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1. Introduction

The cytoskeleton of eukaryotic cells is constituted of filaments, actin and microtubules,

and relies vastly on its ability to actively reorganize itself by polymerization processes

and motor protein complexes [1, 2]. The latter active, nonequilibrium process has

become a rapidly growing field of research: in reconstituted filament-motor bundles,

contracted states and spontaneous oscillations have been found [3, 4, 5]. In extended

systems and in the dilute limit, the intermittent motor mediated filament transport

leads to spontaneous self-organization [6, 7, 8, 9, 10, 11].

A second important feature of biopolymers is that upon increasing filament

densities, elastic networks and gels may be formed either by entanglement effects

or by means of permanently crosslinking proteins. During recent years continuous

research efforts, both on the experimental and theoretical side, have been devoted to

the elastic and dynamic properties of such viscoelastic networks without motor activity

[12, 13, 14, 15, 16, 17]. Lately the interplay between active motor transport and an

elastic network has been started to be experimentally addressed [18, 19], as well as the

influence of a trace amount of crosslinks (not sufficient to build up an interconnected

network) on the pattern formation processes [20, 21, 22]. Whereas the motor-mediated

transport of filaments as well as passive networks have already been addressed separately

to quite some extent, theoretical efforts to join both vitally important features have been

started only recently [9, 23]. Understanding such active crosslinked gels would not only

be of obvious biological interest, it also comprises a hitherto unexplored material class,

that could be called an ”active elastomer”: liquid crystalline filament ordering is known

to appear in biopolymer solutions at sufficiently high densities [24]. Crosslinking a

dense ordered filament solution to a gel results in a passive elastomer that has already

been recently discussed in case of actin in Ref. [25]. Even more tantalizing is that the

temporary action of molecular motors in the biopolymer gel should interplay with the

known properties of classical liquid crystalline elastomers [26] composed of crosslinked

but passive mesogenic polymers.

Another revealing interpretation of the considered active biological gels, whether

elastic or viscoelastic, is the mechanosensitivity of the structures formed: filament-motor

systems are known to display various nontrivial patterns [6, 7, 11, 10, 20] whose onsets

and characteristics will, in the presence of a network/gel elasticity, naturally be coupled

to the network’s density and elasticity. The formed structures can thus be regulated

by external compression or dilation of the network, an attribute of possible biological

relevance, e.g. in cell mechanotransduction, not discussed so far.

Aiming at the description of active biogels, in the present work we introduce a simple

one-dimensional model based on a mean-field description of active filament bundles [4, 5]

coupled to a continuum description of an isotropic, either elastic or viscoelastic network.

Despite its simplicity, the analysis of this model in the geometry of a polar bundle gives

already rise to phenomena expected to persevere in two- and three-dimensional actin

networks and gels: contracted states, which are known from muscle bundles, become
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oscillatory due to the coupling of active transport to network elasticity. Second, changing

the network from elastic to viscoelastic, leads to a switching from solitary propagating

filament density profiles to extended traveling or standing waves - the latter might

be of relevance for cell locomotion. Moreover, all these processes additionally are

mechanosensitive. We also discuss how the model has to be generalized to become

more realistic, e.g. by accounting for an exchange of filaments in solution and in the

network, as well as for anisotropic networks.

2. Model for an active filament network

A solution of cytoskeletal filaments forms networks in the presence of crosslinkers §,

which are actively reorganized and set under stress in the presence of motors. To get

a treatable model for such a complex system, several approximations have to be made.

One assumption we use here is that the average crosslinking time is large compared

to the average runlength of the motors on filaments. In this limit, it is appropriate to

divide the total filament density into a fluid part, made up of filaments not in permanent

contact with the network and either moved by molecular motors or randomly (referred to

as ’free’ filaments hereafter) and into an elastic part supposed to be formed of crosslinked

filaments, which form a (visco-)elastic network (’network’ filaments). This approach is

related to two-fluid models [27, 28], well known for complex fluids. To overcome the

limit of permanent crosslinkers, one can account for transition rates between free and

network filaments, as will be done in the future. Such transition kinetics is known to

favor spatially periodic patterns in related systems, e.g. self-assembling biofilaments

[29]. For a one-to-one experimental realization of this model, one can imagine an in

vitro system where crosslinking times much longer than in vivo are achieveable, or even

use artificial crosslinks.

A second approximation made - which however has no effect on the simplest case

of a perfectly polar bundle solely investigated in this work - is that the network itself

remains perfectly isotropic. The total filament system (i.e. free and network filaments

together) may however become anisotropic upon the reorganization of the free filaments.

We discuss this approximation in more detail below.

To highlight the new properties due to the (visco-)elastic background we will

consider the simplest case of a one-dimensional system, i.e. an active filament bundle

structure. We use an approach commonly accepted in the literature for one-dimensional

motor-filament solutions without (visco-)elastic background [4, 5, 30]‖. Thereby the free

filament bundle axis is referred to as the x-direction. Since free filaments are polar with

respect to the action of molecular motors, an active free filament bundle is distinguished

§ Upon increasing the filament density to the semidilute regime, entanglement effects also lead to

the formation of networks and gels. Here we concentrate however on the crosslinked case, since our

modeling is restricted to the dilute regime.
‖ The generalization of the aforesaid models to higher dimensions is principally known [8, 10, 11] and

the influence of an elastic network in higher dimensions will be investigated in forthcoming work.
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by number densities c+(x) and c−(x) of filaments with their plus ends pointing either

in positive or negative x-direction. As the (visco-)elastic network is as well composed

of filaments, it locally can be described by a second class of filament number densities,

d±(x). While motor induced interactions among network filaments are neglected due to

their large meshsize, motors may couple network filaments to free filaments (just as like

they couple free filaments). Therefore free filaments can be actively transported along

the network in addition to active transport of free filament pairs. The d-filaments will

be used to define the interactions between the free filaments and the network. On large

scales however the network dynamics is best captured by a one-dimensional displacement

variable u(x). To get a closed set of equations the spatial modulations of the d-filament

number density around its mean value d0 will be expressed in terms of u(x), yielding

coupled equations for the ’free’ filament density profiles and the displacement variable.

Assuming filaments with a fixed length ℓ, the dynamics of the ’free’ filaments is

governed by conservation laws

∂tc
± = D ∂2

xc
± − ∂xJ

± (1)

wherein D is an effective diffusion coefficient. Provided that two–filament interactions

are prevalent (corresponding to a low motor density or duty ratio), the motor–induced

currents incorporate both the interactions between free filaments and the interaction of

a free and a network filament. This leads to the decomposition J± = J±
1 + J±

2 + Jζ
u ,

where J±
1 stands for interactions between free filaments and J±

2 for free filament/network

interactions respectively. As it is derived later, Jζ
u is caused by frictional effects the

biopolymer network exerts on the free filaments. Both currents J±
1,2 can be derived from

micro-force balance, as it has been done in [30] for the interaction of free filaments,

which suggests the currents J±
1 = J±±

cc + J±∓
cc to be

J±±
cc = α

∫ ℓ

0

dξ
[

c±(x + ξ) − c±(x − ξ)
]

c±(x) , (2a)

J±∓
cc = ∓β

∫ ℓ

−ℓ

dξ c∓(x + ξ) c±(x) . (2b)

Here α and β are averaged cross–sliding velocities characterizing the interaction

strength of parallel and antiparallel filaments. On larger scales, the α-contributions

favor stationary contracted states of filaments, while the β-contributions lead to a

phenomenon called polarity sorting, and also to propagating solitary density modes

[4, 5, 31]. Since the free filaments both are exposed to the same local restoring force

- namely the friction with the surrounding fluid - the center of mass of a free filament

pair is invariant.

This however does not hold, if a network filament interacts with a free filament:

different restoring forces, the aforementioned frictional force and the elastic contribution

in the case of the network filament, lead to an effective barycentric transport, as it can be

seen from Fig. 1. The displacement of the center of mass is equivalent to an additional
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current Jχ
u , yielding J±

2 = J±±
dc + J±∓

dc + Jχ
u , wherein

J±±
dc = α

∫ ℓ

0

dξ
[

d±(x + ξ) − d±(x − ξ)
]

c±(x) , (3a)

J±∓
dc = ∓β

∫ ℓ

−ℓ

dξ d∓(x + ξ)c±(x) , (3b)

are the natural extensions of Eqs. (2) for motor-mediated interactions between d±- and

c±-filaments. The current Jχ
u is given by

Jχ
u =

∫ ℓ

−ℓ

dξ

[

χ

η
[ (λ + 2µ) + τ∂t ] ∂2

x u(x + ξ)

]

d(x + ξ) c±(x) . (4)

It makes allowance for the fact that the viscoelastic force density [(λ + 2µ) + τ∂t ] ∂2
x u

enters the microscopic force balance, when an active overlap between a network filament

and a free filament is met. This can also be derived from microscopic force balance as

it is made plausible in Appendix A. Another aspect which has to be taken into account

is the frictional interaction between free filaments and the network as a whole if the

network slides by at a velocity ∂tu(x). This is done by the contribution

Jζ
u = −ζ ℓ [∂tu(x)] d(x)c±(x) (5)

with ζ = ζ ′/η. The dynamic equations for the free filaments then read

∂tc
± = D ∂2

xc
± − ∂x

(

J±±
cc + J±∓

cc + J±±
dc + J±∓

dc + Jχ
u + Jζ

u

)

. (6)

As aforementioned the dynamics of the (visco-)elastic network, locally constituted

of the d±-filaments, is best described by a displacement variable u(x). Force balance

then implies ∂x σ + f = 0 with σ an appropriate stress and f a force density yet to be

defined. The force density f comprises the frictional force density −γ∂tu due to network

frictions with the surrounding solvent, the drag force density fdrag
c accounting for the

change in friction induced by the active free filament currents and the motor mediated

driving force density fu resulting from interactions between free and network filaments.

This yields

γ∂tu = fdrag
c + fu + ∂x σ , (7)

where γ denotes the viscous friction coefficient between the network and the surrounding

solvent that in principle depends on the three dimensional morphology of the network

but is considered to be a constant in our one dimensional model ¶. The stress σ

can be decomposed into σ = σE + σF. σE stems from the elastic network deformations

characterized by ∂x σE = (λ + 2µ) ∂2
xu with Lamé coefficients λ and µ. τ being a friction

coefficient, the frictional contribution σF = τ∂x∂tu to the total stress σ accounts for

frictions within the elastic network [32, 33]. According to the Voigt-Kelvin body [34]

the fraction (λ+2µ)/τ then defines a time constant governing the formation/relaxation

of strain within the network if an external force is applied/released. Network dynamics

¶ Inertia effects are also neglected, since the network’s mass density covers only a small fraction of the

systems total mass and the solvent-viscosity is large.
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Figure 1. (a) Schematic representation of the forces exerted by a motor complex

between a free filament (light gray shaded) and a network filament (dark gray shaded)

of the same orientation. (b) In contrast to interacting free filament pairs, the center

of mass xCM of the free/network filament pair is displaced if a molecular motor has

actively coupled the considered filaments. The microscopic forces depicted in (a) result

in an effective barycentric transport of the free filament whose center of mass is shifted

from x to xCM while the network filament’s center of mass is hardly affected. The

barycentric transport of the free filament that gives rise to the current Jχ
u strongly

depends on the viscoelastic force density felastic = [(λ + 2µ) + τ∂t ] ∂2
xu.

is governed by the following dynamical equation for the network’s displacement variable

u(x)

γ ∂tu = [ (λ + 2µ) + τ ∂t ] ∂2
xu + fu + fdrag

c . (8)

In analogy to J±, the force density fu originating from the motor-mediated interaction

between free and network filaments reads fu = f++
cd + f−−

cd + f−+
cd + f+−

cd , with

f±±
cd = α η ℓ

∫ ℓ

0

dξ
[

c±(x + ξ) − c±(x − ξ)
]

d±(x) , (9a)

f∓±
cd = ∓β η ℓ

∫ ℓ

−ℓ

dξ c∓(x + ξ) d±(x) , (9b)

Here η is the friction coefficient a free filament experiences if moved through the

surrounding solvent. The free filament currents given by Eqs. (2) acting on the network

filaments alter the drag force −γ∂tu according to

fdrag
c = νℓ

(

J++
cc + J−−

cc + J+−
cc + J−+

cc

)

(10)

with ν denoting an adequate friction coefficient.

In order to get a closed set of equations, the spatial variation of the density d(x)

needs to be interpreted in terms of the displacement field u(x). As the local density d(x)
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is increased in regions where the displacement field u(x) changes from high to low values

and vice versa, spatial modulations of d(x) are proportional to ∂xu(x) which allows the

network density to be approximated (to leading order) by

d+(x) = d−(x) = d(x)/2 = (d0 − δ∂xu) /2 . (11)

The parameter δ relates the spatial modulation of the network filament density d(x)

around its mean value d0 to the displacement field u(x).

In Eq. (11), we have made the approximation that the network itself remains

perfectly isotropic (i.e. d+(x) = d−(x)). In the general one-dimensional case, the local

difference between the plus and minus filaments can be in principle nonzero, leading to

an anisotropy. For this reason, one has to keep in mind that we deal with a coarse-

grained model, which is valid only on length scales above several filament lengths, and

that the network is tightly crosslinked, so that plus and minus filaments incorporated in

the network can not be moved independently as in the case considered originally in [5].

If the network is deformed and relaxes, due to the tight crosslinking the filaments of the

two possible directions, plus and minus, both locally undergo approximately the same

displacements. In the two- or three-dimensional case, Eq. (11) has to be generalized. In

one dimension, anisotropy can be generated if - for a finite crosslinking time - transitions

between network and free filaments are included, as will be discussed in future work.

To study now the essential effects of the network on the free filament dynamics,

we consider in the following a perfectly polar bundle by setting c−(x) = d−(x) = 0.

Consequently d+(x) passes into d(x) = d0 − δ∂xu(x). The free plus-filaments with

density c+(x) are denoted by c(x) hereafter. In the absence of a network the system

is then known to trigger a subcritical, long-wavelength bifurcation to contracted states

[5]. In the remaining chapters we show that both an elastic and a viscoelastic network

significantly alter the pattern forming processes in motor-filament systems: the modified

model already allows for oscillatory instabilities, even though there are no antiparallel

interactions present, as well as for pattern forming instabilities with finite wavelength.

3. Patterns in an active elastic bundle.

In case of an elastic network, i.e. τ = 0, the equations of the previous section reduce to

∂tc = D∂2
xc − ∂x

(

J++
cc + J++

dc + Jζ
u + Jχ

u

)

, (12a)

γ ∂tu = (λ + 2µ) ∂2
xu + f++

cd + νℓJ++
cc . (12b)

These equations are rescaled by introducing dimensionless coordinates x′ = x/ℓ and

t′ = tD/ℓ2, normalized density c+′

= ℓc+ and displacement variable u′ = u/ℓ, as well

as α′ = (α ℓ)/D, δ′ = ℓ δ, η′ = η/γ, ν ′ = ν/γ d′
0 = ℓd0 and E = (λ + 2µ)/(γD) for the

elastic modulus. The primes are omitted for the sake of simplicity.

The nonlinear integro-differential Eqs. (12) are analyzed for a system of length L

with periodic boundary conditions. The stability of the spatially homogeneous basic

state, corresponding to a filament density c(x) = c0 and a vanishing (or constant)

displacement field u(x) = 0, can be analyzed by linearizing Eqs. (12) around this state,
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c(x) = c0 +
∑

k ck(x) and u(x) =
∑

k uk(x), with small perturbations ck, uk ∝ eσt+ı̇kx

and k = 2π n/L (n ∈ Z) being a discrete wave number. Moreover c−k = c⋆
k as well as

u−k = u⋆
k holds because c(x) and u(x) are real fields. The resulting set of homogeneous

linear equations yields a quadratic polynomial in σ as a solvability condition. If the real

part of at least one of these solutions σ1,2 = κ1,2 ± iω becomes positive for some wave

number k, the basic state (c0, 0)T is said to be unstable. In case the imaginary part

ω vanishes, the instability is stationary, whereas for finite ω an oscillatory bifurcation

is met [35]. The motor parameter α is identified as the control parameter governing

transitions from the homogeneous basic state to spatially and/or temporally modulated

states.

The neutral curve αS(k) characterizing the stationary bifurcation is obtained by solving

the neutral stability condition κ(k) = σ(k) = 0 for the control parameter α. Defining

Γ = ηd0/2 + νc0 and Γ′ = χd0Γ sin(k) − ηk/2, the instability threshold αS±
c is given by

the minimum of αS(k),

αS±(k) =
E Γ′

η δ Γ

k(1 + cos k)

sin2 k

[

1 ±

√

1 +
δ η Γ k2

2 E c0 Γ′2

]

, (13)

which is located either at a vanishing critical wave number kS
c = 0, thus implying a

long-wavelength instability or at a finite wave number kS
c that yields spatially periodic

patterns. At the onset of the oscillatory bifurcation σ1,2 = ±iω and the critical value

αO
c of the control parameter is determined to be the minimum of the neutral curve

αO(k) = αF(k) (1 + E) / (1 − ζd0Γ) (14)

with an appendant critical wave number kO
c = 0. Herein

αF(k) = k2/ [2c0 (1 − cos k)] (15)

is the neutral curve yielding the onset αF
c ≈ 1/c0 of the long-wavelength stationary

instability in the absence of a network [30]. Within the limit (d0 → 0) and disintegrating

networks (i.e. E → 0), the stationary thresholds αS±
c disappear whereas the onset

αO
c of the oscillatory bifurcation converges to αF

c with the frequency ω simultaneously

vanishing. Therefore one regains for vanishing network densities the well-known long-

wavelength, stationary bifurcation, for motor activities α > αF
c , characteristic of oriented

filament bundles [30].

A typical bifurcation scenario in the (α, E)-plane is sketched in Fig. 2(a). Altogether

the elastic network adds to the long-wavelength bifurcation at αF
c three new instability

types as evinced by the diverse growth rates κ1,2(k) plotted as a function of the

wave number k in Fig. 2(b) − (e). Provided that the rescaled barycentric transport

coefficient χ is large enough, the elastic network increases the instability thresholds

of the homogeneous filament distribution towards motor activities α higher than αF
c ,

depending on E, either beyond the dashed or the dotted line in Fig. 2(a). If χ is too small

the solid line abuts the threshold αF
c and the only instability left is the long-wavelength

stationary one, known already from oriented bundles without network elasticity [30],

cf. Fig. 2(e). The same allegation holds for small network elasticities. Fig. 3 shows
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Figure 2. Part (a) shows the instability diagram in the (α, E)-plane for the parameter

set χ = 2c0 = 3η = 3, d0 = 0.7, δ = 2µ = 4ν = 0.2. The dash-dotted line at αF
c marks

the threshold towards stationary contracted states for vanishing network densities.

In the presence of a network, the instability of the homogeneous state is shifted

either beyond the dotted or dashed line. Stiff networks with large E-values trigger a

stationary, finite wave number instability, the characteristic growth rates κ1,2(k) being

shown in (b). For smaller values of E an oscillatory long-wavelength instability is met,

with the typical growth rate κ(k) depicted in (d). E-values beneath the solid line yield

a long-wavelength, stationary instability whose wave number dependent growth rates

are depicted in (e), an instability type which is known from oriented filament bundles

without network. Within the area between the solid and dotted lines lying beyond

the dashed line, a long-wavelength, oscillatory instability competes with a finite wave

number stationary one, with growth rates displayed in (c).

numerically obtained density profiles c(x, t) of the free filaments beyond the respective

instability thresholds as a function of x for a fixed system length L.

The diversification of the latter instability by the network is hence mostly driven by

the barycentric transport imposed by the network upon the free filaments. If filament

bundles with both orientations, i.e. comprising c+- as well as c−-filaments, are considered

instead of oriented ones, the barycentric transport coefficient χ becomes less relevant

as the possibility of polarity sorting introduces an additional microscopic transport

mechanism captured by the motor activity β 6= 0. In case of very stiff networks an

increase in α leads to a short-wavelength, stationary instability whose wavenumber

dependent growth rates are shown in Fig. 2(b). Within the nonlinear regime, this

instability leads to stripe patterns as shown in Fig. 3(a). Looser polymer networks,

corresponding to lower E-values, favor a transition from the homogeneous filament

distribution to a long-wavelength, oscillatory mode characterized by the growth rate

κ(k) in Fig. 2(d) and rather irregular dynamics as depicted in Fig. 3(c). This oscillatory

instability can compete with a short-wavelength stationary one, whose associated growth

rates are displayed in Fig. 2(c). Within the nonlinear regime free filament density

peaks, resulting from a coarsening process at an early stage, oscillate between extremal

positions as shown in Fig. 3(b). This type of nonlinear behavior occurs in a large region

of the (α, E)-plane bounded by the solid, dashed and dotted lines. For small rescaled

elasticities E the long-wavelength, stationary instability characteristic of free oriented
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(a) (b)

(c) (d)

t t

t t

x x

x x

L L

L L

Figure 3. Numerically obtained profiles c(x, t) of the free filament density with

red color coding high and blue color coding low densities. Part (a) displays the

density profile corresponding to the stationary finite-wavelength instability depicted

in Fig. 2(b). In (b) (where, without changing the overall dynamical behavior, χ = 1.5

has been chosen to perfectly highlight the oscillatory contributions) the competition

of an oscillatory instability with a finite wave number stationary one is shown, the

appendant growth rate being Fig. 2(c). Part (c) visualizes the oscillatory instability

according to Fig. 2(d), and part (d) the stationary one, with the growth rate being

pictured in Fig. 2(e).

filament bundles prevails in the presence of a network. The appendant nonhomogeneous

stationary numerical solution is pictured in Fig. 3(d).

4. Patterns in an active viscoelastic bundle

Crosslinks among network filaments generally have a finite life time. If their life time

is of the same time scale as the active transport processes, the static network becomes

viscoelastic, a behavior that is incorporated in the model by a time constant (λ+2µ)/τ

as done in a simple Voigt-Kelvin model. The associated equations read

∂tc = D∂2
xc − ∂x

(

J++
cc + J++

dc + Jχ
u

)

, (16a)

γ ∂tu = [ (λ + 2µ) + τ ∂t ] ∂2
xu + f++

cd , (16b)

wherein the frictional contributions ν and ζ have been omitted, a choice that does not

alter the overall scenario. Moreover the viscoelastic contribution τ∂tu(x+ξ) to the force

density [(λ + 2µ) + τ∂t ] ∂2
x u entering the barycentric flux (4) of the free filaments will

be neglected subsequently as it would only quantitatively modify the existence domains

of the encountered instability types. The equations can once again be rescaled using the

dimensionless coordinates of the previous section with the supplement τ ′ = τ/(γ ℓ2).
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Figure 4. (a) Phase diagram in the (α, E)-plane for the parameter set used in Fig. 2

except that ζ = ν = 0 (w.l.o.g.) and τ = 1. The dash-dotted line at αF
c is the

instability threshold without network. For stiff networks with large E the homogeneous

state becomes unstable, beyond the dashed line, via a finite wave number, stationary

bifurcation whose growth rates κ1,2 are plotted in (b) as a function of the wave number

k. In case of smaller E the latter state bifurcates through a finite wave number,

oscillatory instability characterized by a typical growth rate shape depicted in (d).

In between the dotted, dashed and long-dashed lines the short-wavelength, oscillatory

instability competes with a stationary one, setting in at finite wave number, as evinced

in Fig. 4(c) by the according growth rates κ1,2(k). The remaining areas within the

(α, E)-plane exhibit exactly the same dynamics as in case of a non-viscoelastic network

in Fig. 2(a).

A linear stability analysis analogous to the one performed in the last paragraph reveals

that the viscoelasticity of the network additionally triggers beyond some critical motor

activity αW
c , lying at the minimum of the neutral curve

αW(k) = αF(k)
(

1 + E + k2τ
)

/
(

1 + k2τ
)

, (17)

a bifurcation to traveling (TW) or standing (SW) free filament density waves with

critical wave number kW
c . The corresponding generic growth rate is displayed in Fig. 4(d)

as a function of the wave number k. Due to the network’s viscoelasticity long-wavelength

perturbations become always damped, provided that the elasticity E is large enough, as

evinced by the growth rate shapes in Fig. 4(b)-(d). Additionally, as the total filament

density -
∫

dx [c(x) + d(x)] = const. - is a conserved quantity for the investigated model

all growth rates are diffusive in the long-wavelength limit. This mechanism proves to

be utterly important since the coarsening process associated with a long-wavelength

instability is suppressed and finite wavenumber TW and SW patterns are stabilized.

Here the viscoelasticity of the network thus permits the filament-motor system to

produce stable patterns. It is however known that long-wavelength modes yielded by

conservation laws can render traveling or standing wave states unstable in the strongly

nonlinear regime as shown e.g. in Ref. [36] for a model of mobile, charged ion channels

embedded into a biomembrane.

Otherwise the phase diagram, Fig. 4(a), looks rather similar to the one discussed

previously for elastic networks. The only differences are: Upon increasing the motor

activity α, the homogeneous filament distribution now firstly is unstable against the
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Figure 5. A numerically obtained traveling wave (TW) density profile c(x) that

corresponds to the growth rate displayed in 4(d). The red curve depicts the filament

density profile at t = 20 whereby the black curves show its temporal evolution up to

t = 50 by time steps of ∆t = 2. The reduced control parameter ε =
(

α − αW
c

)

/αW
c

evaluates to 0.3 whereby αW
c = 1.18. The subcriticality of the bifurcation from the

homogeneous free filament distribution to the displayed filament density wave results

in the anharmonic wave form. The system length is L = 12.

aforesaid short-wavelength, oscillatory instability for small E-values, whereas large

rescaled elasticities still favor a transition to a finite wave number stationary bifurcation

with modes growing according to κ1,2(k) shown in Fig. 4(b). A further increase in α

leads to a coupling of the latter instability to the finite wave number oscillatory one as

may be deduced from the growth rate depicted in Fig. 4(c). Large rescaled elasticities

E and finite τ -values generally favor the Hopf bifurcation to traveling or standing free

filament density waves, which survive in the nonlinear regime as can be seen from Fig. 5.

Within the limit τ → ∞ the onset αW
c of the latter wave patterns, visualized by the

long-dashed line in Fig. 4(a), abuts the stationary threshold αF
c characteristic of free

filament bundles. In fact, for τ → ∞, the force applied by motor mediated interactions

to the network filaments is dissipated by prevalent, frictional effects within the network.

Thus within this limit network strain cannot build up and the free filament dynamics is

hardly influenced.

5. Mechanosensitivity

Although the long-wavelength, stationarry instability is already encountered in oriented

fiber bundles lacking a (visco-)elastic network, where it is interpreted as a contracted

state, it gains within the framework of the present (visco-)elastic model a striking new

quality: its threshold, given by the minimum of Eq. (13), depends on both the mean

network density d0 and the network elasticity E. As does the stationary instability

at finite wave number, the newly emerging oscillatory instabilities, that result from the
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coupling of the free filament dynamics to the (visco-)elastic network also depend on both

parameters d0 and E as can be seen from αO
c . This stipulates that the aforesaid density

instabilities can be controlled through compression and dilation - either externally by

applying a force or internally by molecular motor activity - of the elastic network or of

the filament bundle in our one-dimensional case. Compressing or dilating the network

alters the mean filament density d0 of the network, thereby changes the self-organization

process of the free filaments and might be used to rapidly switch between the different

instability scenarios discussed throughout this work. Addressing pattern formation by

compression or dilation of a biopolymer network thus seems to be effectively equivalent

to steering pattern formation by modifying motor activity through ATP concentration.

It is known that cell movement needs adhesion to the substrate to transduce force,

and it might be speculated that such external forces via the mechanism described

above interplay with the internal cytoskeleton structure: periodic contraction waves

in lamellipodia [37], as well as spontaneous oscillations in a muscle bundle have been

reported [38], where the bundle’s elasticity might be relevant too.

6. Conclusions

Numerous experimental and theoretical studies have been devoted either to the

mechanical properties of filament networks or to the molecular motor triggered self-

organization of filaments. In this work we have investigated the influence of networks

on the latter self-organization process by proposing a simple model that couples the

active filament dynamics to an either purely elastic or viscoelastic filament network.

The cytoskeletal structures that attracted most attention in recent years were the

aster and vortex patterns found in dilute reconstituted solutions [6, 7]. They have been

successfully described as defect structures in the polar filament orientation field both

by mesoscopic models in the dilute regime [11, 39] and macroscopic hydrodynamics

models [9, 40]. To study the nonlinear dynamics of extended patterns and coarsening

processes, the latter attempt proves difficult, since the generic approach is based on

linear irreversible thermodynamics and yields only geometrical nonlinearities, while it is

challenging to decide which additional nonlinearities are important [41]. Therefore we

start from a model for the dilute regime, based on [5], and extend it by accounting for

the elastic background by means of motor-induced filament-filament interactions only,

which naturally yields the leading order, quadratic nonlinearities.

While stationary and propagating contractile states were reported previously in

suspended filament-motor systems [4, 5, 31], new instability types and nonlinear

competitions between the latter ones emerge when introducing the (visco-)elastic

network. Especially, in the viscoelastic case, traveling and standing waves can be

stabilized for specific elastic constants of the network. Moreover, all mentioned pattern

forming processes are rendered mechanosensitive through the coupling to the network:

the states as well as their onset crucially depend on the network density, elasticity and

viscoelastic time constant, all these parameters being naturally relevant as a cell is
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subjected to external forces and continuously reorganizes its cytoskeleton.

Various generalizations of this model should be considered in the future: one

relevant and interesting point is to account for a finite lifetime of the crosslinkers and

describing the system at timescales much larger than the average crosslinking time.

First, the two-fluid separation has then to be genaralized by transitions rates between

’free’ and ’network’ filaments, naturally introducing the finite lifetime into the problem.

As discussed above, this also allows the network to become anisotropic, even in one

dimension. Second, on these time scales also the network part of the model becomes a

viscoelastic fluid rather than a viscoelastic solid and a Maxwell-like model, as suggested

in the framework of Ref. [40], should be more appropriate.

Secondly, the current one-dimensional model might be generalized to higher

dimensions. The methods how to achieve this are principally known [8, 10, 11]. In

the case of quasi-permanent crosslinkers, this would also be the first step towards the

active elastomer, since the broken symmetry variable of the polar filament orientation

should nontrivially couple to the (visco-)elastic field [42]. In forthcoming work we will

also show that pattern formation can be conceived as an instrument to stiffen (visco-

)elastic filament networks.
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Appendix A. Derivation of J1 and J2

The general idea of the derivation of the active currents J1,2 is as follows: Starting

from two-filament interactions, one formulates the micro-force balance for the involved

filaments, disregarding inertia terms. Since the system is considered to be embedded in

a solvent, the local frictional force Ff = ηẋ of a filament with the solvent suggests the

associated currents J(x, t) = c(x, t)ẋ to be

J(x, t) =
Ff

η
c(x, t) . (A.1)

In the case of two free plus-oriented filaments, the force balance implies

ηẋa − Fact,a = 0 and ηẋb − Fact,b = 0 , (A.2)

with Fact,a, Fact,b being the active forces exerted by the motor on the two filaments,

respectively (see Fig. A1(a)). Since no external forces are involved, the center of mass

of the two filaments is invariant, leading to Fact = Fact,a = −Fact,b. Each force exerted on

one filament by the motor is balanced by an opposing force acting on the other filament

and both filaments cover the same distance ∆x.

Eq. (A.1) then leads to J++
cc = 1

η
F ′

actc
+(x, t), with F ′

act being the representation of Fact
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Figure A1. (a) Movement of two plus-directed free filaments coupled by a motor

complex. Since no external forces are involved, the center of mass is invariant and both

filaments are displaced by ∆x. (b) Interaction of a free filament (light gray shaded)

and a network filament (dark gray shaded) with their plus end pointing to positive x–

direction. Since the elastic restoring force enters the force balance the displacement of

the network filament ∆xNW is smaller than in the case of two interacting free filaments.

Reciprocally the displacement of the free filament ∆x′ is larger. Consequently the

center of mass is not invariant any more.

in the mean field. Given that an overlap of the two filaments is a precondition for the

active interaction and that due to force balance the forces Fact have to obey distinct

symmetry relations the currents are given by Eq. (2a). For a more detailed and rigorous

derivation we refer to Ref. [30].

However the situation is thoroughly changed if a free filament interacts with a network

filament, leading to

ηẋNW = Fact,b + Felast (A.3)

as the equation of motion for the network filament, with Felast being the elastic restoring

force. Consequently the distance ∆x′ covered by the free filament is larger than in the

case without network (∆x), whereas the distance ∆xNW the network filament covers

during an active interaction is smaller resulting in an effective barycentric transport (see

Fig. A1(b)). Since the displacement of the free filament and the network filament are

counter-directed,

x′ − xNW = 2x (A.4)

applies here. Taking the derivative with respect to t on both sides and inserting Eq.

(A.2) and Fact,a = −Fact,b from above, gives an equation for ẋ′ which can be used to

calculate the associated current

J++
2 =

1

η

(

F ′
act + F ′

elast

)

c+(x, t) = J++
dc + Jχ,++

u . (A.5)

While in the mean field the current J++
dc again takes the form of Eq. (3a), the current

Jχ,++
u is due to the viscoelastic force density entering the force balance. It virtually
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transmits the viscoelastic force density to the free filament. Considering a network

plus–filament at x + ξ and a free filament at x this gives rise to

Jχ,++
u =

∫ ℓ

−ℓ

dξ

[

χ

η
[ (λ + 2µ) + τ∂t ] ∂2

x u(x + ξ)

]

d+(x + ξ) c+(x) . (A.6)

Together with d+ = d− = d/2 and Jχ
u = Jχ,++

u + Jχ,+−
u one finally receives

Jχ
u =

∫ ℓ

−ℓ

dξ

[

χ

η
[ (λ + 2µ) + τ∂t ] ∂2

x u(x + ξ)

]

d(x + ξ) c±(x) (A.7)

as the current associated with the barycentric transport.
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