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Abstract. The relation between saddle points of the potential of a classical
many-particle system and the analyticity properties of its Boltzmann entropy is
studied. For finite systems, each saddle point is found to cause a nonanalyticity in
the Boltzmann entropy, and the functional form of this nonanalytic term is derived
for the generic case of potentials having the Morse property. With increasing
system size the order of the nonanalytic term grows unboundedly, leading to
an increasing differentiability of the entropy. Nonetheless, a distribution of an
unboundedly growing number of saddle points may cause a phase transition in
the thermodynamic limit. Analyzing the contribution of the saddle points to the
density of states in the thermodynamic limit, conditions on the distribution of
saddle points and their curvatures are derived which are necessary for a phase
transition to occur. With these results, the puzzling absence of topological
signatures in the spherical model is elucidated. As further applications, the phase
transitions of the mean-field XY model and the mean-field k-trigonometric model
are shown to be induced by saddle points of vanishing curvature.

Keywords : Classical phase transitions (theory), energy landscapes (theory), solvable
lattice models

1. Introduction

Phase transitions are abrupt changes of the macroscopic properties of many-particle
systems under variation of a control parameter. Typical examples are the sudden
disappearance of the electric resistance when cooling a superconducting material
below its transition temperature, or the evaporation of a liquid at temperatures
above its boiling point. An approach commonly used for the theoretical study of
phase transitions is the investigation of the analyticity properties of thermodynamic
functions like the canonical free energy of enthalpy. It is long known that non-
analytic behaviour in a canonical thermodynamic function can occur only in the
thermodynamic limit in which the number of degrees of freedom N of the system
goes to infinity [1].

Many researchers took it for granted that the same were true also for micro-
canonical thermodynamic functions. Recently, however, it was observed that the
microcanonical entropy, or Boltzmann entropy, of a finite system is not necessarily
real-analytic, i. e., not necessarily infinitely many times differentiable. Nonanalytic
entropy functions of finite systems have been reported for certain classical models
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[2, 3, 4, 5] as well as for quantum systems [6], where the latter result relies on a
suitable but rather unconventional definition of the density of states.

In light of their conceptual similarity to the definition of phase transitions, it is
tempting to regard finite-system nonanalyticities of the entropy as phase transition-like
phenomena. This point of view is advocated in [3], and the authors of that reference
argue that such nonanalyticities should also be measurable experimentally, at least in
very small systems. However, such an interpretation is complicated by the fact that,
as discussed in [5], for typical models the number of nonanalytic points of the entropy
increases unboundedly with the number of degrees of freedom N .

Due to their typically large number, one might assume that nonanalyticities of
the finite-system entropy were unrelated to the occurrence of a phase transition in the
thermodynamic limit. From a theorem by Franzosi and Pettini [7], however, it can be
deduced that—at least for a certain class of short-range systems—a relation between
finite-system and infinite-system nonanalyticities exists (and we will come back to that
theorem later). The purpose of the present article is to further clarify and quantify
the relation between saddle points of the potential energy and nonanalyticities of
the entropy for the cases of finite as well as infinite systems. For infinite systems,
at least in the common situation of ensemble equivalence, a nonanalyticity of the
entropy will correspond to a nonanalyticity in the canonical free energy, and hence to
a phase transition according to the standard definition. Note that in the literature
other approaches relating saddle points of the potential to phase transitions have been
proposed. Examples include the work of Rutkevich [8], Wales [9], and Pettini [10],
and we will elaborate on the relation to the latter approach in Sec. 4.

Our approach is the following: After fixing notations in Sec. 2, we discuss the
analyticity properties of the Boltzmann entropy for a generic class of classical many-
particle systems in Sec. 3. For the case of finite systems, our main result is that
every saddle point (including maxima or minima) of the high-dimensional potential
energy landscape corresponds to a nonanalyticity of the Boltzmann entropy, and the
functional form of this nonanalytic term is derived explicitly. (A weaker version of
this result has been announced without proof in a recent Letter [11]). This result
gives a model-independent and quantitative account of nonanalyticities in the finite-
system entropy as observed for the special cases in [2, 3, 5]. Then, the density of
states is split into two terms: The first is a sum of the nonanalytic contributions
stemming from the saddle points, whereas the second contains the analytic rest.
Performing the thermodynamic limit of the thus obtained expressions, we obtain in
Sec. 4 a condition on the distribution of saddle points and their curvatures which
necessarily has to be fulfilled in order cause a phase transition. (This result has been
outlined in the recent Letter [12].) We apply our findings to the spherical model
of a ferromagnet in Sec. 5, explaining the puzzling behaviour that, for this model,
the topological signatures observed do not coincide with the phase transition energy
[13, 14]. As further examples, the mean-field XY model (Sec. 6) and the mean-field k-
trigonometric model (Sec. 7) are discussed, illustrating nicely the relation of curvature
properties of saddle points of the potential and the occurrence of phase transitions in
the thermodynamic limit. We summarize our findings in Sec. 8.



Nonanalyticities of the entropy induced by saddle points 3

2. Preliminaries

We consider classical systems of N degrees of freedom, characterized by Hamiltonian
functions of standard form,

H(p, q) =
1

2

N
∑

i=1

p2
i + V (q), (1)

where p = (p1, . . . , pN ) is the vector of momenta and q = (q1, . . . , qN ) the vector
of position coordinates. The restriction to a quadratic form in the momenta is not
essential, but simplifies the presentation. The potential V is an analytic mapping from
the configuration space ΓN ⊆ RN onto the reals. Whenever ΓN is noncompact, we
assume V to be confining, i. e.,

lim
λ→∞

V (λq) = ∞ ∀0 6= q ∈ ΓN . (2)

In general V will have a number of critical points (or saddle points) qc, defined
as points from ΓN with vanishing differential, dV (qc) = 0. Note that throughout this
article the expression “saddle points” is used synonymously to “critical points” and
includes also minima and maxima. We will assume in the following that all critical
points of V are non-degenerate, i. e., that the determinant of the Hessian HV fulfills

det [HV (qc)] 6= 0 ∀qc of V . (3)

In this case, V is called a Morse function. Conceptually, this is an insignificant
restriction, since Morse functions on some manifold M form an open dense subset in
the space of smooth functions on M [15, 16]. Therefore, if the potential V of the
Hamiltonian system is not a Morse function, we can deform it into a Morse function
V̄ by adding an arbitrarily small perturbation, e.g.

V̄ (q) = V (q) +

N
∑

i=1

hiqi (4)

with small hi ∈ R (i = 1, . . . , N). For practical purposes, adding a perturbation—and
thereby destroying a symmetry present in V —may, however, render the computation
of critical points and indices more complicated or even impossible.

In case V is not a Morse function due to the presence of a symmetry, an alternative
strategy is possible: zero-eigenvalues of the Hessian caused by, say, translation
invariance can be removed by fixing one or several position coordinates, thereby
destroying the symmetry. Thermodynamic functions of such a system with a reduced
number of degrees of freedom will differ from the original ones only by a physically
irrelevant additive constant.

3. Finite system nonanalyticities

When computing thermodynamic properties of a Hamiltonian system, a quadratic
form in the momenta as in the Hamiltonian (1) merely leads to a shift in the free energy.
Hence, for the discussion of phase transitions or nonanalyticities of thermodynamic
function we may disregard the kinetic term and concentrate on the configurational
part (see [17] for a discussion of the pitfalls of this reasoning).
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Our aim is to investigate the analyticity properties of the configurational density
of states as a function of the potential energy per degree of freedom v = V/N ,

ΩN (v) =

∫

ΓN

dq δ[V (q) − Nv], (5)

or, equivalently, of the entropy

sN (v) =
1

N
ln[ΩN (v)] (6)

of a classical system of N degrees of freedom, characterized by a Morse function V .
The crucial observation for our analysis is that nonanalyticities of ΩN are closely
related to the critical levels of V , i. e., the values vc of the potential per degree of
freedom V/N for which a critical point qc exists such that V (qc)/N = vc. If [v1, v2] is
an interval free of critical levels, one can show that ΩN and sN are smooth functions
in this interval (Lemma 2 of [18]).

The Morse property (3) guarantees that all critical points of V are isolated. We
thus may reduce the discussion to the effect of a single critical point qc of V on the
analyticity properties of the density of states ΩN . Without loss of generality we can
choose V (qc) = 0. Furthermore, making use of the Morse lemma [15, 19], a local
coordinate system x = (x1, x2, . . . , xN ) can be chosen such that

V [q(x)] = −
k

∑

i=1

x2
i +

N
∑

i=k+1

x2
i (7)

in some open neighbourhood of qc = q(0). We denote the Jacobian of the
transformation into this coordinate system by J(x) and its determinant by J(x). We
will use the expansion of J(x) at x = 0 for the derivation of the singular behaviour of
ΩN (v) at v = 0,

J(x) =
∑

I={i1,...,iN}
aIx

I , (8)

using a multi-index notation xI = xi1
1 xi2

2 · · ·xiN

N . The zeroth order I = 0 is particularly
symmetric and leads to the leading nonanalytic behaviour of ΩN . In this section we
will restrict the discussion to I = 0. The analysis of higher order corrections demands
different methods and is shifted to the Appendix. The coordinate transformation at
qc = 0 is linked to the second derivatives of the potential. Thus J(0) can be written
as

J(0) = a0 = |det[HV (0)/2]|−1/2
. (9)

The determinant det HV can be viewed as a measure of some “curvature” at a critical
point, and this allows us to interpret J in our later results as quantifying the flatness
of a critical point.

The index k in Eq. (7) is called the Morse index of the critical point. It equals the
number of negative eigenvalues of the Hessian HV (0) of V at the critical point qc = 0
and it determines whether a critical point is a minimum (k = 0), a maximum (k = N),
or a proper saddle (k ∈ {1, . . . , N − 1}). In this section we will mainly deal with the
latter case. The simpler calculation for the extrema is entailed in the more general
set-up of the Appendix. Following the notation in [20], we introduce new variables
X > 0 and Y > 0 by defining

X2 =
k

∑

i=1

x2
i , Y 2 =

N
∑

i=k+1

x2
i , (10)
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yielding

V = −X2 + Y 2. (11)

We restrict the calculation of ΩN to a ball of radius r centered at x = 0,

X2 + Y 2
6 r2, (12)

and we choose r small enough such that the ball fits into the open neighbourhood
of Morse’s lemma.‡ The restriction to the ball will result in spurious singularities at
Nv = ±r2 which are the limiting values of V on the ball. However, we know that the
relevant nonanalyticity has to be located at v = 0 and thus may assume N |v| < r2 in
the following.

Introducing polar coordinates for (x1, ..., xk) and (xk+1, ..., xN ), we find for the
density of states in the vicinity of qc to leading order the expression

Ω
(qc)
N (V ) = J(0)

∫

dNx δ
(

−X2 + Y 2 − V
)

Θ
(

r2 − X2 − Y 2
)

(13)

= J(0)Ck−1CN−k−1

∫ ∞

0

dX

∫ ∞

0

dY Xk−1Y N−k−1

× δ
(

−X2 + Y 2 − V
)

Θ
(

r2 − X2 − Y 2
)

, (14)

where Cn is the volume of the n-sphere,

Cn =
2π(n+1)/2

Γ [(n + 1)/2]
, (15)

and

Θ(x) =

{

0 if x < 0,

1 if x > 0,
(16)

denotes the Heaviside step function. We evaluate the X-integral making use of

δ(−X2 +Y 2−V ) = δ[2(Y 2−V )1/2(X− [Y 2−V ]1/2)]Θ(Y 2−V ), (17)

obtaining

Ω
(qc)
N (V ) = J(0)Ck−1CN−k−1

{

I− for V < 0,

I+ for V > 0,
(18)

with

I± =
1

2

∫

√
(r2+V )/2

√
V Θ(V )

dY
(

Y 2 − V
)(k−2)/2

Y N−k−1. (19)

In order to avoid cuts while comparing the two integrals I− and I+, we consider V as
a complex variable and shift it slightly, say, above the real axis,

ImV = ǫ > 0. (20)

We use the variable transformation

Y =
√

V y (21)

where we interpret the square root as a single valued function on the complex plane
cut from −∞ to 0 (and

√
1 = +1). With this definition of the square root we resolve

‡ The precise shape of the region is not essential for the calculation.



Nonanalyticities of the entropy induced by saddle points 6

the ambiguities in raising complex numbers to half integer powers. The integrals I±
are transformed into

I− =
V

4

∫ (r2+V )/(2V )

0

dy
√

V (y − 1)
k−2√

V y
N−k−2

, (22a)

I+ =
V

4

∫ (r2+V )/(2V )

1

dy
√

V (y − 1)
k−2√

V y
N−k−2

. (22b)

Since ImV > 0, the upper limit of the integral lies in the lower half plane H−. The
integrand is holomorphic in H−, allowing us to shift the contour freely in the lower half
plane. The contour is supposed to only touch the real line in the lower limit y = 1 or
y = 0, respectively. By our convention for the square root we have

√
y − 1 = −i

√
1 − y

in H−. If, in the case of I+, we let the contour take a detour via 0 − iǫ, we are able
to express both integrals in terms of incomplete beta functions B(k1, k2, z),

I+ =

√
V

N−2

4ik−2

[

B

(

N − k

2
,
k

2
,
Y 2 + V

2V

)

− B

(

N − k

2
,
k

2
, 1

)]

, (23a)

I− =

√
V

N−2

4ik−2
B

(

N − k

2
,
k

2
,
Y 2 + V

2V

)

. (23b)

It is also possible to express the integrals in terms of beta functions with arguments
in the interval (0, 1). To achieve this for I−, we have to apply a Möbius transform
y = z/(z−1) which permutes the points (0, 1,∞) to (0,∞, 1). For the transformation
of I+ we have to permute (0, 1,∞) to (∞, 0, 1), facilitated by y = 1/(1−z). Performing
these substitutions we obtain

I+ =
V (N−2)/2

4
B

(

k

2
, 1 − N

2
,
r2 − V

r2 + V

)

, (24a)

I− =
(−V )(N−2)/2

4
B

(

N − k

2
, 1 − N

2
,
r2 + V

r2 − V

)

. (24b)

We obtain for the difference of I+ and I−

I+ − I− =

√
V

N−2

4ik
Γ(k/2)Γ((N − k)/2)

Γ(N/2)
, (25)

where the complete beta function has been expressed in terms of the Γ-function.
What are the implications of this result for the nonanalyticity of I(V ) =

Θ(V )I+ + Θ(−V )I−? We know that I(V ) is a real function which may have a square
root singularity (for odd N) or a logarithmic singularity (for even N) at V = 0 [this
follows for example from the properties of the beta functions in Eqs. (24a) and (24b)].

In the case of even k, the difference I+ − I− is real for V > 0 and we simply
conclude that I(V ) is analytic up to a term (−1)k/2V (N−2)/2Θ(V )Γ(k/2)Γ((N −
k)/2)/[4Γ(N/2)].

In the case of odd k and odd N , we find that I+ − I− is real for V < 0: We have
to keep in mind that for ImV > 0 we have

√
−V = −i

√
V to see that I(V ) is analytic

up to a term (−1)(N−k)/2(−V )(N−2)/2Θ(−V )Γ(k/2)Γ((N − k)/2)/[4Γ(N/2)].
Finally, in the case k odd and N even, I+ − I− is imaginary for positive and

negative V . This is a consequence of a logarithmic singularity which has to be present
in both, I+ and I− (otherwise Eq. (25) would contain an ln(V )-term). In fact, for
ImV > 0 a term ln |V | in I(V ) results in a term ln |V | + i arg(V ) in I+ and a term
ln |V | − i[π − arg(V )] in I− which gives iπ in I+ − I−. Comparison with Eq. (25)
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yields that I(V ) is analytic up to a term (−1)(k+1)/2V (N−2)/2(ln |V |)Γ(k/2)Γ((N −
k)/2)/[4πΓ(N/2)]. We confirm that the nonanalyticity is independent of the radius r
of the domain under consideration.

The leading order nonanalyticity depends on the remainder of the index k mod 4
only. This remarkable fact prevails to all orders as we will show in the Appendix.
Moreover, the type of the nonanalyticity depends only on whether N and k are even
or odd.

Including the prefactors in Eq. (14) and going back to v = V/N , we obtain the
leading order behaviour of the density of states ΩN as summarized in the following
proposition.

Proposition 1. Let V : G → R be a Morse function with a single critical point qc of
index k in an open region G. Without loss of generality, we assume V (qc) = 0. Then
the density of states ΩN (v) is nonanalytic at v = 0. The leading order nonanalyticity
is given by a function depending on the number of degrees of freedom N , the index of
the critical point k mod 4, and the potential energy per particle v. We have

Ωna
N (v) =

(Nπ)N/2

NΓ(N/2)
√

|det [HV (qc)/2]|
hna

N,k mod 4(v) (26)

with the universal function

hna
N,k mod 4(v) =















(−1)k/2 v(N−2)/2Θ(v) for k even,

(−1)(k+1)/2 v(N−2)/2 π−1 ln |v| for N even, k odd,

(−1)(N−k)/2(−v)(N−2)/2Θ(−v) for N, k odd.

(27)

In fact, it is possible to give a complete description of the nonanalytic part of the
density of states in terms of the Taylor coefficients of the Jacobian determinant (8)
at the critical value. We find that only those indices I = {i1, . . . , iN} contribute to
ΩN where all ik (k = 1, . . . , N) are even. The general situation is summarized in the
following theorem.

Theorem 1. Let V : G → R be a Morse function with a single critical point qc of
index k in an open region G and V (qc) = 0. The density of states can be decomposed
into an analytic part Ωa

N and a nonanalytic part Ωna
N ,

ΩN = Ωa
N + Ωna

N . (28)

The nonanalytic part of the density of states is the product of an analytic function
ha

N,k,J and the universal nonanalytic function hna
N,k mod4 given in Eq. (27). The

analytic factor depends on the number of degrees of freedom N , the index of the critical
point k, the Jacobian determinant J of the transformation from the original coordinate
system to Morse coordinates, and the potential energy per particle v. The nonanalytic
factor depends on N , k mod 4, and v,

Ωna
N (v) = ha

N,k,J(v)hna
N,k mod 4(v). (29)

The analytic factor ha
N,k,J(v) can be expressed in terms of the expansion coefficients

aI of the Jacobian determinant at the critical value, Eqs. (8) and (9). With I1 =
i1 + . . . + ik, I2 = ik+1 + . . . + iN , and |I| = I1 + I2 we have

ha
N,k,J(v) =

∑

I={i1,...,iN}
(−1)Iηa2I

πN/2NN/2+|I|−1
∏N

j=1(2ij)!

Γ(N/2 + |I|)∏N
j=1 ij !

(v

4

)|I|
, (30)
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η =

{

1 if N or k even,

2 if N and k odd.
(31)

Proof. Eq. (30) will be derived in the Appendix. The leading order I = 0 yields the
prefactor in Eq. (26), thus proving Proposition 1 in the cases k = 0 and k = N . It
remains to show that ha

N,k,J(v) is analytic at v = 0. To this end, it is sufficient to show
that the sum in Eq. (30) converges in some neighbourhood of v = 0. We may assume
that the Jacobian determinant is analytic in a neighbourhood U of x = 0, yielding
|aI | < R−|I| where R is the maximum of the xi in U . Using Sterling’s formula we find
that, in the limit |I| → ∞, the summands in Eq. (30) are bounded by

(

π

|I|

)(N−1)/2

NN/2−1

(

vN

R2

)|I|
, (32)

yielding R2/N for the radius of convergence at v = 0.

The theorem gives a complete account of the nonanalyticities in ΩN as the
consequence of a single critical point of a Morse function V . In the presence of several
isolated critical points, their nonanalytic contributions simply have to be added up. It
is also possible to state the result in terms of the potential V in the original variables,
not making use of Morse coordinates. The result, however, is more complicated and
for our purposes the above version will be sufficient.

One can verify that in any of the three cases in (27), ΩN is ⌊(N − 3)/2⌋-times
continuously differentiable. This result is in agreement with the nonanalytic behaviour
of the exact solution for the density of states of the mean-field spherical model reported
in [2]. In other words, the density of states ΩN becomes “smoother” with increasing
number of degrees of freedom, and already for moderate N it will supposedly be
impossible to observe such finite-system nonanalyticities from noisy experimental or
numerical data. At first sight one might therefore suspect that the nonanalyticities of
the entropy are irrelevant for large systems and have no effect in the thermodynamic
limit, but the following considerations will show that such an assertion is premature.

4. Thermodynamic limit for the density of states

In the last years, quite a few articles have been published on the relation between
nonanalyticities of the entropy or the free energy in the thermodynamic limit and
topology changes in configuration space (see [21, 10] for a review). The object of
study in this approach is the family {Mv}v∈R with

Mv =
{

q ∈ ΓN

∣

∣ V (q) 6 Nv
}

, (33)

i. e., the subsets of all points q from configuration space ΓN for which the potential
energy per particle, V (q)/N , is equal to or smaller than a given value v. For several
models, topology changes of Mv were studied under variation of the parameter v,
finding that in many cases the occurrence of a phase transition is signalled by a
signature in the Euler characteristic of Mv (which is a topological invariant) [22, 23].
Then, in a recent letter [7], Franzosi and Pettini proved that, for a certain class of
short-range models, a topology change in {Mv}v∈R at v = vt is necessary for a phase
transition to take place at a transition potential energy vt. This result demonstrates
that a relation between nonanalyticities of the entropy or the free energy in the



Nonanalyticities of the entropy induced by saddle points 9

thermodynamic limit and topology changes in configuration space does exist at least
for this class of short-range models.

It is a central proposition of Morse theory [16, 19] that, for potentials V having
the Morse property, each topology change of Mv at some value v = vc corresponds to
one or several critical points qc of V with critical value vc = V (qc)/N . More precisely,
if V is a Morse function and if we know all the critical points of V and their critical
indices, the handle decomposition theorem [19] asserts that we have all the information
readily available to specify the topology changes that occur in the family {Mv}v∈R
of configuration space subsets. As a consequence, the study of topology changes
within {Mv}v∈R and the study of saddle points of V are closely related approaches.
From the proven relation between phase transitions and topology changes [7] we can
therefore conclude that a relation between saddle points of V and nonanalyticities of
the entropy exists not only for finite systems (as worked out in Sec. 3), but also in the
thermodynamic limit of infinite system size.

In light of our finite-system results summarized in Proposition 1 and Theorem 1,
this is a remarkable and somewhat surprising observation: Despite their decreasing
strength for large system sizes N , nonanalyticities of the finite-system entropy appear
to be related to their infinite-system counterparts in some way. This relation, however,
is not one-to-one: critical points of V are necessary, but by no means sufficient for
a phase transition to occur. For several models studied, the number of critical levels
vc of the potential V was found to increase unboundedly with the number N of
degrees of freedom of the system, and the levels become dense on some interval in
the thermodynamic limit [22, 23, 13]. Therefore, most of the critical points of V are
not related to the phase transition. From these observations, the question arises how,
and under which conditions, nonanalyticities of the finite-system entropy may give
rise to a phase transition in the thermodynamic limit. This issue will be addressed in
the present section.

To this purpose, we investigate the density of states ΩN in a small interval
(v0 − ǫ, v0 + ǫ) around some value v0 of the potential energy. In order to quantify
the contribution to the entropy caused by the critical points, we split the density of
states into two terms,

Ωv0,ǫ
N (v) = Av0,ǫ

N (v) + Bv0,ǫ
N (v). (34)

Bv0,ǫ
N contains the nonanalytic contributions, as specified in Theorem 1, from all

critical points in the ǫ-neighbourhood of v0,

Bv0,ǫ
N (v) =

∑

{vc:|vc−v0|<ǫ}

∑

{qc:V (qc)/N=vc}
Ωna

N,qc
(v), (35)

written as a sum over critical values vc of V inside the neighbourhood and over critical
points qc(vc) corresponding to the respective critical value. Then a smooth function
Av0,ǫ

N can be chosen such that the ǫ-density of states Ωv0,ǫ
N from (34) coincides with the

exact density of states ΩN inside the interval (v0 − ǫ, v0 + ǫ). In the following we will
compute a bound on Bv0,ǫ

N in order to examine under which conditions the nonanalytic
terms stemming from the saddle points may yield a non-vanishing contribution to
Ωv0,ǫ

N , and therefore to ΩN , in the thermodynamic limit, thereby possibly inducing a
phase transition.

In order to perform the thermodynamic limit, we consider the ǫ-entropy per degree
of freedom,

sv0,ǫ(v) = lim
N→∞

1

N
ln [Av0,ǫ

N (v) + Bv0,ǫ
N (v)] , (36)
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since, at least for a system with short-range interactions, we may expect this quantity
to exist [24]. Within the interval (v0 − ǫ, v0 + ǫ), sv0,ǫ coincides with the exact entropy

s(v) = lim
N→∞

1

N
ln ΩN (v). (37)

It is important to note that N−1 lnBv0,ǫ
N has in general a non-zero thermodynamic

limit: For fixed I, we find that the summands in Eq. (30) are exponential in N ,

(−1)Iηa2I

(v/4)|I|
∏N

j=1(2ij)!√
4πN

∏N
j=1 ij!

(2πe)N/2, (38)

permitting Bv0,ǫ
N to give a finite contribution to s.§ Now we would like to deduce

the (non)analyticity of the entropy s from the properties of the thermodynamic limit
expressions

av0,ǫ(v) = lim
N→∞

1

N
lnAv0,ǫ

N (v), (39a)

bv0,ǫ(v) = lim
N→∞

1

N
lnBv0,ǫ

N (v). (39b)

To this end it is instructive to rewrite Eq. (36) as

sv0,ǫ(v) = max {av0,ǫ(v), bv0,ǫ(v)} . (40)

The above equation holds unless Av0,ǫ
N and Bv0,ǫ

N are very closely related (such as
Av0,ǫ

N = −Bv0,ǫ
N ) which is highly non-generic and thus neglected. As a consequence

of Eq. (40), we cannot expect to draw any conclusions on sv0,ǫ from the knowledge
of one single function av0,ǫ or bv0,ǫ, but only from the interplay between both. If, for
example, we find a nonanalyticity in bv0,ǫ, this nonanalytic behaviour may be visible in
sv0,ǫ in one case, but it may simply be overruled by a larger av0,ǫ in another instance.
Furthermore, a nonanalyticity in sv0,ǫ may arise from a crossover between av0,ǫ and
bv0,ǫ when the dominant part in the maximum changes from av0,ǫ to bv0,ǫ (or vice
versa).‖

The “density splitting” in [20], similar to our Eq. (34), raises the hope that
one may expect the analytic part in Av0,ǫ

N to converge, inside the interval (v0 −
ǫ, v0 + ǫ), uniformly to an analytic function for well-behaved short-range potentials.
Unfortunately we were not able to prove such a result. Furthermore it appears
plausible from the discussion in the preceding paragraphs that, at least for short-
range models as covered by the theorem in [7], nonanalyticities of the function bv0,ǫ,
stemming from the nonanalytic contributions of the critical points of the potential V ,
are crucial for the occurrence of a phase transition in the thermodynamic limit. As a
consequence of this reasoning, we investigate in more detail the thermodynamic limit
N → ∞ of Bv0,ǫ

N in order to find out under which conditions it may give a nonanalytic
contribution to the entropy.

When performing this limit, we will for simplicity restrict the discussion to
the subsequence with N = 1 (mod 4) and to the leading order |I| = 0 (other

§ A similar splitting of the density of states into two terms, one stemming from the vicinities of the
critical points, the other one containing the rest, has been used in [20].
‖ This possibility falsifies the reasoning in [20] saying that, since a first term from volume splitting
is smooth, a nonanalyticity must be due to the second term.
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subsequences and higher orders can be treated in a similar way). Now the functional
form of Ωna

N can be inserted into the expression (35), yielding

Bv0,ǫ
N (v) =

(Nπ)N/2

NΓ(N/2)

{

∑

{vc:v0−ǫ<vc<v0}
(v − vc)

(N−2)/2

[

∑

qc∈Q0(vc)

J(qc) −
∑

qc∈Q2(vc)

J(qc)

]

+
∑

{vc:v0<vc<v0+ǫ}
(vc − v)

(N−2)/2

[

∑

qc∈Q1(vc)

J(qc) −
∑

qc∈Q3(vc)

J(qc)

]}

(41)

=
(Nπ)N/2

NΓ(N/2)

{
∫ v0

v0−ǫ

dv′ (v − v′)
(N−2)/2

[N0(v
′) −N2(v

′)]

+

∫ v0+ǫ

v0

dv′ (v′ − v)
(N−2)/2

[N1(v
′) −N3(v

′)]

}

. (42)

Here,

Qℓ(vc) =
{

qc

∣

∣V (qc)/N = vc ∧ k(qc) = ℓ (mod 4)
}

(43)

is the set of all critical points on the critical level vc which have index k = ℓ (mod 4),
k(qc) denotes the index of the critical point qc, and

Nℓ(v
′) =

∑

qc

J(qc)δ(V (qc)/N − v′)δℓ,k(qc) mod 4, ℓ = 0, 1, 2, 3, (44)

are the distribution functions of the critical points with index k = ℓ (mod 4),
weighted by their Jacobian determinant J . We expect these Jacobian distributions to
have a smooth thermodynamic limit in the sense that their integral means

1

ǫ

∫ v+ǫ

v

dv′Nℓ(v
′) =

1

ǫ

∑

qc∈Qℓ([v,v+ǫ])

J(qc) (45)

have smooth limits relative to the number of critical points in the interval [v, v + ǫ].
This implies that

Jℓ(v) =

∑

qc∈Qℓ([v,v+ǫ])

J(qc)

∑

qc∈Qℓ([v,v+ǫ])

1
(46)

has a thermodynamic limit of the form

Jℓ(v) = exp [Njℓ(v)] (47)

for small ǫ > 0. In this case we may express Nℓ in terms of Jℓ and the density cℓ of
critical points with index ℓ mod 4,

cℓ(v) =
1

ǫNℓ

∑

qc∈Qℓ([v,v+ǫ])

1, (48)

yielding

Nℓ(v) = Nℓcℓ(v)Jℓ(v), (49)

where

Nℓ =
∑

qc∈Qℓ(R)

1, ℓ = 0, 1, 2, 3, (50)
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is the total number of critical points with index ℓ mod 4. Generically this number
grows exponentially

Nℓ = exp(Nnℓ), (51)

for large N , although for specific examples (see the spherical model in Sec. 5) the
growth pattern may be different. Collecting all the above information, we obtain an
upper bound for the contribution of the critical points of V to the density of states,

Bv0,ǫ
N (v) 6

(Nπ)N/2

NΓ(N/2)
max

{

N1

∫ v0

v0−ǫ

dv′(v − v′)(N−2)/2c1(v
′)J1(v

′),

N3

∫ v0

v0−ǫ

dv′(v − v′)(N−2)/2c3(v
′)J3(v

′),

N2

∫ v0+ǫ

v0

dv′(v′ − v)(N−2)/2c2(v
′)J2(v

′),

N4

∫ v0+ǫ

v0

dv′(v′ − v)(N−2)/2c4(v
′)J4(v

′)

}

. (52)

The fact that the Nℓ enter Eq. (41) as a difference may in very smooth setups lead to
a Bv0,ǫ

N that is smaller than the right hand side of Eq. (52) but we will not need this
for the arguments presented here.¶ Inserting Eq. (47) in the above integrals leads to
Laplace integrals of the form

f(v′) exp

(

Nℓ

[

1

2
ln |v − v′| + jℓ(v

′)

])

(53)

with some function f(v′). In the thermodynamic limit, these integrals can be evaluated
by Laplace’s method, yielding the maximum of 1

2 ln |v− v′|+ jℓ(v
′) within the domain

of integration. Hence, in the thermodynamic limit (39b) we obtain

bv0,ǫ(v) 6
√

2πe + max

{

max
ℓ∈{0,2}, v−ǫ<v′<v

[

nℓ +
1

2
ln(v − v′) + jℓ(v

′)
]

, (54)

max
ℓ∈{1,3}, v<v′<v+ǫ

[

nℓ +
1

2
ln(v′ − v) + jℓ(v

′)
]

}

6
1

2
ln(ǫ) +

√
2πe + max

ℓ∈{0,1,2,3}, |v−v′|<ǫ
[nℓ + jℓ(v

′)] (55)

for the contribution of the saddle points in the interval (v0 − ǫ, v0 + ǫ).
The implications of this bound on bv0,ǫ are the following: From Eq. (40), we know

that only the larger one of the terms av0,ǫ and bv0,ǫ contributes to the entropy within
the interval (v0−ǫ, v0+ǫ). Now, if the max-term in (55) is finite, we can always choose
ǫ sufficiently small such that the bound (55) for bv0,ǫ is smaller than av0,ǫ. Therefore,
the entropy s in the interval (v0−ǫ, v0+ǫ) is exclusively determined by av0,ǫ, which we
assume to be a smooth function. This argument can be repeated for any value of v0,
thereby demonstrating that the saddle point contributions in the b-term are harmless
in the sense that they do not lead to nonanalyticities in the entropy. This reasoning,
however, relies on the assumption that the max-term in (55) is finite, and it breaks
down in case nℓ or jℓ diverge for any ℓ ∈ {0, 1, 2, 3}. We summarize these observations
in the following theorem.

Theorem 2. The saddle point contribution bv0,ǫ(v) cannot induce a phase transition
at any potential energy in the interval (v0 − ǫ, v0 + ǫ) if

¶ The reasoning in [11] on this issue is erroneous.
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(i) the number of critical points is bounded by exp(CN) for some C > 0 and

(ii) the Jacobian densities (46) have a thermodynamic limit of the form (47) with
jℓ < ∞ ∀ℓ ∈ {0, 1, 2, 3}

inside the given interval.

Proof. For the leading order, the proof was already sketched above. The leading
order describes the ’sizes’ of the saddle points, whereas higher orders account for their
detailed shapes. By the geometrical meaning of the term Bv0,ǫ

N it seems implausible
for a singularity to be caused by the shape and not by the size of the saddle points.
We do not attempt to give a full mathematical proof for this intuition (abusing the
term ’theorem’). The result will be corroborated by the examples in Secs. 6 and 7
where it is shown that a phase transition is caused by a divergent Jacobian density
jℓ(v) at the potential energy of the phase transition v = vt.

Geometrically, a divergent Jacobian density signals that the corresponding saddle
points become in some sense “asymptotically flat” in the thermodynamic limit. To
illustrate the implications of these considerations, we calculate in the following sections
the Jacobian densities jℓ for various spin models in order to check whether the
requirements of Theorem 2 are met. For the spherical model with nearest-neighbour
interactions, our results will help us to explain the puzzling observations made by
Risau-Gusman et al. [13] that, for this model, the topological signatures observed do
not coincide with the phase transition energy. For the mean-field XY model and
the mean-field k-trigonometric model, we will show that a phase transition occurs
precisely at the value of v for which condition (ii) of Theorem 2 breaks down.

5. Spherical model with nearest-neighbour coupling

This model was introduced by Berlin and Kac [25] as an exactly solvable caricature
of the Ising model of a ferromagnet. Its configuration space ΓN is an N -sphere with
radius

√
N + 1,+ and the potential is

Vsph : ΓN → R, q 7→ −1

2

N
∑

i,j=0

Kijqiqj . (56)

The degrees of freedom qi of the model are placed on a d-dimensional cubic lattice
with N + 1 = Ld lattice sites and periodic boundary conditions. We consider a
coupling matrix K with elements Kij = 1 when i and j are nearest-neighbouring sites
on the lattice, and Kij = 0 otherwise. The spherical model with nearest-neighbour
coupling is solvable in the thermodynamic limit for arbitrary d, and a phase transition
from a ferromagnetic phase at low temperatures to a paramagnetic phase at high
temperatures (or energies) occurs for all d > 3 [26]. Since the coupling matrix K is
symmetric, it can be diagonalized by a constant orthogonal transformation, and we
can rewrite the potential in the form

Vsph : ΓN → R, x 7→ −1

2

N
∑

i=0

λix
2
i , (57)

+ We shift N to an unconventional N + 1 to match notation with the previous sections.
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where λi (i = 0, . . . , N) are the eigenvalues of K. As discussed in [14], these eigenvalues
can be written as

λ(p1, . . . , pd) = 2

d
∑

ℓ=1

cos

(

2πpℓ

L

)

, pℓ = 0, . . . , L − 1, (58)

and we consider the λi in (57) as the values of λ(p1, . . . , pd), ordered from the largest
to the smallest. Several of these eigenvalues are degenerate, and we define the spectral
density of K (as a function of the potential energy per particle v) as

σN (v) =
1

N + 1

L−1
∑

p1,...,pd=0

δ(λ(p1, . . . , pd) − v). (59)

In two recent publications, Risau-Gusman et al. [13, 14] reported a study of the
topology of the subsets Mv ⊆ ΓN [as defined in (33)] of the spherical model with
nearest-neighbour coupling. Computing the deformation retract of the Mv, they
found that their topology can be characterized by means of the spectral density (59).
Therefore a signature of the topology changes in the limit of large system size should
be visible in the thermodynamic limit N + 1 = Ld → ∞ of the integral mean of the
spectral density σN . It was shown in [14] that this mean converges to

lim
N→∞

σN (v) =
1

π

∫ ∞

0

dx cos(2xv)[J0(x)]d, (60)

where J0 denotes the Bessel function of order zero. Depending on the spatial dimension
d, this limit function has one or several nonanalytic points. However, none of these
coincides with the phase transition energy vt (see Figure 1 of Reference [14] for a
plot of these functions for various values of d). Therefore no signature of the phase
transition of the spherical model is seen in the topological quantities studied.

Inspired by the analysis in [13, 14], we study the subsets Mv as defined in (33)
by means of Morse theory. Although the potential Vsph of the spherical model in (57)
is not a Morse function, it can be transformed into one by adding—in the spirit of
Eq. (4)—perturbations hix

2
i with small hi ∈ R,

V̄sph : ΓN → R, q 7→ −1

2

N
∑

i=0

λ̄ix
2
i , (61)

where λ̄i = λi+hi (i = 0, . . . , N). For convenience, the hi are chosen such that λ̄i > λ̄j

for i < j. For this modified potential we want to calculate the Jacobian densities Jℓ

as given in (46) when performing simultaneously the zero-field limit h → 0 and the
thermodynamic limit N → ∞. To this end, we consider hi as N -dependent quantities,
vanishing in the thermodynamic limit in a suitable way.

As a first step, we determine the critical points and critical indices of V̄sph, using
the method of Lagrange multipliers. In the Lagrange function

L = −1

2

N
∑

i=0

λ̄ix
2
i + µ

[

N
∑

i=0

x2
i − (N + 1)

]

(62)

the second term on the right hand side takes into account the spherical shape of the
configuration space of the model, and µ is the corresponding Lagrange multiplier. The
critical points of V̄sph are obtained as the solutions of

∂L
∂xi

= −λ̄ixi + 2µxi = 0 ∀i = 0, . . . , N. (63)
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Simple algebra shows that 2(N + 1) critical points xc exist which can be written as

x(±k)
c = ±

√
N + 1 ek, k = 0, . . . , N, (64)

where ek is the unit vector in k-direction. Inserting this expression into the potential
(61), we obtain the corresponding critical values

vk =
V̄sph(x

(±k)
c )

N
= − λ̄k

2
(1 + N−1), k = 0, . . . , N, (65)

and we note that precisely two critical points are located at each critical value. The
density of critical points is thus linked to the spectral density σN , and in the limit
N + 1 = Ld → ∞ the integral mean of the density of critical points is

c(v) = lim
N→∞

σN

(

−v

2

)

=
1

π

∫ ∞

0

dx cos(xv)[J0(x)]d, (66)

similar to Eq. (60).
Now we fix a certain value of k ∈ {0, . . . , N}. A good set of coordinates in the

vicinity of the critical values x
(±k)
c is given by the xi with i 6= k. Solving the spherical

constraint
N

∑

i=0

x2
i − (N + 1) = 0 (67)

for xk and inserting the resulting expression into the potential (61), we obtain

V̄sph(x) = −1

2

∑

i6=k

(λ̄i − λ̄k)x2
i −

N + 1

2
λ̄k. (68)

The potential is quadratic in the xi and leads to a diagonal Hessian H at the critical
points with matrix elements

Hij(x
(±k)
c ) = (λ̄k − λ̄i)δij for i 6= k. (69)

Due to the ordering of the λ̄i, we can read off from this expression that the index of

a critical point x
(±k)
c equals k. Now we can write the Jacobian determinant in terms

of the critical values vi (65),

J̄(x(±k)
c ) =

∣

∣det[H(x(±k)
c )/2]

∣

∣

−1/2
=

∏

i6=k

∣

∣

∣

∣

1 + N−1

vk − vi

∣

∣

∣

∣

1/2

= exp

{

1

2

∑

i6=k

ln

∣

∣

∣

∣

1 + N−1

vk − vi

∣

∣

∣

∣

}

.(70)

Expressing the Jacobian determinant as a function of the potential (per particle) v
allows us to formulate the thermodynamic limit in terms of the density c(v) of critical
points (66),

N
∑

i=0i6=k

−→ N

∫ +d

−d

dv c(v), (71)

where d is the spatial dimension of the lattice on which the spherical model is defined.
The range of integration [−d, +d] is determined by the minimum and the maximum
values of the potential energy per particle. After some manipulations of the integral
obtained from (70) with the substitution (71), we arrive at the Jacobian determinant
in the thermodynamic limit as a function of v,

J̄ (v) = exp
{

− N

2π

∫ ∞

0

dx [J0(x)]
d
f(v, x)

}

. (72)
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The function f in this expression is given by

xf(v, x) = sin(dx) ln
(

d2 − v2
)

+ sin(xv) [Ci(x(d + v)) − Ci(x(d − v))]

− cos(xv) [Si(x(d + v)) + Si(x(d − v))] , (73)

where Ci and Si are the cosine and sine integral functions. f(v, x) is an analytic
function for all accessible values v ∈ (−d, d). As a consequence, also J̄ (v) is analytic
and, in particular, continuous for all v.

Observing that for the spherical model both, the index of a critical point x
(±k)
c

as well as the Jacobian determinant J(x
(±k)
c ), are uniquely determined by the critical

values vk = V̄sph(x
(±k)
c )/N which decrease monotonously with increasing j, we find

Jℓ = J̄ and cℓ = c, ℓ = 0, 1, 2, 3. (74)

We thus may apply Theorem 2 (with any C > 0 because Nℓ → (N+1)/2) and conclude
that for the spherical model with nearest-neighbour coupling the contributions from
the critical points of the potential (or, equivalently, from the topology changes of Mv)
to the entropy are negligible in the thermodynamic limit.

At first sight this finding seems to be in conflict with the previous discussion where
the relevance of the b-term in (40) for the occurrence of a phase transition in systems
with short-range interactions was emphasized. This apparent contradiction can be
understood by noting that the spherical model is not genuinely short-range. Although
the interaction term in (56) is restricted to pairs of nearest neighbours, the spherical
configuration space renders the interaction effectively long-range. For long-range
systems, however, as discussed in [27], the connection between phase transitions and
configuration space topology is not valid in general and we cannot assume the function
av0,ǫ in (40) to give a smooth contribution to the entropy in the thermodynamic limit.
Similar to the observations made in [27] for a different long-range model, we suspect
the entropy s(v, m) as a function of the potential energy v and the magnetization m to
be a nonconcave function, such that the nonanalyticity in s(v) = maxm s(v, m) arises
from the maximization over m. An analytic calculation of the entropy s(v, m) of the
spherical model with nearest-neighbour coupling has been reported in [28], but this
analysis omits precisely the region in the (v, m)-plane for which a nonconcavity of the
entropy might be expected.

Note that, in the presence of long-range interactions, we can not a priori
guarantee a phase transition to be triggered by saddle points of V (or topology
changes of Mv), since the conditions of the Franzosi-Pettini-Theorem are not met.
Nonetheless, topology changes may be at the origin of a phase transition even in
long-range systems, and we present two such examples in the following sections.

6. Mean-field XY model

The mean-field XY model is a system of N plane rotators described by angular
variables qi ∈ [0, 2π) (i = 1, . . . , N). Each rotator is coupled to each other with
equal strength K > 0, where the interactions are described by the potential

VXY : [0, 2π)N → R, q 7→ K

2N

N
∑

i,j=1

[1 − cos(qi − qj)] − h
N

∑

i=1

cos qi. (75)

The rotators are subject to an external magnetic field of strength h ∈ R which
energetically favours orientations qi ≈ π for h < 0, respectively qi ≈ 0 (mod 2π)
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for h > 0. In the limit N → ∞ and h → 0, the system has a continuous phase
transition.

The critical points of this model and their indices have been analyzed by Casetti
et al. [22] for an arbitrary number N ∈ N of rotators. Critical points of VXY (q)
were found to occur for q = q(c) ∈ {0, π}N , i. e., for (q1, . . . , qN ) with all components
qi (i = 1, . . . , N) being either 0 or π. Hence, in accordance with condition (i) of
Theorem 2, the number of critical points is growing exponentially with N . The
elements Hij = ∂2V/(∂qi∂qj) of the Hessian are also reported in [22] and, evaluated
at a critical point, the diagonal elements of the Hessian H can be written as

Hii(q
(c)) =

(

K

N

N
∑

k=1

cos qk + h

)

cos qi −
K

N
=

[

K

(

1 − 2nπ

N

)

+ h

]

cos qi −
K

N
, (76)

where nπ is the number of π’s in the sequence (q1, . . . , qN ) ∈ {0, π}N . It has been
shown in Appendix A.1 of [22] that, in the thermodynamic limit N → ∞, the
contribution of the off-diagonal elements to the eigenvalues of H vanishes. Therefore
we can write the Jacobian determinant (9) at a critical point q(c) as

J(q(c)) =
∣

∣

∣
det[H(q(c))/2]

∣

∣

∣

−1/2 N≫1−→ 2N/2

∣

∣

∣

∣

N
∏

i=1

Hii(q
(c))

∣

∣

∣

∣

−1/2

=

∣

∣

∣

∣

K

2

(

1 − 2nπ

N

)

+
h

2

∣

∣

∣

∣

−N/2

, (77)

valid for large N . Inserting, again from Ref. [22], an expression of nπ as a function of
the potential energy per degree of freedom v,

nπ(v)

N

N≫1−→ 1

2K

(

K + h ±
√

K2 + h2 − 2Kv
)

, (78)

we obtain the Jacobian determinant as a function of v,

J (v) =

∣

∣

∣

∣

4

K2 + h2 − 2Kv

∣

∣

∣

∣

N/4

, (79)

valid for large N . In the zero-field limit h → 0 this expression reduces to

J (v) =

∣

∣

∣

∣

4

K(K − 2v)

∣

∣

∣

∣

N/4

. (80)

Similar to the calculation for the spherical model in Sec. 5, the indices of the critical
points increase monotonously with their respective critical values. Hence, we can
conclude that Jℓ = J (ℓ = 0, 1, 2, 3) and, making use of Eq. (47), we obtain

jℓ(v) =
1

2
ln 2 − 1

4
ln[K(K − 2v)], ℓ = 0, 1, 2, 3. (81)

The graph of this function is plotted in Fig. 1. As is easily recognized, jℓ(v) is
singular only at v = K/2, which is precisely the value of the potential energy per
degree of freedom at which a phase transition occurs for the mean-field XY model
with zero external field in the thermodynamic limit. This result nicely illustrates the
content of Theorem 2: no phase transition is triggered by the critical points of the
potential with a finite Jacobian density. Only those critical points for which jℓ becomes
singular may induce a phase transition, and this is what apparently happens for the
mean-field XY model with h = 0. Note that, for h 6= 0 and in the thermodynamic
limit, entropic reasons prevent the system from visiting states with potential energy
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v = (K2+h2)/(2K) for which the Jacobian determinant is singular. As a consequence,
in accordance with the known thermodynamic behaviour of the mean-field XY model,
no phase transition occurs in the presence of a non-zero external field h.

Note that, strictly speaking, the analysis of isolated critical points as presented in
Secs. 3 and 4 cannot be applied to the mean-field XY model at the maximum critical
level v = (K2 + h2)/(2K): Precisely at this level the potential VXY is not a proper
Morse function, as its critical points are degenerate for arbitrary N and form a critical
manifold. However, this should not lead to serious problems for the interpretation of
our result: Excluding the trouble-making maximum critical level from our analysis, we
can monitor the behaviour of the Jacobian determinant for the second largest critical
level. For any finite N , the critical points on this level are isolated and hence our
analysis is applicable. In the thermodynamic limit, this second largest critical level
approaches the problematic maximum one arbitrarily close and the corresponding
Jacobian determinant diverges. Note, however, that a divergent Jacobian density
need not necessarily be related to the break-down of the Morse property: One might
as well imagine a system where all critical points are isolated for all finite N , but for
which nonetheless the Jacobian density diverges at some point in the thermodynamic
limit N → ∞.

7. Mean-field k-trigonometric model

Another spin model, similar to the one discussed in the previous section, is the mean-
field k-trigonometric model. A simplified version of this model was introduced in [29]
as a model of a simple liquid. Like the XY model, the system consists of N plane
rotators described by angular variables qi ∈ [0, 2π) (i = 1, . . . , N). The Hamiltonian
function of the mean-field k-trigonometric model is

Vk : [0, 2π)N → R, q 7→ ∆N1−k
N

∑

i1,...,ik=1

[1 − cos(qi1 + · · · + qik
)], (82)

where q = (q1, . . . , qN ). The constant ∆ determines the coupling strength between the
rotators, each interacting with each other at equal strength. Both, thermodynamic

v

j ℓ

0.0
0.0

0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1. Plot of the graph of the Jacobian density jℓ as a function of the
potential energy v for the mean-field XY model with coupling constant K = 1.
In agreement with Theorem 2, the transition potential energy vt = 1/2 of this
model coincides with the singularity of jℓ.
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behaviour and critical points of the potential have been studied by Angelani et al.
[30], and the following results are taken from this reference.

The parameter k ∈ N in the Hamiltonian function crucially determines the
thermodynamic behaviour of the model: In the limit N → ∞, the system shows
a discontinuous phase transition for k > 3, a continuous one for k = 2, and no phase
transition for k = 1. Results on the critical points of Vk and on the Hessian at these
points can be assembled to obtain the Jacobian density jℓ as a function of the potential
energy per particle v,

jℓ(v) =
1

2
ln

(

2

∆k

∣

∣

∣
1 − v

∆

∣

∣

∣

1/k−1
)

, ℓ = 0, 1, 2, 3. (83)

The graph of this function is plotted in Fig. 2 for k = 1, 2, 3, 4. The calculation is
analogous to the one for the mean-field XY model in the previous section and we
hence skip the details.
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Figure 2. Plot of the graph of the Jacobian density jℓ as a function of the
potential energy v (in units of the coupling constant ∆) for the mean-field k-
trigonometric model with k = 1, 2, 3, 4. In agreement with Theorem 2, the
transition potential energy vt = ∆ of this model coincides with the singularity of
jℓ for all values k > 2 for which a phase transition takes place.

This is another result nicely illustrating the content of Theorem 2: The function
jℓ is constant (and therefore bounded above) for k = 1, in agreement with the fact that
no phase transition occurs in this case. For k > 2, however, the Jacobian density jℓ(v)
shows a divergence at v = ∆, which is precisely the value of the potential energy per
degree of freedom at which the mean-field k-trigonometric model undergoes a phase
transition in the thermodynamic limit.

8. Summary

We have analyzed the relation between saddle points of the potential energy V of
classical N -particle systems and the analyticity properties of their thermodynamic
functions. For finite systems, each saddle point qc was found to cause a nonanalyticity
in the entropy sN (v) at the value v = V (qc)/N of the potential energy, and the
functional form of the nonanalytic term is given in Theorem 1. Since the number
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of saddle points is expected to grow exponentially with N for generic potentials,
we arrive at the remarkable conclusion that the finite-system entropy is in general
a highly non-smooth function. For large N , the order of the nonanalytic term
increases unboundedly, leading to an increasing differentiability of sN . Considering the
contribution of very many saddle points becoming dense in the thermodynamic limit,
we discussed how, despite the “increasing smoothness” of sN , a continuous distribution
of saddle points with singular Jacobian density may lead to a nonanalyticity in the
infinite-system entropy. Interpreting our findings in the spirit of the topological
approach to phase transition, our results show under which conditions topology
changes of the configuration space subsets Mv as defined in (33) can be at the origin
of a phase transition in the thermodynamic limit.

An application of these findings to the spherical model allowed us to understand
the puzzling observations of Risau-Gusman et al. [13, 14] that, for this model, the
topological signatures observed do not coincide with the phase transition energy. For
the mean-field XY model and the mean-field k-trigonometric model we showed that
a phase transition occurs precisely at the value of the potential energy per degree of
freedom v for which condition (ii) of Theorem 2 breaks down. For these two mean-field
models, the divergences in the Jacobian densities jℓ in the thermodynamic limit are
foreshadowed by the break-down of the Morse property of the potentials already for
finite systems. Note, however, that this is not necessarily the case and one can as well
imagine a divergent Jacobian density to emerge in the thermodynamic limit from a
potential which is a good Morse function for all finite system sizes N .

The criterion for the absence of a phase transition we have presented in Theorem 2
is to some extend related to what has become known as the topological hypothesis in the
literature, where a relation between the occurrence of a phase transition and certain
“pronounced” topology changes of the subsets Mv [Eq. (33)] in configuration space was
conjectured (see [21] for a discussion of the different formulations of this hypothesis).
In fact, for the mean-field XY model and the mean-field k-trigonometric model in
the thermodynamic limit, signatures were found in the Euler characteristic of Mv,
occurring precisely at the transition potential energy v = vt, and a relation between
these signatures and the occurrence of phase transitions was conjectured [22, 23].
Our Theorem 2, similar to this conjectured relation, has a topological ingredient as
well, taking the saddle points of the potential (each of which is related to a topology
change of the Mv) as a starting point. In addition to this topological ingredient, we
have demonstrated that the local curvatures at the saddle points are important to
quantify the effect of these saddle points on thermodynamic quantities. In this way,
we derive a criterion, in part of topological and in part of geometrical nature, which
can exclude the occurrence of a phase transition for most of the accessible values of
the potential energy v, leaving only a few distinct values of v as possible candidates
for the occurrence of a phase transition.

Conceptually, our study explores the connection between phase transition theory
and the study of energy landscapes, a rapidly developing field with applications, among
others, to clusters, biomolecules, and glass-formers [9]. One might hope to profit
from the considerable knowledge on the relation of energy landscapes and dynamical
properties in future work.
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Appendix A. Proof of Theorem 1

In this Appendix we will examine the effect of an x-dependent Jacobian J(x) on the
singular behaviour of the density of states ΩN .

Upon Taylor-expanding the Jacobian, we obtain terms proportional to xI =
xi1

1 xi2
2 · · ·xiN

N . These terms result in corrections to Eq. (13) of the form

∆I = aI

∫

dNxxIδ
(

−X2 + Y 2 − V
)

Θ
(

r2 − X2 − Y 2
)

, (A.1)

where a0 = | det[H(qc)/2]|−1/2. Due to the symmetry upon substituting xj → −xj ,

we see that only even indices ij contribute. We use Θ(r2 − X2 − Y 2) =
∫ r2

0
dy δ(y −

X2 − Y 2) and express ∆I in terms of a generating function

∆I = aI

∫ r2

0

dy i−|I|∂I
pG(p, y)

∣

∣

∣

p=0
, (A.2)

G(p, y) =

∫

dNx δ
(

−X2 + Y 2 − V
)

δ
(

y − X2 − Y 2
)

exp
(

i
N

∑

j=1

xjpj

)

, (A.3)

where we have used the notations ∂I
p = ∂i1

1 ∂i2
2 · · · ∂iN

N , ∂j = ∂/∂pj, and |I| =
i1 + i2 + ... + iN . Now we represent the δ-distribution by their Fourier components.
For convergence we introduce a small ǫ > 0 and obtain

G(p, y) =
1

(2π)2

∫

ds

∫

dt

∫

dNx

× exp
[

is(−X2 + Y 2 − V ) + (it + ǫ)(y − X2 − Y 2) + i

N
∑

j=1

xjpj − ǫ(s2 + t2)
]

. (A.4)

The argument of the exponential is quadratic in x and can be rewritten as
k

∑

j=1

[

−(ǫ + is + it)

(

xj −
ipj

2(ǫ + is + it)

)2

−
p2

j

4(ǫ + is + it)

]

+

N
∑

j=k+1

[

−(ǫ − is + it)

(

xj −
ipj

2(ǫ − is + it)

)2

−
p2

j

4(ǫ − is + it)

]

− isV + (it + ǫ)y − ǫ(s2 + t2). (A.5)

From this expression we read off the value of the Gaussian integral and obtain

G(p, y) =
πN/2

(2π)2

∫

ds

∫

dt

×
exp

[

−
Pk

j=1
p2

j

4(ǫ+is+it) −
PN

j=k+1
p2

j

4(ǫ−is+it) − isV + (it + ǫ)y − ǫ(s2 + t2)
]

√
ǫ + is + it

k√
ǫ − is + it

N−k
, (A.6)

using the same definition of the complex square root as in the main text. The
generating function factorizes in the variables pj . We use the shorthands I1 =

∑k
j=1 ij

and I2 =
∑N

j=k+1 ij (we have I1 + I2 = |I|) and obtain

∆I =
aIπ

N/2
∏N

j=1 ij !

(2π)24|I|/2
∏N

j=1(ij/2)!

×
∫ r2

0

dy eǫy

∫

ds

∫

dt
exp

[

−isV + ity − ǫ(s2 + t2)
]

√
ǫ + is + it

k+I1√
ǫ − is + it

N−k+I2
. (A.7)
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Now we observe that the above double integral in s and t factorizes after changing
variables to u = (t + s)/2 and w = (t − s)/2. We define the function

Fj(z) =
1

2π

∫ ∞

−∞
du

1
√

ǫ + iu
j eiuz−4ǫu2

, (A.8)

drop the factor eǫy which has no effect on the finite integral over y in the limit ǫ → 0,
and replace ǫ by 2ǫ, yielding

∆I =
2aI(π/2)N/2

∏N
j=1 ij !

8|I|/2
∏N

j=1(ij/2)!

∫ r2

0

dy Fk+I1 (y−V )FN−k+I2 (y+V ).(A.9)

We have to evaluate F0(z) for real values of z and non-negative integers j. Obviously,
F0(z) = δ(z).

For positive, even j = 2n the integrand has a pole at u = iǫ of order n. If z < 0
we may evaluate the integral by closing in the lower half plane. We miss the pole and
F2n vanishes. If z > 0 we may evaluate the integral by the residue theorem closing in
the upper half plane. Expanding the exponential gives F2n = Θ(z)zn−1/(n − 1)!.

In the case j = 1 the integrand has a cut from u = iǫ to i∞. Again we obtain a
non-vanishing result only in the case z > 0 where we may deform the contour to follow

the cut. We let ǫ approach zero and obtain F1(z) = π−1Θ(z)
∫ i∞
0

du eiuz/i
√

|u|. This

leads to a Gamma-function evaluated at 1/2 and we have F1 = (πz)−1/2Θ(z).
The case of odd j = 2n+1 can be reduced to the case j = 1 by integration by parts.

We may drop the factor e−4ǫu2

in this case and obtain F2n+1(z) = F2n−1(z) 2z/(2n−1).
We iterate this equation and use the above result for j = 1 to obtain a result analogous
to the case of even j. This allows us to write the result in compact form

F0(z) = δ(z), Fj(z) =
zj/2−1

Γ(j/2)
Θ(z) if j > 1. (A.10)

Now we have to distinguish the cases of a maximum, a minimum, or a proper saddle
point. In the first case we have k = I1 = 0 which reduces Fk+I1 (y − V ) to δ(y − V ).
We only obtain a non-vanishing result if 0 < V < r2, and collecting all factors gives

∆I =
aIπ

N/2
∏N

j=1 ij !

2|I|Γ [(N + |I|)/2]
∏N

j=1(ij/2)!
V (N+|I|−2)/2Θ(V )Θ(r2 − V ) (A.11)

for k = 0. In the case of a minimum we have k = N , I2 = 0 with a non-vanishing
result only for −r2 < V < 0. Upon V → −V we reproduce—as it should be—the
formula of a maximum

∆I =
aIπ

N/2
∏N

j=1 ij !

2|I|Γ [(N + |I|)/2]
∏N

j=1(ij/2)!
(−V )(N+|I|−2)/2Θ(−V )Θ(r2 + V ) (A.12)

for k = N . In both cases we confirm the statements of Proposition 1 and Theorem 1.
The case of a proper saddle yields

∆I =
2aI(π/2)N/2

∏N
j=1 ij !

8|I|/2Γ [(N + I1)/2] Γ [(N − k + I2)/2]
∏N

j=1(ij/2)!
(A.13)

×
∫ r2

|V |
dy (y − V )(k+I1−2)/2(y + V )(N−k+I2−2)/2 (A.14)
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for 0 < k < N . This expression entails the integrals I± from Eq. (22) in a symmetrized
form. In fact, a transformation y = V (2z − 1) allows us to express ∆I in terms of I±
with k replaced by k + I1 and N replaced by N + |I| (denoted by an upper index),

∆I =
4aIπ

N/2
∏N

j=1 ij !

2|I|Γ [(N + I1)/2] Γ [(N − k + I2)/2]
∏N

j=1(ij/2)!
I
(k+I1,N+|I|)
± . (A.15)

Now we can follow the discussion in the main text substituting (k, N) by (k+I1, N+|I|)
when necessary. We observe that, with I1 and |I| being even integers, higher order
corrections do not mix the cases in the derivation of Proposition 1. Collecting all
factors gives the desired result.
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