Self-organization of topological defects due to applied constraints
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While topological defects are essential to our understanding of self-organizing periodic systems,
little is known about how these systems respond when their defects are subjected to geometrical
constraints. In an experiment on spatially modulated thermal convection patterns, we observe that
applied geometrical constraints bind topological defects into robust self-localized structures that
evolve through aggregation, annihilation, and self-replication. We demonstrate that this unexpected
cooperative response to the modulation is a natural consequence of three generic elements: phase-

locking, symmetry-breaking, and spatial resonance.

PACS numbers: 05.45.Jn, 47.54.-r, 47.55.P-, 89.75.Fb

The self-organization of ordered structures is a recur-
ring theme in physics, chemistry, and biology [1-3]. Spa-
tially periodic patterns, in particular, are observed at
length scales ranging from the atomic to the astronomi-
cal. Self-organized patterns are rarely perfect; topologi-
cal defects, such as dislocations and disclinations, are an
intrinsic element of their phenomenology [3, 4]. Topolog-
ical defects have a spatially localized core region where
the background pattern is torn, surrounded by a far field
region where the pattern is only weakly distorted; like
electric charge, these topologically charged distortions
can be detected by measurements made on any loop (or
surface) enclosing their core [3, 4]. These properties make
topological defects essential to our understanding of pat-
tern selection, creep and yield phenomena, order-disorder
transitions, and the mechanisms underlying spatiotem-
poral chaos [3-8]. This raises the interesting question of
how self-organizing systems respond when topological de-
fects are subjected to geometrical constraints, restricting
their formation and dynamics.

The formal connection between topological defects and
spontaneously broken symmetries [3, 4] suggests that an
externally broken symmetry, e.g. a spatial modulation,
may be used to constrain defects. We find, in an exper-
iment on spatially modulated thermal convection, that
constrained defects create a significant departure from
the standard pattern selection paradigm [3]. Weakly con-
vecting patterns are completely phase-locked to the mod-
ulation. This frustrates the system if the imposed pattern
would be unstable in the absence of modulation. Defect
nucleation generally provides the system with a means
of adjusting its wave vector field. Here, however, this
selection mechanism is partially blocked and thus con-
trolled by the modulation. Instead of merely breaking up
and/or adjusting a spatially periodic state, defects enable
the modulated system to self-organize new types of pe-
riodic structures. These structures, shown in Fig. 1, are
crystalline lattices embedded in a periodic background

pattern. Some of the lattices are ladder-like, extended in
one direction and strongly confined in another. Yet, as
shown later, all are constructed from a common recipro-
cal basis set. The formation of such structures cannot be
described using known theoretical frameworks [9].

Our experiments illustrate how constrained defects can
cooperate in completely unexpected ways. Dislocations
in the pattern are pinned and their far-field distortions
are confined to spatially localized domains with zero net
charge, converting a geometrical constraint into a topo-
logical one. The smallest possible structure produced
by this mechanism is a new type of charge neutral de-
fect, a localized orientational defect, which is never ob-
served in the absence of modulation. We interpret the
localized domains of Fig. 1 as crystalline aggregates of
these orientational defects. As many papers have em-
phasized in recent years, localized structures that are
not topological in nature can spontaneously appear and
disappear [10-13], self-replicate [12-14], and even aggre-
gate to form molecular clusters and crystals [14-17]. Our
experiment offers the first opportunity to observe these
striking self-organization behaviors in a setting where
topological defects are the essential dynamical agents.
In this Letter, we demonstrate that localization, crys-
talline order, and pattern-forming dynamical motifs (ag-
gregation, annihilation, and self-replication) are natural
consequences of three generic elements: phase-locking,
symmetry-breaking, and spatial resonance.

When a thin, horizontal fluid layer is driven out of equi-
librium by heating from below and cooling from above,
circulating spatially periodic flow patterns self-organize;
this buoyancy-driven flow, known as Rayleigh-Bénard
convection, is one of the archetypical examples of pat-
tern formation in nature [6]. The physics can be captured
by three non-dimensional parameters: the Rayleigh num-
ber Ra, which is proportional to the applied temperature
difference, compares the effects of buoyancy and dissipa-
tion, the Prandtl number Pr compares viscous and ther-



FIG. 1: A shadowgraph image of localized structures in a
spatially modulated thermal convection pattern (Ra ~ 1.9
Ra. ). Movies showing the spatiotemporal evolution of these
structures are available at Ref. [21].

mal diffusion, and the third parameter is the magnitude
of the pattern’s local wave vector k = (ks, k). Below a
universal critical value Ra., there is no fluid motion. For
Ra above Ra. and fixed Pr, convection patterns are sta-
ble for k lying within a well-characterized annulus in the
wave vector plane [3]. This annulus defines the preferred
periodicities of the system, even when the pattern is spa-
tiotemporally chaotic [6]. In our experiment, we frustrate
this system by imposing a spatially periodic modulation
with a wave vector Ky lying close to but outside of the
stability annulus.

Our experiment was performed on a thin layer of com-
pressed SF¢ gas, in an apparatus essentially identical to
that described in [18]. This layer was bounded above by
an optically-flat, single-crystal sapphire window, provid-
ing optical access for pattern visualization, and bounded
below by an optically-flat silicon mirror. The temper-
atures of the silicon and sapphire plates were regulated
independently to + 0.0004 °C. The pressure was held con-
stant at (1.722 £ 0.030) MPa, regulated to + 0.3 kPa,
and the mean temperature in the layer was held at (21.00
+ 0.02) °C. Under these circumstances, SFg has Prandtl
number Pr ~ 0.9. We introduced a permanent spatial
modulation by microfabricating a periodic array of par-
allel SU-8 polymer ridges on the bottom plate. These
ridges drive observable upflow of fluid, forcing the pat-
tern to phase-lock to the imposed periodicity [19]. The
ridges were 65 pm high and 100 pm wide, with one ridge
per mm. The thickness of the layer, for comparison, was
d = (596 + 27) um. The characteristic thermal diffusion
time for this layer, 7, = d?/k, where r is the thermal
diffusivity of the gas, is 2.5 sec. Flow patterns were con-
fined by an annular boundary of diameter L = 110d. The
aspect ratio, I' = L/(2d), provides a characteristic time,
, = I'?7, = 30257, associated with system-scale pat-
tern relaxations [6]. Alternation between warmer regions
where gas is rising and cooler regions where it is sink-

ing sets up a spatially varying index of refraction, which
we visualize by passing collimated monochromatic light
through the fluid and imaging the near-field diffraction
pattern. This “shadowgraph” technique is described in
detail elsewhere [18, 20].

Our spatial modulation scheme breaks the rotational
isotropy and one of the two space translational symme-
tries of the fluid layer. As a result, a convection pat-
tern is present even for Ra < Ra.. Below ~1.6 Ra.,
the entire pattern is spatially phase-locked to the im-
posed modulation. Near ~1.6 Ra., localized domains of
obliquely-oriented stripes begin to nucleate at the bound-
aries. These domains do not grow to fill the bulk of
the pattern. Instead, narrow sections of stripes peel off
from the boundaries and invade the bulk. Over time, a
perpetually reorganizing but steady-state population of
localized structures builds up in the bulk [19]. The spa-
tiotemporal evolution of these structures is rapid com-
pared to the system-scale relaxation time 75, but slow
compared to the thermal diffusion time 7, [21]. This sep-
aration of scales demonstrates that the boundaries have
only a weak influence on the bulk dynamics. We focus
here on the steady-state behavior observed away from the
boundaries at Ra ~ 1.9 Ra.. A typical pattern observed
in this regime is shown in Fig. 1. The localized structures
in these patterns have crystalline order but the dynamics
are spatiotemporally chaotic. To highlight this unusual
twist on the classic theme of order within chaos, we de-
scribe this state as exhibiting crystalline chaos. A key
feature, which is not observed in the absence of modula-
tion [7], is constrained motion: the localized structures
preferentially slide back and forth along the phase-locked
stripes, i.e. following the continuous translational sym-
metry that is not broken by the modulation.

The phase-locked pattern described above has more
stripes per unit length than typical convection patterns.
In the absence of modulation this wavelength compres-
sion triggers what is known as the skewed-varicose insta-
bility, in which one or more stripes are pinched off, form-
ing pairs of dislocations which then separate, thereby re-
moving stripes from the pattern until the local wavenum-
ber is brought back inside the band of preferred periodic-
ities [6]. In our system, where the number and placement
of stripes is fixed by the modulation, this mechanism is
blocked. Instead, dislocations form cooperative groups
confining their far field distortions to small domains with
no net topological charge. An orientational distortion of
only a single stripe across one wavelength of the mod-
ulation (Fig. 2a) provides the smallest possible example
of one of these domains. We can understand these local-
ized orientational defects as follows. Dislocations in any
stripe pattern generally tend to be pinned by the stripes
[3] and, in our system, phase-locking enhances this ef-
fect. When dislocations are pinned in adjacent rows, as
in Fig. 2a (or its mirror image), a single kink (or an-
tikink) is formed. The dislocations forming a kink or
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FIG. 2: (a) Kink defect in a phase-locked pattern. (b) Bravais
lattice vectors connecting nearest neighbors in a crystalline
aggregate; as the kink defects are locked to the modulation,
the y-component of each vector equals the modulation wave-
length A. (c) Contrast-enhanced histogram of the correspond-
ing reciprocal lattice basis vectors, showing the relationship
of the dominant peaks K; and K3 and the modulation wave
vector Ko = (0, —27/\) to the stability annulus.

antikink cannot separate without creating a gap in the
pattern or dislodging a stripe from its locked position.
By inhibiting motion, phase-locking provides the system
with a new type of coherent structure.

In systems supporting spot-shaped coherent struc-
tures, spatially periodic patterns have been interpreted
as crystalline aggregates of these structures [14, 16, 17].
Here, in the same spirit, we regard the oblique domains of
Fig. 1 as mini-crystals constructed from localized orien-
tational defects. The separation vectors connecting ad-
jacent defects provide a local estimate of a real space
Bravais lattice basis {Rq,Rpa} for each localized crys-
talline domain (Fig. 2b). This real space basis has a
corresponding reciprocal space basis {k1, ka}, defined by
the standard relation k; - R; = 2md;; (where §;; =1 for
i = j, and 0 otherwise) [4]. Fixing Ra at ~1.9 Ra.
and averaging results from forty hours of data collection
(576007, where 7, the vertical diffusion time), we find
that these reciprocal basis vectors are statistically con-
centrated around two locations K; o = (+ks, ky) (and
their additive inverses), shown in Fig. 2¢ together with
the modulation wave vector Kg.

The relationships emerging from this analysis are
highly illuminating. First, we find that the dominant
reciprocal basis vectors, K; and Ko, fall well inside the
annulus describing the wave vectors of stable stripe pat-
terns in the absence of modulation. Moreover, we find
that k, is equal to one half of the modulation wavenum-
ber |Ko| and, therefore, the reciprocal basis vectors sat-
isfy a spatial resonance condition, K¢+ K; + Ko = 0.

FIG. 3: Time series of shadowgraph images showing (a-c) an
aggregation event, in which two chains of antikinks (circled in
cyan) approach and lock together to form a longer chain, (d-
f) an annihilation event, in which chains of kinks (circled in
magenta) and antikinks (circled in cyan) vanish from the pat-
tern through pairwise cancellations, and (g-1) a self-replication
event, in which new kinks (circled in magenta) are added at
adjacent lattice sites in a crystalline domain. Movie versions
of these time series are available at Ref. [21].

This condition can, in fact, be derived a priori from
the kink/antikink picture: for any left-right symmet-
ric basis Ry 2 = (£a, A), locked to the modulation as in
Fig. 2b, the standard relation K;-R; = 27¢;; leads to
Ki 2 =2m(£A a)/(2Xa) and, given this, K; + K2 auto-
matically equals —Ky = (0,27/)\). Note that the param-
eter a and its conjugate in reciprocal space, k, = 7/a
(obtained from the calculation above), are not fixed by
the modulation. This free parameter manifests the sys-
tem’s remaining space translational symmetry, parallel to
the modulation stripes. By exploiting this freedom, the
pattern can use the resonance condition to select crys-
talline structures with preferred periodicities. Though
this condition favors neither K; nor Ks, each striped
crystal chooses a dominant orientation. This broken re-
flection symmetry finds a natural explanation in our ap-
proach, since the building blocks of each crystal must
choose one of two orientations related by a reflection
(Fig. 2a and its mirror image). Likewise, since each of
these building blocks is associated with a single back-
ground stripe, translational confinement of the dynamics
becomes a direct consequence of phase-locking and bro-
ken translational symmetry.

We emphasize that, while crystallization of coherent
structures is observed in a variety of pattern-forming sys-
tems, our system has the provocative feature that its lo-
calized structures emerge from the (restricted) dynam-
ics of topological defects. An aggregation event in which
two crystalline chains of antikinks lock together to form a
longer chain, observed experimentally, is shown sequen-
tially in Figs. 3a-c. When these chains first come into



contact one pair of dislocations is rapidly annihilated,
leaving the net charge unchanged. The reverse process,
which fractures larger crystals to form smaller ones by
creating and separating a new pair of dislocations, is com-
monly observed as well. The creation or annihilation of
a dislocation pair typically requires only a few 7,. Thus,
the time scales shown in Fig. 3 reflect the robustness that
kinks, antikinks, and their aggregates inherit from the
modulation. Localized orientational defects of opposite
type can also annihilate, returning stripes to their phase-
locked positions. Figs. 3d-f show an annihilation event in
which a “v”-shaped domain contracts through pairwise
cancellation of kinks and antikinks. This process, like ag-
gregation, conserves charge and is reversible. The reverse
process is quite rare, however, and only occurs in the im-
mediate vicinity of existing kinks and antikinks. This
observation suggests that there is an energy barrier as-
sociated with the formation of these structures and that
proximity to existing structures lowers this barrier.

Though topological charge is conserved, the relative
sizes of the kink and antikink subpopulations fluctuate.
The process responsible for this fluctuating asymmetry
is a jump of a dislocation from one pinning site to a
neighboring site; these glide motions are inhibited, as
mentioned earlier, but they do occur and are important
for the dynamics. When the two dislocations forming
a localized orientational defect jump apart, inserting an
extra row of the modulation between them, the result
of this jump is the formation of an extra localized ori-
entational defect of the same type. This self-replication
process allows crystals to expand transversely in discrete
steps, as shown in Figs. 3g-i, and is what allows the lat-
eral boundaries of the pattern to absorb and emit these
structures. Self-replication, like aggregation and annihi-
lation, conserves charge and is reversible. This behavior
is distinct from other examples of self-replication, such
as cell-division and self-completion [12-14], in that it has
a topological origin.

In this Letter, we have presented a completely new
localization mechanism native to spatially modulated
pattern-forming systems. This mechanism illustrates
how, even when individual dislocations are heavily con-
strained, groups of dislocations may still be free to self-
organize and, indeed, acquire a broader palette of generic
behaviors to choose from. In this way, applied constraints
can both control the emergence of spatiotemporal chaos
and make new pattern selection mechanisms possible. In
principle, kinks, antikinks, and their aggregates may arise
in any spatially modulated stripe-forming system, partic-
ularly those which are modeled by Swift-Hohenberg equa-
tions [3, 9]. Generalizations of these structures may thus
arise in layer-forming systems, such as surfactant lamel-
lae, smectics, and block copolymers, or ecological appli-
cations [22]. We hope that our emphasis on the basic con-
cepts of phase-locking, symmetry-breaking, and spatial
resonance, rather than system-specific details, will prove

useful to other researchers exploring the consequences of
spatial forcing and will motivate theoretical studies of
this localization phenomenon.
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