporal patterns. Since the filaments are polar in the sense that motors define a
direction of motion on them, motors might induce, under certain conditions, a spatially homogeneous polar
filament orientation. We show that the latter two-dimensional anisotropic state itself may become unstable
with respect to inhomogeneous fluctuations. This scenario shares similarities with instabilities in planarly
aligned nematic liquid crystals since the wave vector of the instabilities may be oriented in both cases
either parallel or oblique to the polarity axis. However, the encountered instabilities are long-wave instead
of short-wave and the destabilizing modes are drifting ones due to the polar filament orientation. The
instability becomes nonpropagating in case of the wave vector perpendicular to the polarity. The resulting
phase diagrams of the instabilities related to various wave vector orientations relative to the polarity axis
are determined and discussed for a specific model of motor-filament interactions.

PACS. 87.16.-b Subcellular structure – 47.54.+r Pattern formation – 89.75.-k Complex systems

1 Introduction

Cell organization relies on the collective behavior of a
large variety of macromolecules. A prominent example,
the cytoskeleton, consists of semiflexible actin filaments,
the more rigid microtubules, as well as motor and cross-
linker proteins which interconnect the polymers dynami-
cally or permanently, respectively [1–3]. The latter ingre-
dients define a material class with very interesting and
not yet fully explored features - be it structural, mechan-
ical, dynamical or rheological ones. Apart from the more
global aspects of e.g. cell mechanics, the collective and dy-
namical interactions in the presence of the biological fuel
adenosine triphosphate (ATP) may result in dissipative
structures [4–7]. Examples are mitosis and cell locomo-
tion, where spindle and fiber structures emerge [8,9].

In order to principally understand cellular dynamics
it is thus worthwhile to explore the various kinds of pat-
terns and instabilities that might be encountered in a cy-
toskeletal solution of interacting filaments and motor pro-
teins. A number of in vitro experiments revealed different
types of self-organization phenomena induced by motor–
filament interactions [10–14]. In most of these quasi two-
dimensional experiments the initial state is a homogeneous
and isotropic distribution of filaments and motor proteins.
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A diversity of spatio-temporal patterns may evolve from
such a highly symmetric basic state, a number of them
being found in two-dimensional models and simulations
as well [13–20]. Furthermore it is well known that micro-
tubules [21] and actin filaments [22] exhibit anisotropic
states due to orientational order provided that the fila-
ment density is high enough. This ordering transition is
related to the fact that excluded volume interaction is
more costly than the loss in entropy due to the order-
ing [23] and seems to become even more probable in a
nonequilibrium case where active motors are present [24,
25].

The question, which kind of spatio-temporal patterns
may emerge from such an anisotropic basic state naturally
arises. Both actin filaments and microtubules are polar as
molecular motors move on them only in one direction.
The polar character is also apparent in the polymeriza-
tion kinetics of these filaments. The aforesaid structural
polarity, i.e. distinguishable filament ends, hence defines
head and tail or plus and minus ends of a filament. Conse-
quently there are two different homogeneous anisotropic
basic states: If the anisotropy originates predominantly
from excluded volume effects, as in lyotropic liquid crys-
talline (LC) systems, the orientation of the filament heads
is on average equally distributed in both directions of the
axial anisotropy, giving the sample nematic character [26].
However, if the filaments are actively oriented by motors
it is very likely that the basic state is a polar anisotropic
one, for which there is strong evidence, both in vitro [27]
and from simulations [28].
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In the present work we determine within a common
two-dimensional model the range of parameters wherein
the anisotropic polar state becomes unstable against in-
homogeneous fluctuations. In contrast to previous stud-
ies [16,29,18], starting from a homogeneous and isotropic
state, the question to ask here is how the perturbation
wave vector is oriented with respect to the axial anisotropy:
Will the wave vector of the most unstable mode be longi-
tudinal, perpendicular or oblique with respect to the pre-
ferred direction?

Investigations on pattern forming instabilities in two-
dimensional physical systems with an axial anisotropy have
some tradition [26,30–33,5]. The two most prominent phys-
ical examples belonging to this class are electroconvection
and Rayleigh-Bénard convection in planarly oriented ne-
matic LCs [26]. Comparable patterns can occur in active
media close to the isotropic-nematic transition as well [34].
The aforesaid physical examples are studied for over three
decades and associated spatially periodic dissipative pat-
terns have been evinced experimentally by applying to
a planarly oriented layer of a nematic LC either an AC
electric field in the case of electroconvection or a ther-
mal gradient in the case of thermal convection. For some
time, in nematic LCs only spatially periodic patterns have
been observed with their wave vectors parallel to the pre-
ferred molecular mean orientation. Later on it has been
found experimentally and theoretically [35–38] that con-
vection rolls may emerge in these systems with their wave
vectors obliquely oriented with respect to the direction of
the nematic ordering. The continuous transition from the
so-called normal rolls to the oblique roll state happens
at the so-called Lifshitz-point [39,37,38]. Aditionally, in
polymeric LCs a static instability characterized by a wave
vector perpendicular to the preferred nematic orientation
has been found [40,41].

Since the system at hand presents a polar anisotropy
yielding a broken ±-symmetry along the anisotropy axis,
the patterns with the wave vector parallel to the anisotro-
py are propagating ones. In contrast to travelling struc-
tures triggered by a Hopf-bifurcation [5], the propagat-
ing patterns encountered in the analysed system always
drift in a specific direction determined by the polarity.
The eigenvalues of these drifting patterns are therefore not
complex conjugated as will be seen in section 4. This still
holds for an obliquely oriented pattern, whereas the pat-
terns with the preferred wave vector perpendicular to the
anisotropy are stationary. All instabilities, whether lon-
gitudinal, perpendicular or oblique, are long-wavelength
instabilities arising from the competition of the conserved
filament density and the broken-symmetry mode of the
orientation. Thus they share similarities with decomposi-
tion phenomena with respect to the unstable long-wave-
length modes, the rotational and reflexion symmetries along
the axis of the preferred direction being however broken
in the present case. The respective equations covering the
essential features close to the transition points therefore
belong to different symmetry classes than in LCs and are
extended versions of the famous Cahn-Hilliard equation
[42], which will be discussed elsewhere [43].

This work is organized as follows: The model for the
filament distribution, taking active motor-mediated cur-
rents into account, has already been described in the lit-
erature [16,18] and is therefore only briefly summarized in
section 2, with some details given in appendix A in order
to remain self-contained. The full nonlinear equations for
the density and the orientation field of the filaments ob-
tained by a coarse-graining procedure detailed in Ref. [18],
can be read from appendix A.2. However they are not cru-
cial in their entirety to understand the main body of this
work: in section 3 we determine the motor-induced homo-
geneous, polar basic state given by the homogeneous part
of the equations and in section 4 we discuss the linearized
equations governing the dynamics of the linear perturba-
tions with respect to the basic state. The phase diagrams
for the various instabilities are presented in section 5 and
the work is concluded with a discussion and outlook in
section 6.

2 Model

Since the model used to describe the filament-motor-sys-
tem has been discussed and explored to quite some extend
during recent years [16,44,29,18,24,45,46,14], its formula-
tion is kept short and we refer for more details to Refs. [16,
18,45] and to appendix A. The starting point is a Smolu-
chowski equation [47],

∂tΨ + ∇ · Jt + R · Jr = 0 , (1)

capturing the evolution of the probability density func-
tion (pdf) Ψ(r,u, t) of finding a rigid filament at the po-
sition r with orientation u (with |u| = 1) at a given time
t. Both, the translational and the rotational current, Jt

and Jr respectively, have the well known passive contri-
butions from diffusion and excluded volume interaction
[47], given in the appendix by Eqs. (27) and (28). The
active (nonpotential) contributions induced by homoge-
neously distributed motors are given by the following two
expressions

Ja
t = Ψ

∫

du′

∫

dr′ v(r−r′,u,u′)W (r−r′1,u,u′)Ψ ′ , (2)

Ja
r = Ψ

∫

du′

∫

dr′ ω(u,u′)W (r−r′,u,u′)Ψ ′ , (3)

with Ψ = Ψ(r,u) and Ψ ′ = Ψ(r′,u′). Its structure can
be understood as follows: upon overlap of two filaments,
with coordinates (r,u) and (r′,u′), a motor exerts on this
filament pair a relative velocity v and angular velocity ω.
Up to the leading order these velocities read

v(r−r′,u,u′) =
α

2

r′ − r

L

1 + u · u′

|u× u′|
+

β

2

u′ − u

|u× u′|
, (4)

ω(u,u′) = γ0
u× u′

|u× u′|
+ γ1(u · u′)

u × u′

|u × u′|
. (5)

This specific form of the active motor contributions has
been suggested in Ref. [16], while modifications have been
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discussed in Refs. [29,24]. The above active currents fulfill
both the conservation of translational and rotational mo-
mentum in the absence of external forces and torques, as
well as translational and rotational invariance [16,18].

In the one-dimensional limit of the model, the α-contri-
bution in Eq. (4) reflects, as anticipated in Ref. [48], the
interaction of parallel filaments whereas the β-contribu-
tion accounts for the interaction of anti-parallel ones. The
β term is responsible for a process called polarity sorting
[10,49,50] that induces a maximum antiparallel filament
separation and thus favors an arrangement with regions
of alternating local polarities.

In Ref. [18] the model with only the motor-interaction
of parallel filaments, i.e. with the active translational cur-
rent proportional to α, has been analyzed. This reduced
motor-filament model already displayed nontrivial station-
ary density-orientation patterns with finite wavelength. It
has also been shown that the γ1-contribution to the ac-
tive rotational current only slightly affects the stability re-
gions of these patterns. The γ0-contribution to the active
rotational current however changes the universality class
of the model by introducing a new nontrivial symmetry-
broken basic state: if this term is large enough to overcome
rotational diffusion, it can trigger a homogeneously polar-
ized state. The importance of motor-induced filament ro-
tations has been pointed out in Ref. [19]. Polar phases are
also currently discussed from a more macroscopic point of
view [17,51]. In the present work we investigate the stabil-
ity of the homogeneously polarized state induced by the
γ0-contribution as a function of the motor parameters α
and β. For the sake of simplicity we use γ1 = 0, which has
no influence on the qualitative instability behavior of the
polar state. It has been shown, however, that increasing γ1

decreases the threshold of the isotropic-nematic transition
[24].

The model at hand is defined through the conservation
law Eq. (1) with the entering currents given by Eqs. (27)
and (28) of appendix A with the active contributions from
Eqs. (2) and (3) and the relative translational and angular
velocities Eqs. (4) and (5). Eq. (1) then becomes a rather
complicated nonlinear integro-differential equation for the
pdf Ψ(r,u, t). However, upon approximating the nonlocal
interactions by a gradient expansion, equations for the ze-
roth, the first and the second moment with respect to the
orientation, can be derived by a moment expansion tech-
nique. The moments of interest are the filament density
ρ(r, t), the polar orientation t(r, t) and the nematic order
parameter Sij(r, t) as defined by the following expressions

ρ(r, t) =

∫

du Ψ(r,u, t) ,

t(r, t) =

∫

du u Ψ(r,u, t) ,

Sij(r, t) =

∫

du uiuj Ψ(r,u, t) . (6)

Details on both the gradient and the moment expansion
can be found in Ref. [18].

We should stress that in contrast to a usual, passive
lyotropic LC, as described by the Onsager theory [23],

the herein considered filaments are polar with respect to
the motor action: motors can walk on filaments only in
one motor specific direction defined by the internal pro-
tein structure of both the motor and the filament. This
unidirectionality of motion breaks the ±u-symmetry and
allows the first moment, namely t(r, t), to become non-
vanishing in motor-filament systems. In the absence of
motor-mediated filament-rotations, γ = 0, it has been
demonstrated in Ref. [18], that a polar orientation occurs
only locally in connection with spatially variations of the
filament density.

Provided that the system is in a polarized state and
that the filament density is small compared to the critical
density at the isotropic-nematic transition, the nematic
order is most likely to be slaved to the polar vector [51].
Thus the nematic order parameter does not give rise to
an additional degree of freedom but plays nevertheless a
role in stabilizing the growth of the polar orientation. This
allows for the nematic order parameter to be adiabatically
eliminated, leading to a stabilizing term in the equation
of the polar orientation as detailed in appendix B.

Ultimately, in two spatial dimensions, one obtains a
system of three coupled nonlinear equations for the fila-
ment density ρ and the two components of the polar ori-
entation field ti (i = x, y) of the filaments. The complete
nonlinear equations can be found in appendix A.2 while
for the following only the homogeneous parts as well as
the linear operator will be important. The structure of
the equations is as follows

∂tρ = ∂jfj , (7)

∂tti = −Drti +
γ0

2
ρti + ∂jgij +

A

2
tjtjti . (8)

The equation for the density, Eq. (7), is a conservation
law with fj being a function of both the density, the ori-
entation and gradients thereof as well as of the motor pa-
rameters α and β. Both rotational diffusion and active ro-
tations, namely the contributions including Dr or γ0, are
not present in the equation for the scalar density field. The
equations for the polar field, cf. Eq. (8), have a conserved
part mainly due to translational motion of the filaments
(with gij in contrast to fj now being a function of Dr and
γ0 as well), but also homogeneous contributions related to
rotational diffusion and motor-induced filament rotations.
The term proportional to A, with

A =
γ0

(

8Dr

3π
− γ0

)

4Dr

(

1 − 2
3π

ρ0

) , (9)

results for A < 0 in a stabilizing term for the polar orien-
tation. This term is due to the nematic order being slaved
to the orientation field (see appendix B).

We should mention that for convenience, throughout
this work we use rescaled variables for time and space,
t′=t(D‖/L2), x′=x/L, filament density and orientation

field, ρ′=ρ/L2, t′=t/L2, for the motor interaction param-
eters, α′=α(L/D‖), β′=β(L/D‖), γ′

0=γ0(L
2/D‖), and the

rotational diffusion coefficient, D′
r=Dr(L

2/D‖), as well as
having introduced the ratio of the two translational diffu-
sion coefficients, D=D⊥/D‖.
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3 Homogeneous polar state

As discussed above, the motor parameter γ0 describes ac-
tive motor-induced rotations of a filament pair and can
therefore lead to a homogeneous polar state. This tran-
sition from a homogeneous isotropic filament distribution
to a homogeneous polarized state is governed by the ho-
mogeneous part of Eq. (8),

∂tti = −(Dr −
γ0

2
ρ0)ti +

A

2
tjtjti , (10)

with the homogeneous filament density ρ0. Eq. (10) im-
mediately yields that for

γ0 > γ∗
0 =

2Dr

ρ0
(11)

the isotropic filament distribution, corresponding to t = 0,
gets unstable with respect to small perturbations δti. As
within the regions of occurrence of polar states A < 0, the
associated growth finally saturates due to the cubic term
at a value

t̄ =

√

γ0ρ0 − 2Dr

−A
. (12)

When discussing the stability of the latter polar state,
only a linearization around such a stationary solution of
the basic equations, given by t̄ = t̄ t̂ with t̂ being the unit
vector of an arbitrary direction, gives the correct answer
to the stability of the polar state. In contrast to prior
work [45], a state with finite and constant polar order t
should not be assumed a priori since the saturation of the
polar order affects the stability and perturbations of the
modulus of the polar order have to be taken into account.

4 Stability of the homogeneous polar state

The two-dimensional homogeneous, polar state determined
in the previous section may become unstable with respect
to small inhomogeneous perturbations. The direction of
the basic polar state is chosen to be the x-axis, thus the
polarity of the basic state is described by

t̄ = (t̄, 0) , (13)

which we call the polarity axis. The equations of the per-
turbations around this state are obtained from the funda-
mental model equations by separating the homogeneous
polarity and filament density from inhomogeneous contri-
butions by the ansatz





ρ
tx
ty



 =





ρ0

t̄
0



 +





δρ
δtx
δty



 . (14)

A linearization of the basic equations with respect to the
small perturbations δρ, δtx and δty then yields three cou-
pled equations with constant coefficients that may be writ-
ten as follows,

∂tw(r, t) = Lw(r, t) , (15)

with w denoting the vector w = (δρ, δtx, δty). The linear
operator L = Lρ +Lt consists of the isotropic components
Lρ that arise when linearizing ρ = ρ0+δρ around ρ0 while
the components Lt are due to the linearization of t = t̄ +
δt. The contribution Lt renders the equations anisotropic
and is purely due to the intrinsic anisotropy. The explicit
components of the rotational invariant operator Lρ are

Lρ
11 =

[

1 + D

2

(

1 +
2

π
ρ0

)

−
αρ0

24

]

∆ −
19 αρ0

11520
∆2 ,

Lρ
12 = −

β

96

5

2
ρ0∆∂x , Lρ

13 = −
β

96

5

2
ρ0∆∂y ,

Lρ
21 =

{

βρ0

2
+

β

96

5

4
ρ0∆

}

∂x ,

Lρ
22 = − Dr +

3D + 1

4
∆ +

1 − D

2
∂2

x −
αρ0

96
(∆ + 2∂2

x)

−
αρ0

46080

(

11∆2 + 64∆∂2
x

)

+
γ0

2
ρ0 +

γ0ρ0

48
∆ ,

Lρ
23 =

(

1 − D

2
−

αρ0

48

)

∂x∂y −
αρ0

720
∆∂x∂y ,

Lρ
31 =

{

βρ0

2
+

β

96

5

4
ρ0∆

}

∂y , Lρ
32 = Lρ

23 ,

Lρ
33 = − Dr +

3D + 1

4
∆ +

1 − D

2
∂2

y −
αρ0

96
(∆ + 2∂2

y)

−
αρ0

46080

(

11∆2 + 64∆∂2
y

)

+
γ0

2
ρ0 +

γ0ρ0

48
∆ (16)

and the anisotropic operator contributions read

Lt
11 =

5β

192
t̄∆∂x ,

Lt
12 = −

α

48
t̄
(

∆ + 2∂2
x

)

−
α

23040
t̄
(

11∆2 + 64∆∂2
x

)

,

Lt
13 = −

α

24
t̄∂x∂y −

α

360
t̄∆∂x∂y ,

Lt
21 =

3D + 1

2π
t̄∆ +

1 − D

π
t̄∂2

x −
α

96
t̄
(

3∆ + 2∂2
x

)

−
α

11520
t̄
(

11∆2 + 16∆∂2
x

)

+
γ0

2
t̄ ,

Lt
22 = −βt̄∂x −

β

96
t̄
(

2∆∂x + ∂3
x

)

+
3A

2
t̄2 ,

Lt
23 = −

β

2
t̄∂y −

β

96
t̄
(

2∆∂y + ∂2
x∂y

)

,

Lt
31 =

[

1 − D

π
−

α

48

]

t̄∂x∂y −
α

720
t̄∆∂x∂y ,

Lt
32 = −

β

96
t̄∂2

x∂y ,

Lt
33 = −

β

2
t̄∂x −

β

96
t̄∂x∂2

y +
A

2
t̄2 . (17)

The coupled system of linear equations with constant co-
efficients (15) is solved by the ansatz

w = A exp (σt + ik · r) (18)

with wave vector k = (kx, ky) and the corresponding eigen-
vector A. For the studied anisotropic system the interest-
ing question is whether the orientation of the wave vector
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Fig. 1. Dependence of the growth rates of the eigenvalue with
the largest real part (solid line) and with the second largest
real part (dashed line) on the wavenumber kx (ky = 0).

corresponding to the largest growth rate Re[σ] is parallel,
oblique or perpendicular to the polarity axis t̄ = (t̄, 0).

Numerical solution of the eigenvalue problem reveals
that the typical wavenumber dependence of the two eigen-
values with largest real part is always of the form depicted
in Fig. 1, wherein both are shown as a function of the
wavenumber kx in the case of a longitudinal instability.
Hence the instabilities are always long-wavelength ones
which makes a Taylor expansion of the eigenvalues with
respect to small values of the wavenumber k suitable. If
we choose accordingly an expansion up to third order in
k

σ = iω(ϕ)k + λ(ϕ)k2 + iν(ϕ)k3 + . . . (19)

with kx = k cos(ϕ), ky = k sin(ϕ), we get two approxi-
mated long-wave eigenvalues:

σ1 =

[(

ρ0

12
−

γ0

96A

)

α − (1 + D)

(

ρ0

π
−

1

2

)

−

(

γ0

48A
+

ρ0

24

)

cos2 ϕ

]

k2

+ iν1k
3 + O(k4) , (20)

with ν1 6= 0 and

σ2 = − ik
β

2
t0 cosϕ +

[

−
3 + D

4
−

γ0 + 2α

48
ρ0

+

(

1 − D

2
+

αρ0

48

)

cos2 ϕ

]

k2 + iν2k
3 + O(k4)

(21)

within the range 0 ≤ ϕ < π/2− ǫ (see below) with ν2 6= 0.
For the relevant parameter ranges, σ1 is always governing
the onset of instability while σ2 is damped.

In the limit of transverse perturbations, for which ϕ =
π
2 holds, the latter two equations reduce to

σ
(y)
1,2 =

(

−b ±
√

b2 − 4c
)

k2 ∈ R (22)

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5
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−0.5

0

0.5

1
x 10

−7

ϕ/π

R
e

[
σ

]

Fig. 2. Comparison between the analytical growth rates (solid
line) gained by the Taylor series Eq. (19) and the numerics of
the full third order dispersion relation (dashed line) for the
parameters ρ0 = 0.5, D = Dr = 0.5, α = 20.5, β = 2 and
γ0 = 2.5 at k = 10−3. Up to a small neighborhood of ϕ = π/2,
the expansion Eq. (19) is a good approximation.

wherein the abbreviations

b =
1

48
γ0ρ0 +

1 + D

π
ρ0 +

γ0α

96A
+

5 + 3D

4
−

7

96
ρ0α , (23)

c =
2ρ0 + π

8π

[

(D + 2)
2
− 1

]

+
αγ0

384A

(

D + 3
)

+
αρ0

9216

(

3α − 2γ0
)(

3ρ0 − γ0

)

+
ρ0β

2

384A

(

5ρ0A + 2α
)

−
αρ0

192

(

5D + 9
)

+
D + 1

96

(

γ0ρ0 + 2γ0ρ
2
0 + 3αρ2

0

)

(24)

have been introduced. Eqs. (20) and (21) clearly evince
that the growth rates Re [σi] of the perturbations depend
on the angle ϕ enclosed by the wave vector k and the
polarity axis. The considered system being anisotropic,
the wave vector of the critical mode can be parallel, per-
pendicular or even oblique to the axis of polarity. As the
polarity t̄ breaks furthermore the systems reflexion sym-
metry along this direction, the emerging patterns of either
longitudinal or oblique character are drifting ones, accord-
ing to the finite imaginary parts of the eigenvalues σ1,2,
while the eigenvalues σy of the transverse modes are real.

The angle ϕ for which the growth rate’s curvature
changes its sign for the first time will be referred to as the
critical angle ϕc. This angle is in general different from
the one enclosed by the wave vector k corresponding to
the maximum of σ(k) > 0 and the polarity. As shown in
Fig. 2, in the neighborhood of ϕ = π/2 the growth be-
havior of the unstable modes is not fully covered by the
Taylor expansion: to estimate the validity of the power
series Eq. (19), the analytical growth rates are compared
to the numericaly obtained full third order dispersion re-
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lation for a specific paramater set. The analytical results
are in good agreement with the numerics for any angle ϕ
up to the critical one close to ϕ = ϕ⋆ . π/2, with ϕ⋆ in
the immediate vicinity of the maximum of the solid line
in Fig. 2.

5 Stability diagrams

In two-dimensional extended systems the wave number-
dependent growth rate, depicted in Fig. 1 along the kx

direction, is a function of both kx and ky. In the current
section it will be shown that the location of the maximum
of the growth rate Re[σ(kx, ky)] as well as the critical an-
gle ϕc strongly depend on the parameters of the motor-
filament interactions. At first we will discuss the possible
generic instability scenarios and subsequently present the
related phase diagrams.

For a filament density of ρ0 = 0.5 and diffusion co-
efficients D = Dr = 0.5, Figs. 3 and 4 visualize the
three generic instability cases. In Fig. 3a) the contour lines
Re[σ(kx, ky)] = const. are shown for the motor-related pa-
rameters α = 18.5, β = 2 and γ0 = 2.1 > γ∗

0 . For this pa-
rameter set, the function Re[σ(kx, ky)] has its maximum
at a finite value of kx while ky = 0. The corresponding in-
stability is therefore a longitudinal one, characterized by a
critical angle ϕc = 0. Alternatively, Re[σ(kx, ky)] can take
its maximum at finite ky and vanishing kx = 0, as shown
in Fig. 3b) for α = 19, β = 5 and γ0 = 2.5 > γ∗

0 . The
associated instability is transverse with the critical angle
ϕc being π/2.

Interestingly the third typical instability, exemplified
for α = 20.5, β = 2, γ0 = 2.5 > γ∗

0 in Fig. 4, simul-
taneously breaks the translational symmetry both along
the x- and the y-axis. The maximum of the growth rate
is situated at finite values of kx 6= 0 and ky 6= 0 and we
refer to this scenario as an oblique instability because the
critical angle ϕc lies within the interval ]0, π/2[, analogous
to instabilities in usual (i.e. apolar and passive) nematic
LCs leading to the so-called oblique rolls [35–38]

The rich instability scenario found in this system is
best studied as a function of the two motor transport pa-
rameters α and β, as well as of the motor-induced rotation
parameter γ0. If one of the transport parameters exceeds
a certain critical threshold value, the homogeneous polar
state becomes unstable as can be seen in Fig. 5 for two
different values of the motor parameter γ0 which evaluates
in part a) to γ0 = 2.1 while in b) γ0 = 2.5. As previously
the chosen values of ρ0 and Dr satisfy in both cases the re-
lation γ0 > γ∗

0 which accordingly makes the homogeneous
state a polar one.

Since the occurring instabilities are long-wavelength
ones, the critical values of the parameters α and β can be
calculated from the change of sign of the angle dependent
growth rate at k = 0, namely

d2Re[σ(k, ϕ)]/dk2
∣

∣

k=0
= λ(ϕ) . (25)

In case of a longitudinal or oblique instability the β-inde-
pendent critical value of the motor parameter α can be
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Fig. 3. The contour lines Re[σ(kx, ky)] = const. of the eigen-
value with the largest real part are shown for three different
values of const. In part a) the growth rate has its maximum at
a finite value of kx 6= 0 and ky = 0. Contour lines correspond
to Re[σ(kx, ky)] = 0 (solid line), 1.4 10−6 (dashed line) and
−1.4 10−6 (dotted line). Part b) shows a growth rate taking
its maximum at a finite value of ky 6= 0 while kx = 0. Contour
lines: Re[σ(kx, ky)] = 0 (solid line), 10−3 (dashed line) and
−10−3 (dotted line).

obtained by substituting σ1 from Eq. (20) into Eq. (25),

αc =

(1 + D)

(

ρ0

π
+

1

2

)

+
( γ0

48A
+

ρ0

24

)

cos2 ϕ

(

ρ0

12
−

γ0

96A

) . (26)

When inserting ϕ = 0, Eq. (26) defines the threshold of
the longitudinal instability while a possible onset value of
the oblique instability is yielded for 0 < ϕ ≤ ϕ∗ . π

2 . If the

term proportional to cos2 ϕ is positive (as is the case for
Fig. 5b), the threshold of the oblique instability is lower
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Fig. 4. Similarly to Fig. 3, the contour lines of the largest
growth rate are visualized in the case of an oblique instabil-
ity. The maximum is located at nonvanishing kx and ky . The
contour lines correspond to Re(σ(kx, ky) = 0 (solid line), 10−3

(dashed line) and −10−3 (dotted line).

than the onset of the longitudinal one. The onset criterion
for the oblique instability derived from Eq. (26) at ϕ =
ϕ⋆ . π

2 defines however only the smallest possible onset
value that is not necessarily realised. The actual critical
control parameter value αc triggering the emergence of an
oblique instability can not be calculated analytically as it
does depend on the motor parameter β not present in the
approximated growth rate Eq. (20).

The onset of the longitudinal instability corresponds to
the vertical solid lines in Fig. 5a) and b), while the dotted
line in Fig. 5b) visualizes the possible onset value of the
oblique instability at ϕ = ϕ⋆ . π

2 . In case of Fig. 5a) this
line lies beyond the longitudinal threshold and therefore is
irrelevant. The dash-dotted line in Fig. 5b) corresponds to
the numerically obtained exact value of the oblique insta-
bility threshold (see above). If α is below the thresholds
of the longitudinal and oblique instabilities, an increase of
the motor parameter β results in the transverse instabil-
ity beyond the dashed lines in Fig. 5a) and b), gained by

using Eq. (25) with σ = σ
(y)
1 from Eq. (22).

Instead of studying a large variety of phase diagrams
comparable to those shown in Fig. 5 by varying the ra-
tio γ0/Dr, it is beneficial to fix the motor parameter α
to its critical value αc(β, γ0/Dr) in order to get a phase
diagram β versus the ratio γ0/Dr. Fig. 6 highlights which
instability type dominates when α approaches the insta-
bility threshold. The area of the β-γ0/Dr plane labelled I,
located below the left solid line at γ0/Dr = 4 corresponds
to the stability region of the isotropic state for which the
motor-induced rotations are not sufficient to generate a
polar state, cf. Eq. (11). To the right of the right solid line
the adiabatic elimination of the nematic order parameter
fails to yield saturation of the polar order. In between the
latter two domains, upon increasing the motor parameter

16 18 20 22
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stable

transverse
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b)

Fig. 5. Two typical phase diagrams show the ranges within
the α-β plane where the polar state is either stable or unsta-
ble against a longitudinal, transverse or oblique instability. In
part a) γ0 = 2.1 holds whereas in part b) γ0 = 2.5, with the
remaining parameters ρ0 = 0.5, D = Dr = 0.5. The solid
line governs the transition to the longitudinal instability given
by the analytical formula, Eq. (26) with ϕ = 0. The dotted
line corresponds to the possible threshold value of the oblique
instability yielded by Eq. (26) for ϕ = π

2
, which is smaller

than the longitudinal threshold in case b). The transition to a
transverse instability takes place at the dashed line obtained
from Eq. (22). The dash-dotted line in part b) is the exact, nu-
merically obtained threshold to patterns bifurcating from the
homogeneous polar state.

α, the polar basic state becomes either unstable to the
longitudinal, the transverse or to the oblique instability.

The transition from the longitudinal to an oblique in-
stability setting in at the dashed line in Fig. 6 requires the
prefactor of cos2 ϕ in Eq. (26) to change its sign, that is
when γ0 +2Aρ = 0. The dotted line claims that the curva-

ture d2Re[σ
(y)
1 ]/dk2 of the transversal instability as well
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Fig. 6. This phase diagram shows for ρ0 = 0.5 and D =
Dr = 0.5 the parameter ranges wherein the homogeneous polar
state becomes unstable with respect to modes having their
wave vector either longitudinal, oblique or transverse to the
anisotropy axis. In region I the system is isotropic, whereas to
the right of the right solid line the adiabatic elimination is not
valid anymore.

as the curvature d2Re[σ1(ϕ . π/2)]/dk2 of the oblique
instability change simultaneously their sign and is thus

gained from the codimension-2 condition, d2Re[σ
(y)
1 ]/dk2

= d2Re[σ1(ϕ = ϕ⋆)]/dk2 = 0. Accordingly the function
λ(ϕ) has for parameters along the dash-dotted line zeroes
at ϕ = 0, π/2 and is otherwise negative in between. In
another scenario the curvature of transverse and longitu-
dinal instability change their signs simultaneously. This is
the case along the dash-dotted line in Fig. 6 which is de-

termined by d2Re[σ
(y)
1 ]/dk2 = d2Re[σ1(ϕ = 0)]/dk2 = 0.

Along these borders interesting nonlinear pattern compe-
tition is expected. Although the boundaries of the oblique
instability are approximated by the choice ϕ = ϕ⋆ . π/2,
both the dotted and the dash-dotted line are well con-
firmed by numerical calculations.

As indicated in Fig. 6 the longitudinal and the oblique
instability occur only for small values of β. An interest-
ing question is how the transition from the longitudinal
to the oblique instability takes place. If the motor param-
eter α is again presumed to evaluate to its critical value,
Fig. 7 shows this transition in the γ0/Dr-ρ0-plane. The
dash-dotted line is the transition point from longitudi-
nal to oblique instability. Underneath the solid line the
isotropic state persists whereas above the dashed line the
approximative adiabatic elimination of the nematic order
parameter fails.

Besides the regions of occurrence of the diverse in-
stabilities, the critical angle ϕc for whom the curvature
changes its sign and which is enclosed by the wave vector
and the polarity axis, is a relevant observable in case of
an oblique instability. For the model at hand ϕc is vary-
ing as a function of the filament density ρ0 and the ratio
γ0/Dr. In case of a filament density ρ0 = 0.5, the latter
angle is shown in Fig. 8 as a function of γ0/Dr for three
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γ 0/D
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Fig. 7. In between the solid and the dashed line, the homoge-
neous polar state is unstable with respect to either longitudinal
or oblique modes. The dash-dotted curve, at which the transi-
tion from longitudinal to oblique instability sets in, is obtained
from the condition γ0 +Aρ = 0, while crosses show the numer-
ically obtained threshold. Underneath the solid line the system
is isotropic while above the dashed line the approximation of
adiabatic eliminination fails.
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Fig. 8. The numerically determined critical angle ϕc is shown
as a function of the ratio γ0/Dr for a given filament density
ρ0 = 0.5 and for three different values of β.

different values of the motor transport parameter β. This
figure clearly evinces, that the transition from the longi-
tudinal to the oblique instability is a continuous one. Nev-
ertheless, it may be deduced that the angle increases from
ϕ = 0 very steeply at a critical γ0, which favors experi-
mental observations of the oblique instability as a finite
angle should be easily distinguishable from the transverse
and longitudinal instability scenario.



V. Rühle, F. Ziebert, R. Peter and W. Zimmermann: Pattern formation in a polar filament-motor system 9

6 Conclusion

In this work pattern forming instabilities have been ana-
lyzed that occur in a standard model for motor-filament
systems and evolve from a homogeneous polar filament
state. Hitherto only instabilities emerging from a homo-
geneous isotropic distribution of filaments have been dis-
cussed in detail [16,44,18]. Within a certain parameter
range, however, one finds a homogeneous polar filament
order, which breaks the systems rotational symmetry. This
anisotropic polar filament state may itself become unsta-
ble upon increasing the filament density or/and upon in-
creasing the motor activity with respect to long-wavelength
perturbations similarly to various kinds of decomposition
phenomena and in contrast to finite-wavelength instabili-
ties occuring for an isotropic state.

The systems anisotropy causes another difference to
former filament-motor studies. Depending on the model
parameters, the wave vector k = (kx, ky) at the maxi-
mum of the perturbation growth rate Re[σ(kx, ky)] as well
as the critical one are oriented either longitudinally, per-
pendicularly or even obliquely to the polarity axis. This
is in contrast to Ref. [45], where the only primary insta-
bility found was one with the wave vector parallel to the
anisotropy.

The encountered instability types additionally break
the systems translational symmetry along the distingui-
shed axes: in case of the longitudinal instability, the trans-
lational symmetry along the polarity axis is broken, where-
as for a transverse instability, it is violated along the per-
pendicular direction. For an oblique instability, transla-
tional symmetry is no longer fulfilled in both spatial di-
rections. The parameter ranges, wherein the transverse
and oblique instabilities are preferred, happen to be sig-
nificantly broader than those wherein the longitudinal in-
stability is favored. According to the broken x → −x
symmetry along the polar direction the unstable longi-
tudinally and obliquely oriented modes will be nonsta-
tionary and drifting. Only the transverse instability re-
mains nonpropagating. Varying appropriate model param-
eters triggers a continuous transition from a longitudinal
to an oblique instability as for instance along the verti-
cal dashed line in Fig. 6. Since this transition is contin-
uous, as indicated in Fig. 8, it shares some similarities
with the so-called Lifshitz point identified with the tran-
sition from a longitudinal finite wavenumber instability
to an oblique one in electroconvection of planarly aligned
nematic LCs [32,35,37,38]. There are nevertheless two ut-
terly important differences between pattern forming sys-
tems with an axial anisotropy, such as electroconvection
and Rayleigh-Bénard convection in planarly aligned LCs,
and instabilities emerging from the polar state of an inter-
acting motor-filament system. In case of nematic LCs the
instability’s growth rate is damped at small wavenumbers
and only modes at finite wavenumbers are likely to grow.
For filament-motor systems, finite wavenumber instabili-
ties also occur evolving from the isotropic basic state as
discussed in [18]. The instabilities building up from a po-
lar state, however, are always long-wavelength within the
considered standard model. Additionally, due to the po-

larity and the broken x → −x symmetry the unstable
modes of the polar state have to be drifting in contrast to
nematic LCs where the bifurcations are either stationary
with the eigenvalue’s imaginary part vanishing or oscilla-
tory, meaning one has a Hopf-bifurcation characterized by
a pair of complex conjugated eigenvalues.

As the nonlinear evolution of the unstable modes is
concerned, finite wavelength instabilities in planarly alig-
ned nematic LCs belong to the universality class of pattern
forming systems with axial anisotropy, while two-dimen-
sional and rotational symmetric pattern forming systems,
such as thermal convection in simple fluids, are members
of a different universality class. It is well established that,
due to the different symmetries, the slow dynamics of the
long-wavelength modulated patterns are described near
onset of pattern formation in terms of different generic
and symmetry adapted envelope equations [5]. Thus the
aforesaid amplitude equations differ for Rayleigh-Bénard
convection in simple fluids [52,53] and electroconvection
in planarly aligned nematic LCs [39,37,32]. In case of the
bifurcations met in motor-filaments systems, when start-
ing from the isotropic state, the generic envelope equations
capturing the slow pattern dynamics in the weakly non-
linear regime have been derived and solved in Ref. [18],
belonging to the symmetry class of two-dimensional, rota-
tionally symmetric systems like thermal convection. The
patterns considered in the present work however, bifurcat-
ing from a polar state, are governed by envelope equations
falling into a symmetry class not corresponding to either
of the cases mentioned above. The long-wavelength nature
of the instabilities predicted in this work together with the
broken ±-symmetry in the polarity direction requires new
types of generic equations as will be reported elsewhere
[43].

For selected parameter sets the investigated model equa-
tions have already been solved numerically for each of
the instability types presented in the current work. While
these preliminary simulations show rather spatiotempo-
ral chaos than coarsening dynamics if the chosen param-
eter set falls into the predicted domain of longitudinal
or oblique instability, the transverse instability gives rise
to the formation of parallel filament bundles. A thorough
nonlinear analysis will be provided elsewhere.
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A Details of the mesoscopic model

A.1 Currents

The continuity of the probability expressed by Eq. (1)
involves a translational and a rotational current. The for-
mer,

Jt,i = −Dij [∂jΨ + Ψ∂jVex] + Ja
t,i , (27)
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contains besides anisotropic diffusion and an excluded vol-
ume potential Vex, arising from the other filaments in the
solution, the active contribution Ja

t caused by the molec-
ular motors, as defined in the main body. The rod-like
shape of the filaments additionally motivates a rotational
current,

Jr,i = −Dr [RiΨ + ΨRiVex] + Ja
r,i , (28)

with a structure analogous to the translational current
except that the anisotropic diffusion matrix,

Dij = D‖uiuj + D⊥ (δij − uiuj) (29)

with parallel and perpendicular diffusion coefficients, D‖

and D⊥ respectively, is replaced by the rotational diffusion
coefficient Dr and the spatial derivatives are replaced by
the operator of rotational diffusion [47], R = u× ∂u. The
excluded volume interaction,

Vex(r,u) =

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) , (30)

is governed by the interaction kernel W (r−r′,u,u′), which
evaluates to 1 if there is an overlap of the filaments at
(r,u) and (r′,u′) and to zero otherwise.

A.2 Nonlinear equations

Performing a gradient expansion and extracting equations
of motion for the moments of the orientation distribution
from Eq. (1), as detailed in Ref. [18], the two-dimensional
nonlinear equations for the density ρ and the orientation
field t = (tx, ty) read (in the rescaled variables as defined
above)

∂tρ =
1 + D

2
∆ρ +

[

1 + D

π
−

α

24

]

∇ · (ρ∇ρ)

−
α

48
∂i

[

ti∂jtj + tj∂itj + tj∂jti

]

−
α

23040

{

38∇ · (ρ∇∆ρ) + 11∂i (tj∂i∆tj)

+16∂i

[

ti∆∂jtj + 2tj∂j∂i∂ltl + tj∂j∆ti

]}

−
β

96
∂i

[

ρ∂i∂jtj − tj∂j∂iρ +
3

2

(

ρ∆ti − ti∆ρ
)

]

, (31a)

∂tti = −Drti +
3D + 1

4
∆ti +

1 − D

2
∂i∇ · t

+
3D + 1

2π
∂j (ti∂jρ) +

1 − D

2π

[

(∂j(tj∂iρ) + ∂i(tj∂jρ))

]

−
α

96
∂j

[

3ti∂jρ + tj∂iρ + ρ(∂itj + ∂jti)

]

−
α

96
∂i

[

tl∂lρ + ρ∂ltl

]

−
16α

46080
∂i

[

ρ∆∂ltl + tl∂l∆ρ

]

−
α

46080
∂j

[

ρ

(

11∂j∆ti + 16∂i∆tj + 32∂j∂i∂ltl

)

+16tj∂i∆ρ + 32tl∂l∂i∂jρ + 44ti∂j∆ρ

]

+
β

2
∂j

[

1

2
δijρ

2 − titj

]

+
β

96
∂j

[

3

4
δijρ∆ρ +

1

2
ρ∂i∂jρ

]

−
β

96
∂j [tl∂l∂itj + ti∂j∂ltl + ti∆tj ]

+
γ0

2
ρti +

γ0

48
ρ∆ti +

A

2
tjtjti . (31b)

B Stabilizing term for the polar state

As discussed above, for high enough γ0 the isotropic ba-
sic state becomes unstable against a polar ordered state.
The growth of this polar orientation needs to be stabilized
by higher order nonlinearities. As a rigorous treatment of
the nematic order parameter would be cumbersome and
gives rise to additional equations, here we will motivate
the stabilizing term used in Eq. (31). The homogeneous
equations for the polar orientation and the nematic order
parameter read

∂tti = −
(

Dr −
γ0ρ

2

)

ti +

(

8

3π
Dr − γ0

)

Sijtj , (32)

∂tSij = − 4Dr

(

1 −
2

3π
ρ0

)

Sij + γ0

(

titj −
1

2
δijt

2

)

+
32

9π
Dr

(

SimSjm −
1

2
δijS

2
lm

)

. (33)

Provided that γ0 > γ⋆ = 2Dr/ρ0 the polar orientation
gets unstable and has to be stabilized (within the approx-
imations used so far) by the nonlinear term proportional
to Sijtj . The equation for Sij , Eq. (33), stipulates that for
ρ > 3π

2 a transition to a nematic phase takes place. How-
ever, as only parameter ranges lying beneath the nematic
transition point are considered here, equations governing
the spatiotemporal evolution of the filament density and
polar orientation should be sufficient to describe the sys-
tems behavior. Furtheron one can assume that below the
nematic transition point, the polar orientation and the
nematic order parameter are strongly coupled yielding for
Sij the subsequent form [47]

Sij = S̃

(

titj −
1

2
δijt

2

)

. (34)
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In order for Sij to be consistent with the definition in
Eq.(6), the relation 0 ≤ S0 ≤ ρ0 needs to hold. Presuming
that the nematic order follows the polar order adiabati-
cally, i.e. ∂tSij = 0, one gets from Eq. (34) and Eq. (33)

S̃ =
γ0

4Dr

(

1 − 2
3π

ρ
) . (35)

Eliminating Sij from Eq. (32) finally yields

∂tti = −
(

Dr −
γ0ρ

2

)

ti +
A

2
t2j ti (36)

with the desired cubic term proportional to

A =
γ0

(

8Dr

3π
− γ0

)

4Dr

(

1 − 2
3π

ρ0

) . (37)
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