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ABSTRACT
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux

bundle and rotation about the axis is presented. The model contains a compressible plasma

described by the non-linear MHD equations, with density and temperature gradients simulating

the upper layer of the Sun’s convection zone. The solutions exhibit a central magnetic flux

tube in a cylindrical numerical domain, with convection cells forming collar flows around the

tube. When the numerical domain is rotated with a constant angular velocity, the plasma forms

a Rankine vortex, with the plasma rotating as a rigid body where the magnetic field is strong,

as in the flux tube, while experiencing sheared azimuthal flow in the surrounding convection

cells, forming a free vortex. As a result, the azimuthal velocity component has its maximum

value close to the outer edge of the flux tube. The azimuthal flow inside the magnetic flux tube

and the vortex flow is prograde relative to the rotating cylindrical reference frame. A retrograde

flow appears at the outer wall. The most significant convection cell outside the flux tube is the

location for the maximum value of the azimuthal magnetic field component. The azimuthal

flow and magnetic structure are not generated spontaneously, but decay exponentially in the

absence of any imposed rotation of the cylindrical domain.
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1 I N T RO D U C T I O N

Observations of sunspots rotating around their own axis, which is

perpendicular to the plane of the photosphere, have a long history

throughout the twentieth century. Hale (1908) and Evershed (1910)

noted the rotation as well as a vortex forming around the rotat-

ing sunspot. Observations in the photosphere and corona continued

through the century, culminating in the high-resolution measure-

ments of today (see Brown et al. 2003 and references therein). An

exciting development during the last decade has been the ability

to measure the associated flow beneath the photosphere (Zhao &

Kosovichev 2003; Gizon & Birch 2005).

There is a distinct radial profile associated with the azimuthal ve-

locity of rotating sunspots. Brown et al. (2003) found that the umbra

(in which the rotation axis resides) has small average azimuthal ve-

locities, while the fastest rotation occurs at some point along the

radial length of the penumbra. The rotation then tails away to a neg-

ligible value outside of the sunspot. The peak azimuthal velocity in

the penumbra can be more than double that inside the umbra. Brown

et al. (2003) found suggestions of rotation outside some sunspots,

but these observations are hampered by an ambiguous penumbral
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edge. In contrast, Yan & Qu (2007) observed a rotating sunspot

where the maximum azimuthal velocity occurred inside the umbra.

The rotation persisted in the penumbra and the area near the penum-

bra, with the angular velocity reducing as one moves radially away

from the umbra. The surrounding area far removed from the penum-

bra experienced a slow rotation in the opposite direction from that

of the rotating sunspot.

It is not clear if the direction of rotation has a hemispheric prefer-

ence. Knoška (1975) (and references therein) found that the majority

of rotating sunspots in both hemispheres turn anticlockwise. How-

ever, Ding, Hong & Wang (1987) found a preference, with clockwise

(anticlockwise) rotation predominantly in the Southern (Northern)

hemisphere. This would suggest that the Sun’s differential rotation

associated with the global flow field has an influence. The Coriolis

force due to the Evershed flow field would cause rotation in the

opposite direction. However, helioseismic observations (Gizon &

Birch 2005), supported by numerical results (Hurlburt & Rucklidge

2000; Botha, Rucklidge & Hurlburt 2006), show a converging hor-

izontal flow below the Evershed flow, which leads to cyclonic vor-

ticity and hence a possible contribution from the Coriolis force.

The small sample of rotating sunspots studied by Brown et al.

(2003) suggests that younger sunspots rotate faster than older ones.

However, it was difficult to judge the ages of the sunspots in the sam-

ple. The rotation rates are time dependent, with all rotation eventu-

ally decreasing with time. The peak rotation in the penumbra can be
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anything up to 3◦ per hour, as observed by Brown et al. (2003). The

same time evolution was observed in a rotating pore (Dorotovič

et al. 2002). This behaviour suggests that some of the rotation is

caused by local events that are transitory in nature. This conclusion

is strengthened by an observation of damped oscillatory motion,

which had a maximum rotation of 3.◦5 per hour (Kučera 1982).

A possible mechanism causing rotating sunspots is the rise of

twisted flux ropes (Gibson et al. 2004). In this model, the rotation of

two flux rope poles is observed after the central horizontal portion

of the flux rope has emerged through the photosphere. This implies

the existence of two co-evolving sunspots of opposite magnetic po-

larity. This is generally not in evidence in the observations, mostly

because leading sunspots are often followed by a more diffuse op-

posite polarity.

It was shown by Gopasyuk & Gopasyuk (2005) that when the av-

eraged velocity and magnetic field components are subtracted from

observed sunspots, the result fits a lightly damped sinusoidal wave.

This implies that as well as the motion described so far, sunspots also

experience torsional oscillations. Using the thin flux tube model,

Musielak, Routh & Hammer (2007) found that in a compressible,

isothermal field-free medium, linear torsional Alfvén waves along

the magnetic tube do not have a cut-off frequency.

The rotation of sunspots has been linked to the formation of soft

X-ray sigmoids as well as the eruption of flares (Alexander 2006;

Régnier & Canfield 2006; Tian & Alexander 2006). Numerical sim-

ulations by Gerrard et al. (2003) show that by adding a horizontal

photospheric flow to the rotation, the generation of flares is enhanced

as both rotation and flow increase the complexity of the magnetic

field. This is supported by the observation that flare activity is cor-

related to magnetic flux and kinetic vorticity (Mason et al. 2006).

Evidence from helioseismic measurements shows that the rotation

of sunspots, as observed in the photosphere, extends into the deeper

layers of the Sun. Up to a depth of approximately 7 Mm, vortical

flow in the same direction as the rotation of the sunspot exists,

while below 7 Mm a vortical flow opposite to the sunspot rotation

direction is observed (Kosovichev 2002; Zhao & Kosovichev 2003;

Gizon & Birch 2005). However, it should be noted that helioseismic

measurements are difficult and not always consistent. For example,

up to a depth of 3 Mm a converging inflow is found when using

p modes, while f-mode measurements find only outflows down to

10 Mm (Gizon & Birch 2005).

In this paper, an axisymmetric model is used to simulate rotation

around a central magnetic flux bundle. The values of the physical

parameters of the model are chosen to describe the solar convection

zone from a depth of approximately 500 km below the visible surface

of the Sun to a depth of approximately 6000 km (Botha et al. 2006).

The numerical domain is a cylinder with an aspect ratio of � = 3, i.e.

one unit deep and a radial distance of three units. This implies that

we are simulating magnetoconvection on the supergranular scale.

To generate azimuthal flow and magnetic field, the whole domain is

rotated at a constant angular velocity. Strictly speaking, this is not

equivalent to simulating a pore or sunspot where only the magnetic

flux bundle rotates. However, in spite of driving the azimuthal flow

throughout the numerical domain, we find that the solution tends to

conform to observations of Brown et al. (2003), where a maximum

azimuthal flow occurs close to the magnetic flux bundle. This means

that a vortical flow forms around the flux bundle while the plasma

inside the bundle rotates as a solid body. This type of flow is formally

described as a Rankine vortex.

Our numerical results may be compared to results found by Jones

& Galloway (1993), who studied a Boussinesq fluid in an axisym-

metric cylinder. They imposed two types of boundary conditions: a

stress-free outer wall as well as an external flow, implemented by

rotating the outer wall of the fixed cylinder. A flux bundle formed

at the central axis, with the maximum angular velocity occurring

near the axis. For high magnetic field strength, described by the di-

mensionless Chandrasekhar number (Q), the flux bundle broadened

with the stress-free boundary conditions producing a reverse in az-

imuthal magnetic flux near the axis, while the imposed external flow

produced a reverse azimuthal flow near the axis. The reversal in the

azimuthal magnetic field is ascribed to the conservation of angular

momentum under stress-free conditions, while the flow reversal ob-

tained with the imposed external flow is ascribed to the working of

the Lorentz force.

In Section 2, the mathematical model and its numerical implemen-

tation is described. This is followed by the numerical results. When

no rotation of the numerical domain is present (Section 3.1), no

azimuthal velocity and magnetic field are generated spontaneously:

both quantities are small and decay exponentially with time. This

case is useful to compare the rotating solutions against. Driven

by the rotating numerical domain, the solution settles into a time-

independent solution that shows rigid rotation of the plasma in the

magnetic flux tube and vortical rotation around it (Sections 3.2 and

3.3). This solution is robust and essentially stays the same when

the magnetic field strength is increased (Section 3.4), the Prandtl

number is lowered (Section 3.5) and the stratification is increased

(Section 3.7). The latter part of the numerical investigation explores

the influence of the numerical domain on the solution. This we do by

changing the bottom and outside boundary conditions (Sections 3.6

and 3.8). We conclude the paper with a summary of the results.

2 M O D E L

Partial differential equations (PDEs) describing compressible mag-

netoconvection are solved in an axisymmetric cylindrical geometry,

using a numerical code developed for this purpose. A detailed de-

scription of the two-dimensional (2D) model is given by Hurlburt

& Rucklidge (2000). Here, we extend the model to 2.5D by in-

cluding azimuthal components in addition to the radial and axial

components. A constant angular velocity is added that introduces

the Coriolis and centrifugal forces into the Navier–Stokes equation.

2.1 Mathematical model

The initial temperature and density profiles in the vertical (z) direc-

tion are given by

T = 1 + θ z, (1)

ρ = (1 + θ z)m . (2)

The temperature and density are scaled so that they are equal to 1 at

the top of the static atmosphere. The initial temperature gradient is

given by θ , while m is the polytropic index. The equations for fully

compressible, non-linear axisymmetric magnetoconvection that we

use are

∂ρ

∂t
= −∇ · (uρ); (3)

∂u
∂t

= −u · ∇u − 2Ω × u + �2(ẑ × r ) × ẑ − 1

ρ
∇ P

+θ (m + 1)ẑ + σ K

ρ
∇ · τ + σζ0 K 2 Q

ρ
j × B; (4)
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∂T

∂t
= −u · ∇T − (γ − 1)T ∇ · u + γ K

ρ
∇2T

+σ K (γ − 1)

ρ

(
1

2
τ : τ + ζ 2

0 QK 2 j2

)
; (5)

∂Aφ

∂t
= (u × B)φ − ζ0 K jφ ; (6)

∂Bφ

∂t
= [∇ × (u × B)]φ + ζ0 K

(
∇2 Bφ − Bφ

r 2

)
. (7)

The cylindrical reference frame is rotated about its axis at a constant

angular velocity of Ω = (dφ/dt)ẑ, which is responsible for the

Coriolis and centrifugal terms in the Navier–Stokes equation (4).

The vector potential Aφ gives the r and z components of the magnetic

field while the azimuthal component is included explicitly, so that

the magnetic field is given by

B = ∇ × (φ̂Aφ) + φ̂Bφ. (8)

The velocity consists of three components, namely u = (ur , uφ , uz),

where uφ refers to the azimuthal velocity relative to the rotating

reference frame. We also use the auxiliary equations

∇ · B = 0, P = ρT , j = ∇ × B, (9)

and the following notation: γ is the ratio of specific heats, σ the

Prandtl number and ζ 0 the magnetic diffusivity ratio at z = 0. The

Chandrasekhar number is given by

Q = (Bd)2

μρην
, (10)

where d is the depth of the domain, μ the magnetic permeability, η

the magnetic diffusivity and ν the kinematic viscosity. The rate of

strain tensor is given by

τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
∂ur

∂r

∂uφ

∂r
− uφ

r

∂ur

∂z
+ ∂uz

∂r

∂uφ

∂r
− uφ

r
2

ur

r

∂uφ

∂z

∂ur

∂z
+ ∂uz

∂r

∂uφ

∂z
2
∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

while the dimensionless thermal conductivity K is related to the

Rayleigh number R in the following way:

R = θ 2(m + 1)

[
1 − (m + 1)(γ − 1)

γ

]
(1 + θ/2)2m−1

σ K 2
. (12)

R is a measure of the importance of buoyancy forces compared to

viscous forces in the middle of the layer, and is used to drive the

convection in the model. The addition of rotation adds an additional

scaling which relates the convective time-scale to the rotational time-

scale. Following Gilman (1977), we express this ratio using the

convective Rossby number defined as

Ro = σ K

2�

√
R. (13)

Brummell, Hurlburt & Toomre (1996) found that this parameter,

which can be evaluated from the control parameters, is typically

close to that based on the traditional definition of the Rossby number,

namely the ratio of the rms vorticity of the flow to the vorticity 2�

associated with the rotating cylinder. The effects of rotation are

significant for Ro ≈ 1, and dominate for Ro � 1. For supergranules

and sunspot moats, Ro ≈ 30.

All the other symbols have their usual meaning. The physical

quantities are dimensionless, with the length scaled proportional to

the depth of the numerical domain, velocity scaled proportional to

the sound speed at the top of the domain and temperature, magnetic

field, density and pressure all scaled proportional to their initial

values at the top of the numerical domain. These top initial values

are radially uniform and do not change throughout this paper, as

discussed in Section 2.2.

2.2 Numerical implementation

The computational domain is an axisymmetric cylinder of radius �,

situated in the (r, z) plane so that

0 � r � �, 0 � z � 1, (14)

with z = 0 at the top of the box (Hurlburt & Rucklidge 2000; Botha

et al. 2006). We require that all variables be sufficiently well-behaved

at the axis (r = 0) and that the differential operators in the PDEs are

non-singular. This implies that

∂ρ

∂r
= ur = uφ = ∂uz

∂r
= ∂T

∂r
= 0,

Aφ = Br = Bφ = ∂Bz

∂r
= jφ = 0.

(15)

Terms like ur/r, uφ/r and Bφ/r are evaluated using l’Hôpital’s rule,

while terms containing ur/r2 cancel algebraically.

The outside wall (r = �) is a slippery, impenetrable wall with no

lateral heat flux across it (i.e. an insulator):

∂T

∂r
= ur = ∂uz

∂r
= Br = Bφ = jφ = 0,

∂uφ

∂r
= uφ

r
. (16)

The magnetic potential has the value Aφ = �/2 at the outside wall,

which was chosen so that the initial vertical uniform field satisfies

Bz = 1.

At the bottom boundary, the magnetic field is vertical. The temper-

ature T is chosen to be constant with value θ + 1 from equation (1).

The bottom boundary is impenetrable and stress free, i.e.

Br = Bφ = ∂Bz

∂z
= ∂ur

∂z
= ∂uφ

∂z
= uz = 0. (17)

The top of the box is treated as impenetrable for the plasma, with

a radiative temperature boundary condition given by Stefan’s law:

∂ur

∂z
= ∂uφ

∂z
= uz = 0,

∂T

∂z
= θT 4. (18)

The θ in Stefan’s law is the same as in (1), so that the equilibrium pro-

file used as initial condition is not destroyed. The Stefan–Boltzmann

constant will enter (18) only when we dimensionalize it. The mag-

netic field is matched to a potential field on top of the numerical

domain, ∂Aφ/∂z = Mpot(Aφ), where Mpot is a linear operator, so

that Br and Bz are continuous across the boundary. The potential

field is solved by assuming an infinitely tall conducting cylinder of

radius � above the domain, with the magnetic field becoming uni-

form as z → ∞. A more detailed description is given by Hurlburt

& Rucklidge (2000). No currents exist inside the potential field and

consequently we choose jz = 0 along the top of the box. From (15),

it then follows that Bφ = 0 along the top boundary.

One consequence of these boundary conditions is that no current

escapes from the numerical domain: jr = 0 on r = � and jz = 0 on

z = 0 and 1. It follows that the boundaries do not provide any net

vertical torques, and so do not contribute to changes in the vertical

component of the total angular momentum, Lz . None the less, Lz

is not conserved in compressible convection: the Coriolis term can
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lead to changes in Lz , for example, when mass is transported to

larger distances from the axis. (Note that this does not occur in

incompressible convection.) A consequence of this is that as the

solution evolves through time, Lz tends to drift, making the meaning

of the parameter � less precise. Therefore, we will look for steady

solutions with no net vertical angular momentum relative to the

rotating frame. We achieve this by calculating the drift in the value

of Lz after each iteration and then introducing a correction in the

form of an equivalent rigid body rotation in the opposite direction.

This alters the evolution of the PDEs (slightly), but steady states

are correct solutions of the PDEs. In our oscillatory solutions, we

remove the constraint from Lz and follow its time evolution. This is

discussed in Section 3.9.

A uniform, vertical magnetic field is used as initial condition.

For a non-rotating cylinder (� = 0), the azimuthal magnetic field

is perturbed (Section 3.1). For a finite angular velocity (� 
= 0),

the evolution of the plasma is triggered by starting the quiet, non-

rotating plasma with a finite � and no plasma perturbation. Both

these initialisations ensure that Lz = 0 at the start of the numerical

simulations.

The density does not in principle satisfy a boundary condition,

but we impose the value of the normal derivative of ρ obtained from

the Navier–Stokes equation (4).

The numerical code was developed specifically for this type of

calculation (Hurlburt & Rucklidge 2000). Sixth-order compact fi-

nite differencing is used, which reduces at the boundaries to fifth-

order accuracy for first-order derivatives and fourth-order accuracy

for second-order derivatives. The grid intervals were chosen to be

equal in the r and z directions, with 240 grid points in the horizontal

and 80 in the vertical for the majority of calculations. The time evo-

lution obtained fourth-order accuracy through a modified (explicit)

Bulirsch–Stoer integration scheme, with the time-step limited by

the Courant condition (using the maximum sound and the Alfvén

speeds, as well as the thermal diffusive limit), multiplied by a safety

factor of 0.5.

3 N U M E R I C A L R E S U LT S

Unless otherwise stated, the results shown here have been obtained

with the following parameter values: R = 105, Q = 32, σ = 1, ζ 0 =
0.2, θ = 10, m = 1, γ = 5/3 and � = 3. The results are presented

in the format given in Fig. 1.

3.1 No rotation

When no rotation is present (� = 0 or Ro → ∞), the azimuthal

magnetic field is perturbed initially and the plasma is allowed to

1. Lines

2. Lines
3. Arrows
4. Colour

5. Lines
6. Arrows
7. Colour

8. Colour

9. Colour
10. Arrows

Figure 1. The diagnostics used to describe the numerical results: (1) po-

tential magnetic field lines; (2) magnetic field lines; (3) velocity field in

the (r,z) plane; (4) temperature fluctuation relative to the unperturbed state;

(5) density contour lines; (6) magnetic field direction and strength; (7) az-

imuthal current density; (8) azimuthal velocity field; (9) azimuthal magnetic

field and (10) current density in the (r,z) plane. All colour scales have red as

maximum and blue as minimum. The green colour represents zero.

               

 

 

 

 

 

 

Figure 2. No rotation with the azimuthal velocity and magnetic field com-

ponents approaching zero asymptotically. Consequently, the right-hand side

of Fig. 1 is not included. The absolute temperature variation has a maximum

of max|T̃ | = 3.1, while the azimuthal current density jφ lies in the interval

(−200, 350).

evolve through time. The solution reaches the state depicted in Fig. 2,

with the explanation of the diagnostic given by the left-hand box in

Fig. 1. The solution described here is typical of the plasma state when

the axisymmetric cylinder is not rotated (Hurlburt & Rucklidge

2000; Botha et al. 2006) and it provides a convenient base against

which to compare results obtained with rotation.

From an initial vertical magnetic field, the convection sweeps the

magnetic field towards the central axis where it forms a flux tube. A

large anticlockwise convection cell forms next to the tube, flowing

towards the flux tube at the top of the numerical domain. This flow

direction keeps the magnetic field confined to the central axis. The

temperature is time dependent in that a cold plasma blob forms at

the top next to the magnetic flux tube and is convected down the

side of the tube, only to dissipate as it is convected along the bot-

tom boundary. Fig. 2 shows a new cold plasma blob forming at the

top while the remnants of the previous cold blob is still visible at

the bottom, moving towards the outer boundary. This temperature

oscillation has a period of approximately 1.275 time units, which

corresponds roughly to half of the circulation time around the con-

vection cell. The upper layers of the plasma are heated by the upflow

next to the outer boundary and the resulting hot plasma blob is time

independent. The azimuthal current density has its maximum value

(in both directions) next to the flux tube where the magnetic field

gradient is the highest. Azimuthal flow and magnetic structure are

not generated spontaneously. The azimuthal components, generated

by the initial perturbation, are small and decay exponentially as the

solution evolves through time.

Periodic oscillations, an example of which is the time-dependent

temperature next to the magnetic flux bundle, are familiar from

Rayleigh–Benard convection (Clever & Busse 1995). Jones &

Galloway (1993) found periodic oscillations for a Boussinesq fluid

in an axisymmetric cylinder. As must be expected, as in our case they

found no spontaneous generation of azimuthal velocity or magnetic

field components.

Given the model’s temperature and density profiles in (1) and

(2), the sound speed increases and the Alfvén speed decreases with

depth. The inflowing layer at the top of the box is deeper than the

outflowing layer at the bottom. This is ascribed to the fact that the

total radial momentum in the system is zero. The higher density at

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1445–1462
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Figure 3. Constant angular velocity � = 0.1. The time-independent solution shows two convection cells in the radial direction instead of the one in the result

obtained with no rotation (Fig. 2). The diagnostics are described in Fig. 1, with the azimuthal current density jφ ∈ (−189, 365) and the current density in the

(r,z) plane jr ∈ (−30, 109) and jz ∈ (−120, 106). The temperature variation is such that max|T̃ | = 2.88, and the measured max|ur | = 2.36, max|uφ | = 0.87,

max|uz | = 2.35 and max|Bφ | = 3.96.

Figure 4. Radial profile of ur with � = 0.1. The solid line is at depth 0.25,

the dotted line at 0.5 and the dashed line at 0.75.

Figure 5. Radial profile of azimuthal velocity uφ with � = 0.1. The lines

have the same meaning as in Fig. 4.

the bottom leads to a shallower outflowing layer with lower radial

velocities transporting the same momentum outwards as what the

deeper top layer with higher velocities transports inwards. The sim-

ulation runs with a maximum Mach number of approximately 1. The

time-step is limited by the thermal diffusivity, with the dimension-

less thermal conductivity K calculated using (12). This constraint

on the time-step is true for all the numerical simulations in this

paper.

Figure 6. Radial profile of the axial or vertical velocity uz with � = 0.1.

The three lines have the same meaning as in Fig. 4.

Figure 7. Radial profile of azimuthal magnetic field Bφ with � = 0.1. The

three lines have the same meaning as in Fig. 4.

3.2 Introduce rotation

By introducing a constant angular velocity of � = 0.1 (Ro = 77.5),

we obtain the solution in Fig. 3, from which selected radial profiles

are presented in Figs 4–7. The one convection cell in the case of no

rotation (Fig. 2) has split into two cells, i.e. a finite � reduces the

characteristic wavelength of the convection in the radial direction.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1445–1462
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Table 1. The measured constants in the Rankine vortex (19).

� z (measured downward) V0 R

0.1 0.25 0.75 0.55

0.5 0.69 0.55

0.75 0.57 0.63

0.2 0.25 1.16 0.68

0.5 1.09 0.68

0.75 0.95 0.73

0.3 0.25 1.27 0.85

0.5 1.24 0.84

0.75 1.13 0.88

This effect of rotation on convection is well known (Chandrasekhar

1961). The convection cell next to the flux tube always has an an-

ticlockwise flow direction with an inward flow at the top, so that it

forms a collar that forces the magnetic field together at the central

axis (Botha et al. 2006).

By introducing a finite �, the centrifugal term in equation (4)

provides a force in the radial direction. This manifests as a change

in density contours, which go from being approximately horizontal

without rotation (Fig. 2) to being slanted at the outer wall (Fig. 3).

This boundary effect is localized and does not affect the solution in

the domain interior. The treatment of the outer boundary is discussed

in more detail in Section 3.8.

There is no time dependence in the solution. The radial profiles of

the velocities are given in Figs 4–6 at three depths. All three velocity

components are of the same order of magnitude. The radial velocity

(Fig. 4) shows the two cells circulating in opposite directions, as

well as the fact that the speed is higher in the upper part of the

numerical domain.

The azimuthal velocity (Fig. 5) shows that the plasma inside the

strong magnetic field of the flux tube rotates as a solid body, with

maximum rotation on the outside edge of the tube. In the convection

area of the solution, the rotation is in the form of a vortex with the

azimuthal velocity gradually falling away with radius. This rotation

pattern is uniform throughout the depth of the box and compares

well with observations that show the largest azimuthal velocities

are located in the penumbra (Brown et al. 2003). One can fit the

profile with a Rankine vortex, described by

vφ(r ) =

⎧⎪⎪⎨
⎪⎪⎩

V0r

R
for r � R,

V0 R

r
for r > R,

(19)

with R the magnetic flux tube radius and V0 = max(uφ). An ob-

server in the rotating reference frame of the cylinder will measure

an azimuthal velocity profile of

v′
φ(r ) = vφ(r ) − �r . (20)

The values of V0 and R measured for � = 0.1 are presented in

Table 1 and the radial profile of v′
φ in Fig. 8. Rankine vortices are

used regularly to model tropical cyclones on Earth. Helioseismic

measurements of flow around sunspots in the upper convection zone

show a strong resemblance to the flow of hurricanes on Earth (Zhao

& Kosovichev 2003). It is a happy coincidence that Herschel thought

of sunspots as large cyclonic storms (Thomas & Weiss 1992). In our

model, the Rankine vortex makes physical sense. Convection is sup-

pressed where the magnetic field is strong. The radial dependence

of the azimuthal velocity in these regions is that of a rotating rigid

Figure 8. Radial profile of a Rankine vortex inside a reference frame rotating

with � = 0.1. v′
φ is described by (20) and should be compared with Fig. 5.

The lines have the same meaning as in Fig. 4, and the Rankine constants are

listed in Table 1.

body. Since the region experiencing rigid rotation corresponds to the

magnetized region in all cases, we deduce that magnetic effects are

responsible for the rigid body rotation. A vortex exists around the

flux tube. Angular momentum mixes in axisymmetric convection,

which results in the free vortex in the field-free convection cells

where convection is strong. The counter flow near the outer wall

is a consequence of the treatment of Lz in our solution. Since our

solution has zero vertical angular momentum relative to the rotating

reference frame, a significant counter flow has to occur at the edge

in order to balance the peak flow next to the flux tube.

The vertical velocity (Fig. 6) shows the strong downflow at the

outside of the magnetic flux tube and at the outer edge of the nu-

merical domain, as well as the upflow between the two convection

cells. Comparing the two downflows, we observe that the downflow

at the outer edge is stronger than that next to the magnetic flux tube.

It is essential to use a large enough aspect ratio (�) so that the outer

boundary is removed from the physics around the magnetic flux

tube. A � = 3 appears to be a reasonable compromise between this

and the computational limitations.

The radial and axial magnetic field components are concentrated

in the magnetic flux tube, with Bz three times larger than Br . Fig. 7

shows the radial profile of Bφ , the size of which is an order of

magnitude smaller than Br . Bφ is confined mainly to the inner con-

vection cell next to the magnetic flux tube. The current, obtained

from the magnetic field through equation (9), reflects the distribu-

tion of the magnetic field. Its azimuthal component is concentrated

on the outside of the magnetic flux tube where the radial gradient in

the magnetic field is the largest. The radial and vertical components

are distributed in and around the inner convection cell around the

azimuthal magnetic field maxima (Fig. 3). At the top and bottom

boundaries, the radial current density has local maxima due to the

fact that no current flows out of the box.

3.3 Increase rotation

The convective Rossby number (Ro) associated with the rotation

around the central axis decreases as � increases. The Ro associated

with the circulation around the convection cells for the case with

� = 0.1, i.e. Ro = 77.5, compares well with that of supergranulation

in the Sun. Ro of larger � values correspond to even larger-scale

flows. In all cases, the rotation rate is low enough that it should not

significantly change the value of the critical Rayleigh number for

the onset of convection (see Brummell et al. (1996)) and thus the

cases exhibit comparable amplitudes.
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Figure 9. Constant angular velocity � = 0.3. The convection inside the magnetic flux tube is stronger and the flux tube wider than in the case with � = 0.1

(Fig. 3). The growth in width is at the expense of the inner convection cell. The weak convection creates a temperature signature inside the flux tube. The

measured max|uφ | = 1.5, max|Bφ | = 8.0, max|T̃ | = 2.9, jφ ∈ (−143, 220), jr ∈ (−61, 75) and jz ∈ (−201, 111).

As the magnitude of � increases, the width of the magnetic flux

tube increases. Fig. 9 shows a time-independent solution with �

= 0.3. The magnetic field strength inside the flux tube decreases

with increasing width, allowing weak convection to form inside

the flux tube itself. Fig. 9 shows that the upflow in the flux tube

heats the plasma in the top layers of the tube, while very weak

outflow forms along the top boundary. Eventually, for � � 0.3, the

convection inside the flux tube becomes strong enough to break it

into concentric rings.

As rotation increases and with it the width of the magnetic flux

tube, the magnetic field lines forming the flux tube straighten. This

causes the azimuthal current density jφ to decrease in both posi-

tive and negative azimuthal directions. The position of jφ stays the

same: it flows around the flux tube, created by large magnetic field

gradients there.

Increasing � also increases the size of the centrifugal force in

equation (4). For � = 0.1, the density contours inside the flux tube

are approximately horizontal (Fig. 3). For � � 0.2, density contours

become slanted, due to weak convection inside the flux tube as well

as the centrifugal force acting on the plasma. As a result, there is

a slight depletion of plasma at the top of the magnetic flux tube

near the central axis, while the area of density variation along the

inside edge of the flux tube increases. Fig. 9 shows that inside the

convection cells the increase in � causes a slight depression of

density contours.

The plasma rotates as a Rankine vortex for all values of �. Where

the magnetic field is strong enough to suppress convection, the flow

is a forced vortex in the form of rigid body rotation, while in the

field-free convection region we observe a free vortex. The 1/r de-

pendence in the convection region corresponds to homogeneous

angular momentum that is caused by the effective mixing by the

convection. As the width of the magnetic flux tube increases with

the increase in �, the radius of the forced vortex also increases

(Table 1). The radial profiles of uφ for different � values can be

compared in Figs 5 and 10. They show that as � increases, the

maxima next to the magnetic flux tubes increase as well (see also

Table 1). To maintain the initial Lz = 0, the counterflow at the outer

wall increases in sympathy. This is in contrast to Jones & Galloway

(1993), who found a retrograde flow at the central axis for large Q
values in a Boussinesq fluid. To generate a retrograde flow near the

central axis, we had to change the temperature boundary condition

Figure 10. Radial profile of azimuthal velocity uφ with � = 0.3, obtained

from Fig. 9. The lines have the same meaning as in Fig. 4.

at the lower boundary in our model (Section 3.6). The rigid body

rotation inside the magnetic flux tube is perturbed when the weak

convection inside the tube becomes strong enough to influence the

local magnetic field. Fig. 9 shows the strength of the convection in-

side the flux tube, while Fig. 10 shows the deviation from rigid body

rotation. This deviation increases deeper in the numerical domain

where convection is stronger.

The azimuthal magnetic field tends to be located in the convection

cells closest to the central axis. In the case of � = 0.1, this is in the

collar flow around the flux bundle (Fig. 3). For � � 0.2, a small

convection cell starts to form inside the flux bundle at its base, due to

weak convection inside the flux bundle (Fig. 9). As this cell grows in

strength, the amplitude of Bφ located in it grows in strength relative

to the Bφ in the collar flow outside the flux bundle. The directions of

Bφ in the small cell inside the flux bundle and that of Bφ in the collar

flow are anti-parallel. This corresponds to the direction of flow of

the convection cell. Fig. 9 shows that a clockwise convection cell has

a Bφ pointing in the positive φ direction (i.e. into the page), while

Bφ in an anticlockwise cell points in the negative φ direction (i.e.

out of the page). This is caused by the interaction of the magnetic

field with the velocity in the first term on the right-hand side of

equation (7). The current surrounding the local maxima of Bφ has

the same direction as the local convection, since it is calculated using

equation (9).
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Figure 11. The behaviour with increasing rotation is presented using the

following notation: Br is green plus signs connected by a solid line; Bφ is

blue stars connected by a dot–dashed line; uz is cyan diamonds connected

by a dotted line; ur is magenta crosses connected by a dashed line and uφ is

black triangles connected by a triple-dot–dashed line. The peak values are

plotted in each case.

The behaviour when rotation is increased is summarized in

Fig. 11. As � increases the magnetic flux tube widens and the field

lines straighten and become more vertical, which leads to a decrease

in the radial component of the magnetic field. At the same time, the

azimuthal velocity and magnetic field components increase, being

driven by �. Compared to these changes, the radial and axial ve-

locity components stay relatively stable. All velocity components

increase in absolute value as � increases.

3.4 Increase magnetic field strength

From previous numerical studies, it is known that an increase in

the magnetic field increases the width of the magnetic flux tube for

non-rotating solutions (Hurlburt & Rucklidge 2000). This is also

true when rotation is present, which can be seen when Fig. 9, with

� = 0.3 and Q = 32, is compared with Fig. 12 for � = 0.3 and

Q = 128. The solution is time independent and the growth in flux

tube width takes place at the expense of the radial dimensions of the

convection cells.

The magnetic flux tube retains its configuration, with an anticlock-

wise convection cell holding the flux tube in place. The stronger

               

 

 

 

 

 

 

Figure 12. Results with Q = 128 and � = 0.3. The stronger magnetic field widens the magnetic flux tube at the expense of the size of the convection area,

as seen when compared to Fig. 9. The strength of convection and the size of the azimuthal quantities are reduced. Max|Bφ | is located in the anticlockwise

convection cell next to the flux tube. The measured max|uφ | = 1.0, max|Bφ | = 2.9, max|T̃ | = 2.7 and jφ ∈ (−65, 125). The range of the current density in

the (r, z) plane is jr ∈ (−13, 54) and jz ∈ (−74, 33).

Figure 13. Radial profile of uφ corresponding to Fig. 12, with � = 0.3 and

Q = 128. The lines have the same meaning as in Fig. 4.

magnetic field suppresses the weak convection inside the magnetic

flux tube, which was present when Q = 32 (Fig. 9).

As the area with strong magnetic field becomes wider, the field-

free convective region is compressed. The decrease in the field-free

area is accompanied by lower flow velocities of convection. Here,

the maximum Mach number of the solution is 0.8, while max(Mach)

= 0.9 for Q = 32. The maximum measured azimuthal velocity for

Q = 128 (Fig. 12) is also 2/3 of what it is for Q = 32 (Fig. 9).

The weaker flow in the convection cell around the magnetic flux

tube means the field lines are less compressed when compared to

the case when Q = 32 (Fig. 9). This leads to lower gradients at the

flux tube’s edge, which in turn implies a lower azimuthal current

density flowing around the flux tube, since jφ is calculated using

equation (9).

The azimuthal flow of this solution fits that of a Rankine vor-

tex. By suppressing the weak convection inside the flux tube that is

present for Q = 32, the plasma flow inside the flux tube becomes

more like rigid body rotation (compare Figs 10 and 13). The max-

imum uφ next to the flux bundle is lower for Q = 128 due to the

lower levels of convection in the solution. This is also true for the

counter flow at the outer wall.

The azimuthal magnetic field has its maximum in the convection

cells closest to the central axis. In Fig. 9 with Q = 32, there exists a

small clockwise cell at the base of the flux tube. This cell is strong

enough to contain a significant part of Bφ , with the anticlockwise
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Figure 14. The time-independent solution with σ = 0.3, Q = 32 and � = 0.1. The lower σ value enhances convection, which leads to a larger inner convection

cell, a narrower central magnetic flux tube and more variation in the density contours. The measured max|uφ | = 1.6, max|Bφ | = 5.5, max|T̃ | = 3.7, jφ ∈
(−229, 445), jr ∈ (−49, 168) and jz ∈ (−196, 158).

collar flow containing an antiparallel Bφ component. Here, for

Q = 128 (Fig. 12), the small clockwise cell inside the flux tube

is suppressed, so that max|Bφ | is mainly located in the anticlock-

wise collar flow.

3.5 Lower Prandtl number

Decreasing the Prandtl number σ causes the convection described

by the steady solution to become more vigorous, as can be seen

when Fig. 3 (with σ = 1) is compared to Fig. 14 (with σ = 0.3). For

σ = 1, the maximum Mach number in the solution is 0.9, while for

σ = 0.3 we have max(Mach) = 1.7. The lower σ value brings the

simulation closer to the physical conditions in the upper convection

zone. The dimensionless thermal conductivity K, defined by (12),

changes from 4.9 × 10−2 for σ = 1 to 1.5 × 10−1 for σ = 0.1. For

σ = 0.3, we have K = 8.9 × 10−2 and with � = 0.1 we have a

convective Rossby number of Ro = 42.4.

For lower Prandtl numbers, the inner convection cell increases

its size at the expense of the width of the magnetic flux bundle,

and to a lesser degree the width of the convection cell next to the

outer boundary. Not only is the inner cell larger, but the velocity

amplitudes also have higher maximum values. However, the relative

differences between the velocity components are independent of the

value of σ , with the azimuthal component approximately a third

of the size of the radial and axial components. The azimuthal flow

takes the form of a Rankine vortex (Fig. 15). The rigid body rotation

inside the flux bundle is faster than when σ = 1 (Fig. 5), with a higher

maximum next to the bundle. The flux bundle is also narrower, which

means that to maintain the initial Lz = 0 during the simulation, the

counter flow at the outer boundary needs to be only slightly larger

than when σ = 1.

The stronger convection pushes the magnetic flux into a thinner

flux bundle at the central axis, so that the strength of Bz increases for

lower values of σ . The size of Bφ relative to Br stays approximately

the same for all values of σ . As in the case for σ = 1 (Fig. 3), the

azimuthal magnetic field is mostly located in the inner convection

cell, with its maxima next to the magnetic flux bundle. The stronger

convection also causes the curvature and gradients of the magnetic

field lines in the (r, z) plane to increase, which increases the size

of the azimuthal current density obtained from equation (9). The

position of max|jφ | stays the same.

Figure 15. Radial profile of uφ corresponding to Fig. 14, with � = 0.1,

σ = 0.3 and Q = 32. The lines have the same meaning as in Fig. 4.

The effects of the enhanced convection are visible in the density

contours. For σ = 1, the density contours in the convection cells

are approximately horizontal (Fig. 3) while for σ = 0.3 significant

variation in the radial direction occurs (Fig. 14). At the central axis,

where the convection is suppressed by the strong magnetic field, the

contour lines stay approximately as they were with σ = 1 and its

lower convection strengths.

There are changes in the temperature profile of the solution. The

stronger upflow between the two convection cells leads to a larger

variation from the original heat profile in the upper layers of the

solution, as can be seen when max|T̃ | in Figs 3 and 14 are compared.

Also, for lower σ values the thermal diffusion rate becomes more

significant, which reduces the radial extent of the heated plasma

above the upflow.

3.6 Temperature prescription at bottom boundary

To determine the extent to which the bottom boundary is influencing

the result, we changed the temperature prescription on this boundary

from a constant value T to a constant ∂T/∂z. From equation (1), we

set ∂T/∂z = θ , so that the heat flux Kθ stays equivalent to the

heat flux for a constant T boundary condition. A linear stability

analysis by Hurlburt, Toomre & Massaguer (1984) determined that

this change in boundary condition results in halving the critical

Rayleigh number for the onset of convection, and hence one would
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Figure 16. Results with a constant ∂T/∂z used as bottom boundary condition. The parameters are � = 0.1, Q = 32 and σ = 0.1. Weak convection forms inside

the wide magnetic flux tube. The overall convection is lower and the inner convection cell smaller compared to solutions using a constant T lower boundary

condition. The measured max|uφ | = 0.8, max|Bφ | = 3.2, max|T̃ | = 1.4 and jφ ∈ (−73, 105). The current density in the (r, z) plane is jr ∈ (−27, 23) and jz ∈
(−53, 50).

expect somewhat more vigorous convection for the same Rayleigh

number, all other aspects of the solution being equal. However, the

numerical results discussed in this section show that for this highly

non-linear system, the change in the lower boundary condition leads

to lower convection levels.

For low Prandtl numbers, such as σ = 0.1 in Fig. 16, the basic

configuration of two convection cells and a central magnetic flux

tube remains as before. The radial profile of the azimuthal flow is

that of a Rankine vortex. The strength of convection outside the

magnetic flux tube is lower than for the bottom boundary condition

of constant temperature, while the magnetic flux tube is wider with

very weak convection inside it.

For Prandtl numbers of σ � 0.3, the solution changes into one

convection cell that is outflowing at the top. This new flow direction

does not provide an efficient collar to contain the magnetic flux

(Botha et al. 2006), so that the magnetic field spreads out in the

radial direction rather than being contained at the central axis. Under

these circumstances, it is possible to have horizontal magnetic field

lines above the main convection cell. Fig. 17 gives the solution for

               

 

 

 

 

 

 

Figure 17. Results with constant ∂T/∂z bottom boundary condition and the same parameter values as Fig. 16, but with σ = 1. One convection cell forms with

outflow along the top boundary. This allows the magnetic flux to spread radially, with weak convection forming near the central axis inside the flux tube. The

measured max|ur | = 0.8, max|uφ | = 0.5, max|uz | = 0.8, max|Bφ | = 3.7, max|T̃ | = 1.1 and jφ ∈ (−59, 149). The current density in the (r,z) plane is jr ∈
(−20, 22) and jz ∈ (−134, 50).

σ = 1, while Figs 18–20 give the radial profiles of uφ for various

parameter values.

Fig. 17 shows the solution with σ = 1. A solution in the same

parameter space but with constant temperature at the bottom bound-

ary is given in Fig. 3. When comparing the two solutions, it is clear

that the level of convection is lower in the case of constant ∂T/∂z
boundary condition. This is shown explicitly in Table 2: the maxi-

mum Mach number is lower when a constant ∂T/∂z is used. It also

shows in the fact that the maximum azimuthal velocity is weaker

in Fig. 17 than in Fig. 3. This is true for all choices of parameter

values. The maximum Mach number in the solution increases as

σ decreases, in line with the discussion in Section 3.5 and the fact

that more heat flows through the system. In Table 2, the solution for

σ = 0.1 and constant ∂T/∂z does not have a counterpart when a

constant temperature boundary condition is used, because the con-

vection becomes too vigorous and large shocks form that terminate

the numerical simulation. This agrees with the conclusion that a

constant ∂T/∂z at the lower boundary leads to lower convection

levels.
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Figure 18. Radial profile of uφ with � = 0.1, σ = 0.3, Q = 32 and a

constant ∂T/∂z as bottom boundary. The solution has a configuration similar

to Fig. 17, but the weak convection inside the flux tube has higher amplitudes.

These are responsible for the large perturbations in the interval 0 � r � 1.

The lines have the same meaning as in Fig. 4.

Figure 19. Radial profile of uφ corresponding to Fig. 17, with � = 0.1,

σ = 1 and Q = 32. Fig. 4 defines the line notation.

Figure 20. Radial profile of uφ with � = 0.1, σ = 0.3, Q = 256 and constant

∂T/∂z. The solution has a configuration similar to Fig. 17. The lines have

the same meaning as in Fig. 4.

The weaker convection allows the magnetic flux tube to be wider,

so that the value of max|Bz | is lower. The different flow pattern when

σ � 0.3 also contributes to the lower vertical magnetic component,

in that the magnetic field now has a significant horizontal component

(Fig. 17). Another consequence of the weaker convection is lower

magnetic field gradients in the (r,z) plane. This leads to lower levels

of azimuthal current density, which can be seen when Figs 3 and 17

are compared. In the case for σ = 0.1 (Fig. 16), the peak current

density is positioned around the magnetic flux tube close to the mid-

plane, where it is for all results with a collar flow around the flux

tube, while for σ � 0.3 (Fig. 17) the maximum current density is

located at the base of the flux tube, where magnetic field gradients

are largest.

As in the case for a constant T lower boundary, the plasma ro-

tates as a rigid body (or forced vortex) where the magnetic field is

strongest, while a free vortex forms in the convection area where

the magnetic field is weaker. For σ � 0.3, the central magnetic flux

tube is still present, with an additional component that stretches

horizontally above the dominant convection cell. This means that

at the bottom of the numerical box, where one has a well-defined

flux tube (Fig. 17), the radial profile of the azimuthal flow looks

most like a Rankine vortex (see Fig. 18 for σ = 0.3 and Fig. 19 for

σ = 1). Moving higher up in the numerical domain, the width of

the magnetic flux tube increases and with it the radius of the forced

vortex, with the free vortex in the convection area occupying less

space. At the top of the box, the magnetic field influences the az-

imuthal flow so much that most of the free vortex flow is distorted.

The strong convection associated with low σ values (Section 3.5)

enables weak convection to form inside the magnetic flux tube. This

weak flow serves as a perturbation to the rigid body rotation inside

the magnetic flux tube around the axis (see Fig. 18 for σ = 0.3).

By increasing σ , one weakens the convection in the solution, as

discussed in Section 3.5, and reduces the heat flux through the sys-

tem. This allows the magnetic field to become more uniform along

the central axis with less perturbations in the rigid body rotation

that occurs there. Fig. 17 shows an example of this for σ = 1. An

interesting phenomenon occurs when σ = 1. In this case, the plasma

inside the magnetic flux tube slows down to almost zero (Fig. 19).

The plasma in the field-free convection area still forms a free vor-

tex, which means the azimuthal flow grows from a small value to

its maximum next to the flux tube over a small distance, before it

tails off into the usual free vortex profile. The maximum flow in

the vortex occurs close to the base of the flux tube, where the con-

vection area has the lowest level of magnetic field. The fact that

the slowly flowing plasma inside the flux tube is still in the same

direction as the free vortex is a coincidence. The plasma flow inside

the magnetic field area is highly sensitive to the values of Q and

σ . Some values give a retrograde rotation at the central axis, in the

same direction as the counter flow near the outer wall. Other values

give a prograde rotation in the direction of the free vortex, but with

huge perturbations in the rigid body rotation, while others will give

a flux tube that rotates partly prograde and partly retrograde. As

one example of what can occur, we plot the radial profile of uφ for

the values Q = 256 and σ = 0.3 in Fig. 20. Here, the plasma in

the whole of the flux tube rotates retrograde, as well as most of the

plasma in the magnetic flux layer on top of the one large convection

cell. (The solution has the same configuration as Fig. 17, only with

the width of the flux tube wider due to the higher Q value.) Note

in Fig. 20 that the free vortex still rotates prograde with a counter

flow next to the outer wall, similar to Fig. 19 when Q = 32 and

σ = 1.

For a constant T at the lower boundary, the azimuthal magnetic

field formed in the inner convection cell closest to the central axis.

Here, for σ = 0.1 (Fig. 16), weak convection inside the magnetic

flux tube allows a small cell to form at the base of the flux tube.

This cell is closest to the central axis and carries a large part of

Bφ in it. The much stronger convection cell forming the collar flow

around the magnetic flux tube contains the rest of Bφ . These two cells

have opposite meridional circulations, so that the Bφ components

in them are anti-parallel to each other. For the cases where σ � 0.3

(Fig. 17), only one cell dominates the convection area. The azimuthal

magnetic field is located inside this cell, but with its maximum value

next to the magnetic flux tube. It is interesting to note that max(Bφ)
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Table 2. Changing the lower temperature boundary condition with Q = 32, m = 1, � = 3 and θ = 10.

� σ Lower boundary: T constant Lower boundary: ∂T/∂z constant

max(Mach) T at z = 1 max(Mach) T range at z = 1

0 1.0 1.2 11 0.6 (9.34,10.19)

0.1 1.0 0.9 11 0.6 (9.33,10.42)

0.1 0.3 1.7 11 1.1 (9.05,10.43)

0.1 0.1 – – 1.3 (8.59,10.20)

Figure 21. Top boundary temperature with constant ∂T/∂z at bottom

boundary. The solid line is σ = 0.1 (Fig. 16), the broken line σ = 0.3

and the dot–dashed line σ = 1 (Fig. 17). The dotted line is σ = 0.3 with a

constant bottom temperature (Fig. 14), added as reference.

is situated towards the top of the numerical domain, while it is

towards the bottom of the domain for constant T lower boundaries.

This corresponds to the direction of flow in the convection cell

containing Bφ in each case.

The influence of the outer wall is discernible with constant ∂T/∂z
at the lower boundary, when only one clockwise convection cell

forms in the solution (i.e. for σ � 0.3). At the outer wall, a local

max(Bφ) forms, generating its own current around it in the (r, z)

plane (Fig. 17). The heat flux through the system with σ < 1 is

higher than for σ = 1 and the convection stronger, so that the mag-

netic field is less able to concentrate next to the outer wall. One

can also see the influence of the outside wall in the azimuthal ve-

locity profile; the amplitude of the counter flow next to the outer

wall diminishes sharply at the wall. This effect becomes larger as

the size of the local max(Bφ) at the outer wall increases (compare

Figs 18 and 19 where σ increases, as well as 18 and 20 where Q
increases). In all our results, this boundary effect is highly localized

and does not influence the solution deeper in the numerical domain.

In Section 3.8, the treatment of the outer boundary is discussed.

Figs 21 and 22 show that the temperatures at the top and bottom

domain boundaries are lower when constant ∂T/∂z is used, com-

pared to a constant T at the lower boundary. Inside the magnetic

flux tube, the temperature near the top of the domain (Fig. 21) is

largely independent of the bottom boundary condition. Where the

convection dominates outside the magnetic flux tube, the tempera-

ture variation is lower than for a constant T at the bottom. Fig. 22

shows the temperature variation at the lower boundary. Similar to

the top of the domain, the temperature inside the magnetic flux tube

is least affected by the boundary condition, although the temper-

ature is lower along the whole radial length for ∂T/∂z constant.

Fig. 22 and Table 2 show that the variation of the temperature along

the bottom boundary is substantial. This observation may explain

the difference between the linear stability results by Hurlburt et al.

(1984) and the non-linear behaviour, as mentioned in the beginning

of this section. Although the heat flux into the domain stays the

Figure 22. Temperature at bottom boundary with ∂T/∂z constant. The lines

have the same meaning as in Fig. 21. The extra (triple-dot–dashed) line

corresponds to σ = 1 and θ = 20 (Fig. 24), as discussed in Section 3.7. To

fit into the graph, 10 has been subtracted from this temperature.

same, a lower temperature along the bottom boundary will drive the

convection less vigorously. To investigate how sensitive the veloc-

ity amplitudes are to the lower bottom temperature, we increased

the bottom boundary temperature and the heat flux through it by in-

creasing θ . This, however, has repercussions throughout the system,

as discussed in Section 3.7.

3.7 Increase stratification in numerical domain

Increasing the value of θ from 10 to 20 is felt throughout the system.

From equations (1) and (2), we see that the stratification doubles.

Through equation (12), the value of the dimensionless thermal con-

ductivity K changes from 4.9 × 10−2 for θ = 10 to 1.3 × 10−1

for θ = 20. This means the heat flux through the system (Kθ ) is

raised fivefold, as mentioned in Section 3.6. It also implies that the

convective Rossby number (13) increases one order of magnitude

while � stays unchanged. Table 3 shows that the maximum Mach

number in the solution increases for both temperature prescrip-

tions. The linear stability properties are changed both by increasing

the critical Rayleigh number for the onset of convection, due to

the change in stratification (Hurlburt et al. 1984), and by in-

creasing the mean value of ζ in the domain (Weiss et al.

1990).

Increasing θ does not change the basic configuration of the nu-

merical solution. The magnetic flux tube forming at the central axis

remains intact, as well as the convection cells in the field-free region.

This is true for a constant temperature as well as a constant ∂T/∂z
bottom boundary condition. Increasing θ increases the strength of

convection in the (r, z) plane, as measured by the Mach number in

Table 3, as well as the width of the magnetic flux tube. The latter

can be observed in Fig. 23 for a constant T at the bottom bound-

ary and in Fig. 24 for ∂T/∂z constant. The wider flux tube leads to

lower gradients in the magnetic field, which means the azimuthal
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Table 3. Changing the stratification of the domain (θ ) with σ = 1, m = 1 and � = 3.

� Q Lower boundary θ = 10 θ = 20

max(Mach) T at z = 1 max(Mach) T at z = 1

0.1 32 ∂T/∂z constant 0.6 (9.33,10.42) 0.8 (17.81,19.53)

0.3 128 T constant 0.8 11 1.0 21

               

 

 

 

 

 

 

Figure 23. Results with Q = 128, � = 0.3, θ = 20 and a constant T as bottom boundary. Compared to the results for θ = 10 (Fig. 12), the magnetic field is

more radially dispersed, allowing convection cells to form throughout the radial domain. As one moves towards the outer boundary, the upflows between cells

grow stronger, accompanied by stronger heating above them. The measured max|uφ | = 0.7, max|Bφ | = 1.3, max|T̃ | = 4.3 and jφ ∈ (−39, 57). In the (r,z)
plane we have jr ∈ (−4, 15) and jz ∈ (−25, 12).

               

 

 

 

 

 

 

Figure 24. Results with Q = 32, � = 0.1, θ = 20 and constant ∂T/∂z as bottom boundary. Compared to the results for θ = 10 (Fig. 17), the magnetic field

is more radially dispersed, allowing weak convection cells to form inside the flux tube. The strong downflow at the outer edge cools the plasma in the lower

layers of the domain. The measured max|ur | = 1.0, max|uφ | = 0.5, max|uz | = 1.1, max|Bφ | = 2.0, max|T̃ | = 2.2, jφ ∈ (−41, 74), jr ∈ (−10, 7) and jz ∈
(−41, 21).

current density around the tube, calculated using equation (9), be-

comes weaker. All the other azimuthal quantities (Bφ and uφ) are

also weaker when compared to results with θ = 10.

Fig. 23 shows a solution with Q = 128 and constant T at the lower

boundary. When this is compared to a solution with the same param-

eter values and boundary conditions, but with θ = 10 (Fig. 12), one

observes that the wider magnetic flux tube allows weak convection

cells to form inside it. This convection is strong enough to perturb

the temperature inside the flux tube in the top half of the numerical

domain. A careful inspection of the top boundary shows that these

convection cells cause flow along the boundary, so that concentric

rings start to appear at the top. This is a consequence of the ax-

isymmetry in our model, as one would expect cellular convection to

form inside the flux tube. These flows of concentric rings around the

central axis grow in size as the magnetic flux tube becomes wider,

which occurs for higher values of �. The azimuthal magnetic field

has its maximum value in the strong collar flow next to the flux

bundle. However, the weak convection cells inside the flux tube are

defined well enough for Bφ to have significant components inside

them (Fig. 23). The direction of each convection cell determines the

direction of the local Bφ inside it: clockwise convection contains a

local maximum and anticlockwise a local minimum. The azimuthal

velocity forms a Rankine vortex, as shown in Fig. 25. The weak

convection inside the magnetic flux tube perturbs the rigid body ro-
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Figure 25. Radial profile of uφ corresponding to Fig. 23, with � = 0.3,

Q = 128 and θ = 20. This should be compared with the case when θ = 10

in Fig. 13. The lines have the same meaning as in Fig. 4.

Figure 26. Radial profile of uφ corresponding to Fig. 24, with � = 0.1, Q =
32 and θ = 20. This should be compared to the case when θ = 10 in Fig. 19.

The lines have the same meaning as in Fig. 4.

tation of the plasma inside the tube. The maximum value of uφ is

found next to the outer edge of the flux tube and a free vortex forms

in the convection area. At the outer wall a counterflow forms, as in

the case when θ = 10. A comparison between the two sets of results

(Fig. 13 for θ = 10 and Fig. 25 for θ = 20) shows that max(uφ) is

lower and is situated farther from the central axis for θ = 20. This

means the counter flow at the outer boundary, generated because our

solution has zero vertical angular momentum relative to the rotating

reference frame, is approximately of the same strength for both θ

values.

Fig. 24 shows a solution with Q = 32 and ∂T/∂z constant at the

lower boundary. This should be compared to Fig. 17 that has the

same parameter values and boundary conditions, but with θ = 10.

This comparison shows that the magnetic flux tube is wider for θ =
20 and that weak convection occurs inside the tube. This convection

is not strong enough to significantly heat the upper layers of the

numerical domain. In fact, the strong downflows in the solution

cools the lower layers of the numerical domain much more than

when θ = 10 (Fig. 22). The azimuthal magnetic field is located

inside the large convection cell next to the magnetic flux tube. As

in the case for θ = 10, the maximum value of Bφ is located close

to the flux tube. Inside the field-free convection areas, we observe a

free vortex, with its maximum next to the edge of the flux tube and

a counter flow next to the outer wall (Fig. 26). The rotation of the

plasma inside the flux tube is that of a rigid body, but in the opposite

direction from the direction of the free vortex around the tube. We

also see that the plasma inside the horizontal magnetic field on top

of the convection zone rotates retrograde, i.e. in the same direction

as the counter flow at the outside wall. This flow pattern is not a

surprise, given the fact that we could generate retro flows at the

central axis and the top of the numerical domain by playing with the

parameter values in the set of results with θ = 10 (see the discussion

in Section 3.6.).

The variation in temperature is much larger for these cases with

θ = 20 than in the comparable cases with θ = 10. For a constant T
at the bottom boundary (Fig. 23), the heating occurring at the top

of the numerical domain due to the strong upflow between the two

large convection cells is three times larger than the heating for θ =
10 (Fig. 12). In contrast, the result with ∂T/∂z constant at the bottom

boundary (Fig. 24) shows that the strong downflow next to the outer

wall cools the lower part of the numerical domain. The amount of

cooling is double that which occurs for θ = 10 (Fig. 17).

3.8 Boundary layer at the outer boundary

When comparing results with a rotating cylinder, one observes a col-

lar flow next to the flux bundle and a clockwise convection cell at

the outer boundary. The size of the cell at the outer boundary seems

to be robust for the various parameter values. The only exceptions

are for ∂T/∂z constant at the bottom boundary and with σ � 0.3

(Fig. 17), when the whole convection pattern changes. Throughout

the simulations, we have taken care that the convection cell at the

outer boundary does not influence the physics near the central axis

and the flux tube. Another effect of finite � is that the density con-

tours become slanted at the outer boundary due to the centrifugal

term in the Navier–Stokes equation (4). This effect is much more no-

table for a constant T bottom boundary condition than when ∂T/∂z
is used. In contrast, the azimuthal velocity shows a sharp decrease

in its value at the outside wall when a ∂T/∂z bottom boundary con-

dition is used (Figs 18– 20) while the outside wall hardly register

in the uφ profile for a constant T bottom boundary (Fig. 10). The

slanted ρ contours and the decrease in uφ amplitude show how the

influence of the outer boundary on the solution increases as � in-

creases. Due to the formulation of the problem, this is unavoidable,

but it does not pose a problem as long as these effects stay localized

at the outer boundary.

In order to minimize the effect of the outer boundary on the so-

lution, it was treated throughout as a slippery boundary, so that the

condition on uφ is given by (16), obtained from the off-diagonal

elements of the rate of strain tensor (11). In this paper, the boundary

conditions at the outer wall were chosen so that the coupling be-

tween the numerical domain and its outside surroundings is kept to

a minimum. With boundary conditions (16) only a vertical current

exists and the Lorentz force is zero at the outer wall. To measure

the influence of the outer wall on the solution, we changed its mag-

netic boundary condition to that of a perfect conductor. In this case,

no currents exist parallel to the wall, with a radial current moving

through the outer wall. The condition that no vertical current exists

leads to

∂Bφ

∂r
= − Bφ

r
, (21)

while the radial magnetic field component stays zero, as in (16).

For a perfect conductor, the Lorentz force has components parallel

to the outer wall, but there is no force across the wall. This implies

that there is a torque at the outer boundary, leading to a contribution

to the angular momentum.

Changing the outer boundary conditions on Bφ to (21) changes

the solution slightly, but only when the azimuthal amplitudes at the

boundary become significant when compared to the solution near

the central axis, as was the case for ∂T/∂z constant at the bottom
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boundary and σ � 0.3 (Fig. 17). When the electrically insulating

outer wall (Fig. 17) is compared with a perfectly conducting wall,

the solution is only slightly perturbed close to the outer boundary.

The boundary conditions of the bottom boundary, described in (17),

allow currents parallel to the lower boundary but not through it.

Ditto for the Lorentz force. As a result, in all simulations with a

perfect conductor at the outer boundary, the largest current entering

the numerical domain is situated in the bottom right hand corner.

We attempted to change the magnetic boundary condition on the

lower boundary, but found that the solution is highly sensitive to any

changes and becomes numerically unstable. Changing the boundary

condition of Bφ on the outer boundary left the azimuthal velocity

field intact.

The difference between boundary conditions (16) and (21) was

thoroughly tested. We started numerical runs from a uniform mag-

netic field for both sets of conditions, which led to almost identi-

cal time-independent solutions. The numerical results presented in

this paper were started with (21) and then continued with (16). In

all cases, no significant difference between the numerical solutions

could be observed.

3.9 Time dependence

Increasing the angular velocity� increases the width of the magnetic

flux tube and allows weak convection cells to form inside the tube,

similar to those formed in Fig. 23. If the value of � becomes large

enough, these cells undergo periodic motion. For a constant T bottom

boundary condition, Q = 256 and θ = 20, the weak convection cells

inside the flux tube oscillate in the radial direction. As � increases

from 0.1 to 0.3, the amplitude of this oscillation increases as well. In

contrast, for a bottom boundary condition of constant ∂T/∂z with

� = 0.3 and θ = 10, a hot blob forms due to weak upflows inside

the tube. This blob then moves towards the central axis where it

Table 4. Survey of numerical solutions obtained with T constant at the lower boundary and with parameters R = 105, ζ 0 = 0.2, m = 1, γ = 5/3, � = 3. The

star superscript in the � column indicates time-dependent solutions.

� Q σ θ Ro max|T̃ | max(Mach) max|uφ | max|Br | max|Bφ | max|Bz | jφ range

0∗ 32 1 10 ∞ (2.9,3.1) (1.2,1.3) → 0 (13,16.7) → 0 (30.5,38.8) (−465,555)

0∗ 128 1 10 ∞ (2.8,2.9) (1.0,1.2) → 0 (7.3,7.9) → 0 (14.6,16.9) (−184,205)

0 256 1 10 ∞ 2.7 0.9 → 0 5.3 → 0 10.8 (−80,135)

0.1 32 0.3 10 42.2 3.7 1.7 1.6 17.8 5.5 43.2 (−229,445)

0.1 32 0.6 10 59.8 3.2 1.1 1.1 15.2 4.5 37.0 (−208,393)

0.1 32 1 10 77.5 2.9 0.9 0.9 13.3 4.0 31.7 (−189,365)

0.1 128 0.3 10 42.2 3.3 1.7 0.8 8.6 1.7 18.9 (−107,192)

0.1 128 0.6 10 59.8 3.0 1.1 0.6 7.6 1.6 15.9 (−86,171)

0.1 128 1 10 77.5 2.8 0.8 0.5 6.9 1.5 14.2 (−90,178)

0.1 128 1 20 205.5 4.3 1.0 0.3 3.8 0.6 7.9 (−38,67)

0.1 256 0.3 10 42.2 2.6 1.1 0.6 5.2 0.6 11.2 (−65,103)

0.1 256 0.6 10 59.8 2.8 1.0 0.4 5.0 1.0 9.5 (−69,112)

0.1 256 1 10 77.5 2.7 0.7 0.3 4.7 0.9 8.9 (−61,107)

0.1∗ 256 1 20 205.8 (3.8,3.9) 0.6 (0.1,1.5) (2.0,2.0) 0.2 (7.0,7.1) (−33,39)

0.2 32 1 10 38.7 2.9 0.9 1.3 10.7 4.2 24.4 (−148,271)

0.2 32 1 20 102.8 4.7 1.2 1.3 7.4 2.7 17.7 (−74,153)

0.2 128 1 10 38.7 2.8 0.8 0.8 6.3 2.6 12.8 (−73,149)

0.2 128 1 20 102.8 4.3 1.0 0.6 3.7 1.1 7.5 (−37,64)

0.2 256 1 10 38.7 2.7 0.7 0.6 4.4 1.7 8.4 (−56,101)

0.2∗ 256 1 20 102.8 (3.7,3.9) (0.6,0.7) 0.3 (1.8,2.0) (0.3,0.4) (4.5,4.6) (−32,37)

0.3 32 1 10 25.8 2.9 0.9 1.5 8.5 8.0 20.3 (−143,220)

0.3 32 1 20 68.5 4.6 1.2 1.5 6.3 2.8 14.3 (−66,123)

0.3 128 1 10 25.8 2.7 0.8 1.0 5.3 2.9 10.6 (−65,125)

0.3 128 1 20 68.5 4.3 1.0 0.7 3.3 1.3 7.8 (−39,57)

0.3 256 1 10 25.8 2.6 0.6 0.7 3.8 2.1 7.2 (−55,89)

0.3∗ 256 1 20 68.5 3.7 0.5 (1.6,1.7) (1.6,1.7) 0.4 3.8 (−31,37)

dissipates. A new blob forms inside the flux tube and the process

repeats itself. This happens for Q values of 128 and 256 with � =
0.3, as well as for Q = 256 and � = 0.2. When the value of θ is

doubled to 20, the solutions become time-independent again.

When the forced conservation of Lz is lifted, its value tends to drift,

as discussed in Section 2.2. In the case of a time-dependent solution,

Lz oscillates in sympathy with the oscillation in the convection, in

addition to its drift. The amplitude of the oscillation can thus be

expressed in terms of an equivalent solid body rotation, which is of

the order of O(10−2). This compares to a drift in the value of Lz of

the order of O(10−5) per unit time.

4 S U M M A RY

We have investigated magnetoconvection around a magnetic flux

bundle in a cylinder, when the cylinder is rotated at a constant angular

velocity �. The model uses a compressible plasma with density and

temperature gradients simulating the upper solar convection zone.

All the numerical solutions that we obtained are presented in Tables 4

and 5. Throughout the calculations, the maximum velocities are in

the (r, z) plane, so the maximum Mach number in these tables is a

good proxy for ur and uz . For time-dependent solutions, we present

the range in which the different diagnostics lie.

With no rotation (� = 0) and a constant temperature at the lower

boundary, the solution is in the form of a flux tube situated at the

central axis, surrounded by a field-free annular convection ring

that forms a collar around the flux tube (Section 3.1). This mag-

netic configuration lends itself to the description of idealized pores

and sunspots. The collar flow has been measured in the convection

around both phenomena (see Botha et al. 2006 and references in it.)

The introduction of a constant angular velocity � widens the

magnetic flux tube (Section 3.2). Other ways to increase the tube

width are to increase the magnetic field strength (Section 3.4) and
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Table 5. Survey of numerical solutions obtained with ∂T/∂z constant at the lower boundary and with parameters R = 105, ζ 0 = 0.2, m = 1, γ = 5/3, � = 3.

The star superscript in the � column indicates time-dependent solutions.

� Q σ θ Ro max|T̃ | max(Mach) max|uφ | max|Br | max|Bφ | max|Bz | jφ range

0 32 1 10 ∞ 1.2 0.6 → 0 6.3 → 0 21.8 (−73,142)

0 128 1 10 ∞ 1.1 0.4 → 0 4.3 → 0 13.4 (−46,92)

0 256 1 10 ∞ 1.1 0.4 → 0 3.7 → 0 9.8 (−38,72)

0.1 32 0.1 10 23.7 1.4 1.3 0.8 6.3 3.2 16.9 (−73,105)

0.1 32 0.3 10 42.2 1.2 1.1 0.5 4.3 3.0 17.1 (−56,106)

0.1 32 0.6 10 59.8 1.1 0.6 0.4 5.0 3.8 31.0 (−56,111)

0.1 32 1 10 77.5 1.1 0.6 0.5 5.8 3.7 19.7 (−59,149)

0.1 32 1 20 205.5 2.2 0.8 0.5 4.3 2.0 14.3 (−41,74)

0.1 128 0.1 10 23.7 1.4 1.5 0.5 3.9 1.5 12.5 (−38,80)

0.1 128 0.3 10 42.2 1.2 0.8 0.4 3.8 1.5 11.2 (−46,78)

0.1 128 0.6 10 59.8 1.1 0.6 0.4 4.1 1.6 11.4 (−48,87)

0.1 128 1 10 77.5 1.1 0.5 0.4 4.2 1.6 11.8 (−49,106)

0.1 128 1 20 205.5 1.9 0.5 0.3 2.6 0.8 7.2 (−25,40)

0.1 256 0.1 10 23.7 1.3 1.1 0.4 3.3 1.0 9.3 (−34,65)

0.1 256 0.3 10 42.2 1.1 0.6 0.4 3.2 1.0 8.3 (−37,63)

0.1 256 0.6 10 59.8 1.1 0.5 0.4 3.2 1.1 8.3 (−37,59)

0.1 256 1 10 77.5 1.1 0.4 0.3 3.3 1.1 8.4 (−37,63)

0.1 256 1 20 205.5 1.6 0.2 0.1 1.5 0.4 4.8 (−15,29)

0.2 32 1 10 38.7 1.2 0.5 0.8 3.3 4.4 21.5 (−56,95)

0.2 32 1 20 102.8 2.2 0.7 0.7 2.9 3.0 9.9 (−44,54)

0.2 128 1 10 38.7 1.3 0.4 0.6 2.8 2.4 12.2 (−43,67)

0.2 128 1 20 102.8 1.9 0.7 0.5 2.0 1.4 6.5 (−24,35)

0.2∗ 256 1 10 38.7 (1.1,1.5) 0.3 0.5 2.2 (1.8,1.9) (5.6,12.8) (−35,57)

0.2 256 1 20 102.8 1.6 0.2 0.3 1.4 0.7 4.3 (−15,26)

0.3 32 1 10 25.8 1.2 0.5 0.9 2.6 4.8 24.9 (−54,110)

0.3 32 1 20 68.5 2.1 0.6 0.9 2.2 3.4 10.2 (−37,45)

0.3∗ 128 1 10 25.8 (1.1,1.3) (0.3,0.4) 0.7 (1.8,2.3) (2.6,2.8) (6.6,14.2) (−40,62)

0.3 128 1 20 68.5 1.9 0.4 0.6 1.5 1.8 7.0 (−24,27)

0.3∗ 256 1 10 25.8 1.1 (0.2,0.3) 0.5 (1.4,1.8) (1.9,2.0) (6.8,7.4) (−33,46)

0.3 256 1 20 68.5 1.6 0.2 0.3 1.1 0.9 4.1 (−18,21)

to increase the heat flux into the numerical domain from below

(Section 3.6). If the magnetic field strength (i.e. Q) is kept constant

and the tube width is increased by means of one of the above, then

the amplitude of the vertical magnetic field component in the flux

tube is lowered. This allows weak convection cells to form inside the

tube. As � increases, the flux tube widens and the weak convection

becomes stronger so that eventually concentric rings appear at the

top of the numerical domain (Figs 9 and 23). In a fully 3D model,

one would expect cellular convection to form inside the flux tube.

Increasing � also brings time dependence to the solution (Sec-

tion 3.9). For moderate � values, the weak convection cells oscillate

horizontally inside the magnetic flux tube, while for large � values

the weak cells push periodically through the edge of the flux tube

into the field-free convection area. This time dependence can be re-

duced by increasing the strength of the magnetic field (Section 3.4).

The collar flow around the magnetic flux tube is influenced by

the strength of the convection and the temperature prescription

at the lower boundary. By lowering the value of the Prandtl num-

ber (σ ), the convection becomes stronger and the size of the collar

cell increases (Section 3.5). The stronger convection pushes the

magnetic flux tighter at the central axis so that the flux tube width

decreases and the magnetic field strength on axis increases. For σ =
0.1, the collar flow survives a change of the lower boundary condi-

tion from a constant temperature to a constant ∂T/∂z (Section 3.6).

However, for σ � 0.3 the collar flow is destroyed and the mag-

netic field is dragged away from the central axis (Fig. 17). Weak

convection cells form inside this wider flux tube.

The azimuthal velocity and magnetic fields are driven by the

imposed �, because in the absence of rotation these quantities have

very small amplitudes, generated by the initial plasma perturbation,

which decay exponentially to zero with time (Section 3.1). It follows

that as � increases, the magnitudes of uφ and Bφ increase (Fig. 11).

In contrast, the amplitudes of ur and uz hardly change with �. For all

values of �, the azimuthal flow pattern fits that of a Rankine vortex:

in areas with strong magnetic field the plasma tends to rotate as

a rigid body while around it a free vortex forms in the field-free

convection areas. This means that max(uφ) is located outside the

flux tube edge. A finite � shortens the wavelength of convection in

the radial direction, so that the initial convection annulus breaks up

into more than one convection cell (Section 3.2). The vortex forming

around the flux tube is not dependent on the number of convection

cells in the field-free region.

The plasma inside the magnetic flux tube and the vortex around the

tube flow prograde relative to the rotating cylindrical reference frame

(Fig. 5). A retrograde or counter flow appears next to the outer wall of

the cylinder. This counter flow is due to the fact that in our solution

the vertical component of the angular momentum is zero relative

to the rotating reference frame. We initialize the simulations with

Lz = 0 and the counter flow appears at the outer wall to maintain the

status quo. To obtain a retrograde flow at the central axis like Jones &

Galloway (1993), we have to change the bottom boundary condition

on the temperature from constant T to constant ∂T/∂z (Section 3.6).

This change in boundary condition also creates a strong horizontal

magnetic component in the top layers of the numerical domain,
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which may rotate retrograde with the plasma at the axis and the

outer wall (Fig. 20). Alternatively, by generating weak turbulence

inside the magnetic flux tube, it is possible to perturb the rigid body

rotation of the plasma inside the flux tube to such an extent that one

gets prograde and retrograde flow inside the flux tube. This is more

likely to happen with a constant ∂T/∂z than for a constant T lower

boundary condition.

Unlike the azimuthal velocity, the azimuthal magnetic field is

influenced by the structure of the convection cells. Max(Bφ) is con-

fined to the strongest convection cell closest to the outer edge of the

magnetic flux tube. For a constant T lower boundary condition this

is usually the collar flow next to the magnetic flux tube. For con-

stant ∂T/∂z as lower boundary condition and σ = 0.1, significant

parts of Bφ form inside the weak convection in the flux tube as well

as inside collar cell outside the tube (Fig. 16). For constant ∂T/∂z
and σ � 0.3, the Bφ forms in the large convection cell around the

flux tube, with a local maximum next to the flux tube (Fig. 17). The

direction of Bφ depends on the convection direction; for anticlock-

wise flow (as in the collar flow around the flux tube), it points in the

negative φ direction and vice versa for clockwise flow. When the

solution has one large convection cell with clockwise flow, which

we obtain with a constant ∂T/∂z at the bottom boundary, a local

max|Bφ | forms at the outer wall, but its radial width and amplitude

are small so that it does not influence the numerical solution inside

the domain (Section 3.6).

The current density in the (r,z) plane always forms around the

local max|Bφ | and flows in the same direction as the local convec-

tion. The azimuthal current density forms around the edge of the

flux tube where the magnetic field lines have the largest gradients

and curvature. This means any process that widens the flux tube, i.e.

straightens the magnetic field lines, will decrease jφ and vice versa.

Increasing � (Section 3.3), the magnetic field strength (Section 3.4),

the stratification in the domain (Section 3.7) and changing the tem-

perature lower boundary condition to constant ∂T/∂z (Section 3.6)

lead to a decrease in the amplitude of jφ , while a lower Prandtl

number (Fig. 14) increases the amplitude of jφ . When the weak

convection inside the magnetic flux tube becomes strong enough to

bend the field lines, local maxima of |jφ | start to form.

Lowering the Prandtl number (σ ) increases the strength of con-

vection (Section 3.5) as well as thermal diffusivity. Thus, stronger

upflows lead to stronger localized heating in the upper layer, while

the radial extent of the heated plasma is reduced (Fig. 14). The

stronger convection also causes significant variations in the density

gradient inside the field-free convection area. In contrast, a finite �

with σ = 1 has little effect on the density inside the convection area

(Section 3.3). Only at the outer boundary does the rotation change

the density gradient in a significant way, but the radial extent of this

layer is small and does not influence the rest of the domain. Inside

the magnetic flux tube, the density is relatively unaffected for � �
0.3. Relatively large � values are necessary to observe a significant

influence by the centrifugal force.

To ascertain the effect of the lower boundary, we changed the tem-

perature boundary condition (Section 3.6) and the stratification in

the numerical domain (Section 3.7). Increasing the stratification ef-

fectively increases the heat flux through the lower boundary into the

domain. This widens the magnetic flux tube, allowing weak convec-

tion cells to form inside it. However, the convection in the field-free

regions and the configuration of the magnetic field stay essentially

the same (Table 3 and Figs 23 and 24). In contrast, changing the

temperature prescription from a constant temperature to constant

∂T/∂z drastically affected the solution. The bottom temperature re-

duces slightly (Fig. 22), but this does not account for the changes

Figure 27. Velocity field on the (r, φ) plane at z = 0.25 for Q = 32, σ = 1,

� = 0.1 and constant T bottom boundary, shown in Fig. 3. Arrows represent

ur and uφ and colour the sound speed perturbation c̃s . Max(c̃s ) = 0.54 is the

light shade between the two convection cells at r = 1.9 and min(c̃s ) = −0.03

the dark shade on the edge of the magnetic flux tube at r = 0.5.

in the solution. The amplitude of the convection reduces signifi-

cantly (Table 2) and for σ � 0.3 the flow pattern and magnetic field

configuration change radically (Figs 16 and 17).

The numerical solutions obtained in this study point to a specific

radial profile for azimuthal velocities in sunspots that rotate around

their own axis. Inside the umbra, where the vertical magnetic field

component is strong, the plasma rotates as a rigid body while the

convection around the umbra is in the form of a vortex. This profile

is supported by most of the observations. Photospheric observations

place the maximum azimuthal velocity inside the penumbra, while

helioseismic observations show a vortex flowing around the flux

tube in the convection zone. The typical azimuthal velocity (uφ) in

the photosphere is of the order of 10−2 km s−1 (Brown et al. 2003).

Zhao & Kosovichev (2003) measured max(uφ) ≈ 0.5 km s−1 below

the photosphere at depths 0–3 and 9–12 Mm. This compares well

with our measured velocities in Tables 4 and 5, where for low angular

velocity (� = 0.1) we obtain max(uφ) ≈ O(10−1) km s−1, taking a

sound speed of 1.29 km s−1 as reference speed.

We present Figs 27 and 28 to facilitate comparison of our re-

sults with local helioseismic measurements, of which figs 6–8 in

Kosovichev (2002) are examples. Fig. 27 shows the flow in the

(r, φ) plane for a constant T and Fig. 28 for a constant ∂T/∂z bot-

tom boundary. These planes correspond to depth z = 0.25 in Figs 3

and 17, respectively, so that Fig. 27 represents two convection cells

with a collar flow around a well-defined magnetic flux tube, while

Fig. 28 represents one outflowing convection cell that drags the mag-

netic field lines away from the central axis. The arrows show that ur

dominates uφ for � = 0.1, with azimuthal flow patterns more visible

in the inner radius closer to the magnetic flux tube. The size of uφ

relative to ur increases with � (Fig. 11), so that the Rankine vortex

becomes more visible for higher values of �. In Figs 27 and 28,

the outer boundary condition ur = 0 still holds, with arrows chosen

close to the boundary showing that the flow has finite size next to

the boundary. The colour palette shows the perturbed sound speed

(cs) in the plane. Where there is an upwelling, the plasma is heated

and vice versa. Fig. 27 shows the warmer plasma – and hence higher

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1445–1462
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Figure 28. Velocity field on the (r, φ) plane at z = 0.25 for Q = 32, σ =
1, � = 0.1 and constant ∂T/∂z bottom boundary, shown in Fig. 17. The

diagnostics has the same meaning as in Fig. 27. Max(c̃s ) = 0.04 is the light

shade around the magnetic flux tube at r = 1 and min(c̃s ) = −0.12 the dark

shade at the outer wall at r = 3.

sound speed – between the two convection cells and Fig. 28 at the

upflow next to the magnetic flux tube. Downflow with its accompa-

nied cooler plasma – and hence lower sound speed – occurs around

the edge of the flux tube for Fig. 27 and at the outer wall for Fig. 28.

The flux tube itself is cooler than the rest of the surrounding plasma

(Fig. 27), but where weak convection inside it exists, it starts to heat

up (Fig. 28). The difference in max(cs) between Figs 27 and 28 is

thus due to the radical different flow pattern for each case.

We generate azimuthal flow in this axisymmetric model by ro-

tating the cylinder around its axis at a constant angular velocity.

As a result, we obtain time-independent solutions, in contrast to

the highly time-dependent observations. For low angular veloci-

ties, the flow inside the magnetic flux tube and the vortex flow is

prograde. Due to the fact that our model conserves the vertical com-

ponent of the angular momentum, a retrograde flow appears next

to the outer wall. We find that high angular velocities tend to break

the umbra into concentric rings and introduce time dependence in

the form of periodic behaviour in the radial direction. These phe-

nomena have not been observed in sunspots and may be due to the

axisymmetry in our model. It is more likely that our numerical results

obtained with low angular velocities are realistic models of solar

observations.
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