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The polymerization of microtubules becomes oscillatory under certain conditions and in experi-
ments it gives rise to spatially inhomogeneous patterns. The oscillatory microtubule polymerization
has been attributed to a Hopf bifurcation by using reduced models for the biochemical reaction cycle
[M. Hammele and W. Zimmermann Phys. Rev. E 67, 021903 (2003)]. These previously introduced
models for a homogeneous polymerization are extended by taking into account spatial degrees of
freedom and a global conservation condition of tubulin dimers. Close to the threshold of the Hopf
bifurcation, we reduce the basic model equations of the biochemical reaction cycle by a perturbation
analysis to a complex Ginzburg-Landau equation. In terms of this equation we indeed find for a
large range of parameters spatially inhomogeneous polymerization patterns which often behave spa-
tiotemporally chaotic. Numerical simulations of the basic model equations confirm these analytical
predictions. Moreover, further beyond the threshold of the Hopf bifurcation, beyond a secondary
threshold, spatially homogeneous oscillations, which are unstable immediately above threshold, are
stable. In this regime also long lasting and interesting spatially anharmonic transients are predicted.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Microtubules are rather long and rigid cylindrical fil-
aments which are ubiquitous in eukaryotic cells [1–3].
They are made of the dimer forming proteins α and β
tubulin and represent one of the three major classes of fil-
aments in the cytoplasm of cells, which play an important
role for several cell functions, such as the maintenance of
the cell shape, cell division, etc. Mechanical work in cells
is performed by microtubule polymerization [4] and mi-
crotubules are also involved in intracellular transport by
serving as transport rails for molecular motors such as
dynein and kinesin [1–3].

The polymerization of single microtubules already ex-
hibits a complex and for the cell function important dy-
namics [5, 6]. Collective phenomena of many micro-
tubules are also known, such as the inherent propen-
sity to generate an oscillatory behavior of the density
of microtubule filaments during their polymerization [7–
20], whereby this polymerization may become spatially
inhomogeneous as described in Ref. [12]. Further self–
organization phenomena lead to stationary and spatially
periodic patterns and some of them are sensitive to the
gravitational field [21–23], whereby the induced patterns
may have their origin in the buckling of filament bundles
[24]. The interaction between filaments and motor pro-
teins leads in addition to pattern formation [25–30], as
well as the interplay of the nematic ordering of filaments
with the kinetics of microtubule polymerization [31].

In the presence of GTP (guanosine triphosphate), mi-
crotubules nucleate and polymerize to long rigid fila-
ments. They are highly dynamic and may spontaneously
change on the time scale of minutes via a so-called catas-

trophe from a growing to a shrinking state or via a
so-called rescue from a shrinking to a growing state.
This switching between the growing and shrinking phases

takes place randomly. It has been observed both in vivo

and in vitro [32–35] and it has been called dynamical

instability [32, 33]. Microtubules are formed in a cell
at nucleation sites or, in vitro, the nucleation may take
place spontaneously in the case of high tubulin concen-
trations. Tubulin-t, i.e. tubulin liganded with GTP, pro-
motes the formation and growth of microtubules, whereas
tubulin-d, i.e. tubulin liganded with GDP (guanosine
diphosphate) being released during the microtubule de-
polymerization, inhibits their formation and growth. The
complete biochemical reaction cycle is irreversible, so the
polymerization process slows down during the transfor-
mation of tubulin-t dimers to tubulin-d dimers. However,
in the presence of an enzymatic regeneration system, the
tubulin-d may be regenerated into tubulin-t by an ex-
change of its GDP unit for GTP and the nonequilibrium
process of the whole cycle of microtubule polymerization
may be maintained over a long time [21].

During the last decades pattern formation in dissipa-
tive and spatially extended systems has attracted consid-
erable interest [36–39], including spatiotemporal struc-
tures during oscillatory chemical reactions [40], such as
the famous Belousov-Zhabotinsky reaction [41]. In con-
trast to common reaction-diffusion systems, microtubules
may undergo an experimentally observed orientational
ordering transition beyond a critical filament density [42].
In the range of the oscillatory micortubule polymeriza-
tion, this orientational ordering may give rise to inter-
esting phenomena which have not been addressed yet.
This potential makes the system, besides its significance
for biological functions, also to an attractive model sys-
tem for studies about pattern formation far from thermal
equilibrium.

The effects of spatial degrees of freedom on the oscilla-
tory microtubule polymerization are rather unexplored.
Two models, which have been analyzed in Ref. [20] with-



2

out spatial degrees of freedom, are extended in this work
by taking into account the diffusion of tubulin dimers and
of microtubules. Both models cover major reaction steps
of the polymerization/depolymerization process and they
also capture the length distribution of the filaments. The
two models show a Hopf bifurcation to an oscillatory mi-
crotubule polymerization, if the initial concentration of
the tubulin dimers exceeds a certain critical value [20].
Since tubulin dimers are neither created nor annihilated,
the overall amount of tubulin dimers is conserved. This
constraint results in an additional equation for the lo-
cal density of dimers, including the density of the two
kinds of free dimers as well as the tubulin dimers incor-
porated into microtubules or oligomers. The respective
differential equation resembles a continuity equation and
renders the modeling rather different from the spatially
homogeneous case [20].

The two dimensional spatial patterns observed experi-
mentally for microtubule polymerization in Ref. [12] give
rise to the interesting question whether a spatially homo-
geneous and temporal oscillating microtubule polymer-
ization, as considered in the absence of spatial degrees of
freedom in a previous work [20], is stable or unstable with
respect to spatially inhomogeneous modulations. Hence,
the respective stability properties of the nonlinear so-
lutions are analyzed in terms of a common and rather
efficient approach, where the basic model equations are
reduced to a so–called amplitude equation or Ginzburg–
Landau equation by a multiple scale perturbation tech-
nique close to the Hopf bifurcation [39]. This amplitude
equation covers the spatiotemporal dynamics close to the
threshold of a supercritical bifurcation. Therefore, if the
coefficients of this equation are known in terms of the
model parameters, a major part of the exploration of the
nonlinear solutions can be performed analytically or by
simulations of the single amplitude equation. The valid-
ity range of the amplitude equation beyond the threshold
of the Hopf bifurcation is not known a priori for a spe-
cific system; it is estimated in this work by comparing
its solution behavior with numerical solutions of the full
model equations.

In Sec. II we briefly describe the main reaction steps of
the microtubule polymerzation and extend the two mod-
els introduced in Ref. [20], called model I and model II, by
spatial degrees of freedom. The stability of the stationary
and homogeneous solutions, as summarized in Sec. III, is
investigated in Sec. IV. The so–called amplitude equa-
tion of the oscillatory solution is derived in Sec. V, where
we explore its solution behaviour also in terms of the ki-
netic reaction parameters. In Sec. VI we present a few
selected numerical results of the full reaction equations.
The technical details of the numerical scheme, capturing
also the conservation of the initial tubulin concentration,
are given in the Appendix. A summary and some con-
cluding remarks are given in Sec. VII.

II. MODELS FOR MICROTUBULE

POLYMERIZATION

Two models describing the spatially homogeneous mi-
crotubule polymerization, introduced in Ref. [20] and ref-
erences therein, are extended by spatial degrees of free-
dom in order to describe also inhomogeneous processes.
At high concentrations of GTP liganded tubulin dimers
ct(r, t), the so–called tubulin–t, microtubules may spon-
taneously nucleate to small clusters of α − β tubulin
dimers which polymerize further to long cylindrical rigid
fibers. The growth velocity of polymerizing microtubules,
vg, is sensitive to temperature variations, but vg is rather
independent of the density ct [5, 43]. Growing micro-
tubules may change via a so-called catastrophe with a
transition rate fcat from their growing to a rapidly de-
polymerizing state, whereby the shrinking velocity vs is
much larger than the growing one, vs ≫ vg. During
the depolymerization of microtubules they may be either
fragmented into oligomers as described by the density
coli(r, t) or directly into GDP liganded tubulin dimers
of the density cd(r, t), the so–called tubulin-d dimers.
Oligomers are stabilized by GDP and destabilized by
GTP [10, 44] and in the latter case they are fragmented
further into tubulin–d dimers.

By activating an enzymatic process, tubulin-d can be
regenerated into tubulin-t due to an exchange of a GDP
for a GTP unit as long as sufficient GTP is available. In
this case the whole microtubule polymerization cycle may
be maintained over several hours, i.e. over many periods
of the oscillating microtubule polymerization. In which
manner the various reaction rates of the polymerization
cycle are determined by the concentration of ct depends
on the respective experiment.

A number of models, as for instance described in
Ref. [16], take into account many reaction steps in great
detail. Here, we will especially focus on a few rate limit-
ing steps of the polymerization cycle, such as the nucle-
ation, the growth and the decay of microtubules as well
as the regeneration of tubulin-d to tubulin-t dimers. Due
to the dynamical instability of microtubules, one may also
expect a transition from the shrinking microtubules back
to the growing ones, which is often described by a so–
called rescue rate. This rate is in many cases rather small
compared to the catastrophe rate and will therefore be
neglected throughout this work. As an intermediate step
between the growing microtubules and the final prod-
uct of the cascade of microtubule decay, the tubulin–d
dimers, we take further into account either the dynamics
of shrinking microtubules in model I or the decay dynam-
ics of oligomers in model II. One of both rate limiting
factors is already sufficient for an oscillatory microtubule
polymerization. These two simplified reaction schemes
are sketched in Ref. [20] and the effects of spatial degrees
of freedom are analyzed in detail in the rest of this work.
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A. Dynamics of growing microtubules

The number of growing microtubule filaments of length
l in a unit volume at a site r and at the time t
is described by the length–dependent filament density
pg(r, t, l), which obeys the partial differential equation

∂tpg = −fcatpg − vg∂lpg + Dp∆pg . (1)

The first term describes the decay of growing micro-
tubules, either into shrinking ones (model I) or into
oligomers (model II), and the second term governs the
growth of filaments with velocity vg, which we assume to
be constant throughout this work. The diffusion of mi-
crotubules is covered by the last term with the diffusion
constant Dp(l), which is different parallel or perpendic-
ular to the filament orientation [45]. It is, however, in
both directions much smaller than the diffusion constant
Dc of the tubulin dimers. Accordingly, we will neglect for
the sake of simplicity in most cases the filament diffusion,
i.e. Dp = 0.

1. Catastrophe rate and boundary condition

Similar to previous models about oscillatory micro-
tubule polymerization [5, 6, 13, 20], we choose a ct-
dependent catastrophe rate of the form

fcat(ct) = fe−ct/cf (2)

with an amplitude f and a typical decay constant cf .
The evolution equation (1) is of first order with respect
to the filament length l and for its boundary condition
we choose as previously [20]:

pg(r, l = 0, t) =
ν

vg
. (3)

The nucleation rate ν may depend on the initial concen-
tration c0 of tubulin dimers, but it is rather independent
of the dynamics of ct(t) [43, 46]. Here, we assume a con-
stant nucleation rate throughout the work.

B. Conservation of tubulin in a spatially extended

system

The total amount of tubulin dimers in a spatially
extended system is conserved during the polymeriza-
tion/depolymerization cycle, i.e. tubulin dimers are nei-
ther created nor annihilated. This may be expressed by
a local conservation law for the density n(r, t) which is
for model I composed of the local dimer densities ct(r, t)
and cd(r, t) as well as of the growing and shrinking mi-
crotubules pg(r, l, t) and ps(r, l, t), respectively. In the
case of model II, one has to substitute the density of the
shrinking microtubules for the oligomer density coli(r, t).
The local density n(r, t) obeys the conservation law

∂tn(r, t) = −∇ · j(r, t) , (4)

where the current density j(r, t) depends on the model
under investigation. Its specific form is presented for
model I in Sec. II C and for model II in Sec. II D. The
integral

1

V

∫

V

d3rn(r, t = 0) = c0 (5)

gives the density of tubulin dimers, c0, independent of the
phase of the polymerization cycle. The overall density c0

may be fixed by the initial preparation (condition) in
the respective experiment. Integrating Eq. (4) and using
Gaussian’s law for the specific case of a vanishing net flux
through the surface O of the volume V , i.e.

∫

O

df · j(r, t) = 0 , (6)

one gets

1

V

d

dt

∫

V

d3rn(r, t) = 0 . (7)

The boundary condition in Eq. (6) may be satisfied by ap-
plying, for instance, no-flux or spatially periodic bound-
ary conditions. The overall density c0 in Eq. (5) is then
due to Eq. (6) preserved.

C. Model I includes the dynamics of shrinking

microtubules

Here, the dynamics of shrinking microtubules, de-
scribed by the length–dependent distribution function
ps(r, t, l),

∂tps = fcatpg + vs∂lps + Dp∆ps , (8)

is taken into account as an intermediate state between
growing microtubules and tubulin-d dimers. The catas-
trophe rate fcat describes the transition from growing to
shrinking microtubules, vs is the shrinking velocity and
for the diffusion constant Dp we use the same value as for
the growing microtubules in Eq. (1). Since the diffusion
of microtubules is rather slow compared to the tubulin
dimers, Dp ≪ Dc, Dp will be neglected in many cases.
The boundary condition with respect to the length of
shrinking microtubules is

ps(r, l → ∞, t) = 0 , (9)

because, due to the decay rate fcat, no growing micro-
tubules are left at large values of l serving as a source for
ps(l → ∞).

The dynamical equations for tubulin-t dimers, ct(r, t),
and tubulin-d dimers, cd(r, t), are given by

∂tct = −γvg

∫
∞

0

dl pg + αcd + Dc∆ct, (10a)

∂tcd = γvs

∫
∞

0

dl ps − αcd + Dc∆cd, (10b)
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where we have assumed the same diffusion constant Dc

for ct(r, t) and cd(r, t). The consumption of tubulin-t
during the growth of microtubules is described by the
first term in Eq. (10a), where γ is a length factor de-
scribing the number of tubulin dimers incorporated into
a unit length of microtubules. The inactive tubulin-d
dimers being released by the shrinking microtubules are
described by the first term in Eq. (10b), and they are
regenerated into their active form, ct, with a constant
rate α. This regeneration process is the persistent en-
ergy supply of the biochemical reaction cycle that keeps
the system far from thermal equilibrium.

For model I, the whole dimer density n(r, t) at site r

and time t is given by

n(r, t) = ct(r, t) + cd(r, t) + γL(r, t), (11)

and the related dimer current j(r, t) is proportional to
the local density gradients

j(r, t) = −Dc∇ (ct + cd) − Dpγ∇L , (12)

where the overall length of microtubules per unit volume

L(r, t) =

∫
∞

0

dl l [pg(r, l, t) + ps(r, l, t)] (13)

has been introduced. Equation (11) together with
Eq. (12) provides according to Eq. (4) the following equa-
tion of motion for the density n(r, t):

∂tn = Dc∆(ct + cd) + Dpγ∆L . (14)

In addition, using the expression given by Eq. (11), we
can eliminate the tubulin-d concentration in Eqs. (10a)
and (14), and we obtain the two governing equations for
ct and n

∂tct = −γ

∫
∞

0

dl [vgpg + αl (pg + ps)]

+α (n − ct) + Dc∆ct, (15a)

∂tn = Dc∆n + γ(Dp − Dc)∆L. (15b)

Equation (10b) is then always fulfilled and model I is
described by Eq. (1), Eq. (8) and Eqs. (15).

D. Model II includes the dynamics of oligomers

Besides shrinking microtubules, a further intermedi-
ate product in the cascade of decaying microtubules are
oligomers which are composed of several tubulin dimers.
Instead of the shrinking velocity vs of microtubules, also
the decay dynamics of oligomers can be a rate limiting
step of the reaction cycle [9, 44]. Accordingly, we replace
in model II the dynamical equation for ps(t, r, l) by a dy-
namical equation for the density of oligomers, coli(r, t),
which is coupled to the dynamics of tubulin-d dimers as
follows:

∂tcoli = ηfcat

∫
∞

0

dl l pg − χcoli + Doli∆coli, (16a)

∂tcd = χλcoli − αcd + Dc∆cd . (16b)

Here, the catastrophe rate fcat, as given in Eq. (2), de-
scribes the decay of growing microtubules into oligomers,
which dissociate themselves into tubulin-d dimers by the
rate χ and build a source term in the equation of mo-
tion (16b). Doli denotes the diffusion constant of the
oligomers, η measures the number of oligomers per unit
length of the microtubules and λ is a measure for the
number of tubulin dimers per oligomer. As for model
I, the tubulin-d dimers are regenerated into tubulin-t
dimers by the rate α in order to close the reaction cycle.
The equation of motion for the growing microtubules pg

is the same as for model I, cf. Eq. (1), but in the equation
of motion for ct given in Eq. (10a), we have to substitute
the length factor γ for the product ηλ. Since oligomers
are much larger than tubulin-d dimers and microtubules
are even larger than oligomers, one has for the various dif-
fusion constants a hierarchy as follows: Dc ≫ Doli ≫ Dp.

We again use Eq. (3) with a spatially constant nu-
cleation rate ν as a boundary condition for the growing
microtubules with respect to their length l.

The mean length of growing microtubules is given by
the integral over the length distribution,

L(r, t) =

∫
∞

0

dl l pg(r, l, t), (17)

and, therefore, the overall density of tubulin dimers for
model II at site r and time t is given by

n(r, t) = ct(r, t) + cd(r, t) + λcoli(r, t) + ηλL(r, t) . (18)

The associated dimer current is

j = −Dc∇ (ct + cd) − Doliλ∇coli − Dpηλ∇L . (19)

Again, the last term in Eq. (19) describes the current
that stems from the polymerized tubulin dimers, which
may locally change the dimer density n(r, t). According
to Eq. (4), one obtains the following equation of motion
for the density n:

∂tn = Dc∆(ct + cd) + Doliλ∆coli + Dpηλ∆L. (20)

Using Eq. (18), we can eliminate in Eq. (16b) and
Eq. (20) the density of the oligomers coli. Therefore,
instead of the dynamics of oligomers, the dynamics of
the density n(r, t) is considered and we obtain besides
the dynamical equations for pg and ct the two coupled
equations

∂tcd = Dc∆cd + χ

(
n − ct − cd − ηλ

∫
∞

0

dl l pg

)

−αcd, (21a)

∂tn = (Dc − Doli)∆ (ct + cd) + Doli∆n

+(Dp − Doli)ηλ∆L. (21b)

Accordingly, Eqs. (1), (10a) and (21) describe the whole
polymerization cycle for model II, involving oligomers
as an intermediate decay product of microtubules. In
addition, the conservation of the total amount of tubu-
lin dimers is explicitly taken into account via Eqs. (19)
and (20) together with the boundary condition in Eq. (6).
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III. STATIONARY, HOMOGENEOUS

SOLUTIONS

The stationary and spatially uniform solutions of the
model equations introduced in Sec. II agree with those
presented in Ref. [20] and we briefly summarize some
results here. Equations (1) and (8) are first–order linear
differential equations with respect to the length l. Hence,
in the stationary and spatially homogeneous case, they
have exponentially decaying solutions

p(0)
g,s(l) =

ν

vg,s
exp

(
−f

(0)
cat

vg
l

)
, (22)

where f
(0)
cat = f exp (−c

(0)
t /cf) and c

(0)
t represent the sta-

tionary and homogeneous values of the catastrophe rate
and tubulin-t density, respectively.

For model I, the density c
(0)
t itself is determined by the

nonlinear equation

c0 − c
(0)
t =

νγvg

f
(0)
cat

(
1

α
+

1

f
(0)
cat

(1 + β)

)
, (23)

which follows from Eq. (15a) with n(0) = c0, being in
agreement with the conservation law in Eq. (5). In
Eq. (23) the velocity ratio β = vg/vs has been intro-

duced. The corresponding tubulin-d density c
(0)
d can be

calculated via Eq. (10b).
For model II, a similar nonlinear equation for the de-

termination of c
(0)
t can be derived

c0 − c
(0)
t =

νηλvg

f
(0)
cat

(
1

α
+

1

χ
+

1

f
(0)
cat

)
, (24)

which follows from Eq. (21a). The densities of the
oligomers and tubulin-d dimers may be determined via
Eqs. (16). For various limiting cases analytical expres-

sions for c
(0)
t can be derived which give some additional

insight about its dependence on various parameters, as
described in Ref. [20].

IV. THRESHOLD OF THE HOPF

BIFURCATION

Beyond a critical initial concentration of tubulin
dimers, c0c, as defined below, the stationary state of
the respective microtubule polymerization cycle given in
Sec. III becomes oscillatory in time via a supercritical
Hopf bifurcation, as described for the spatially homo-
geneous case in Ref. [20]. Here, we extend this anal-
ysis by investigating the influence of spatial degrees of
freedom on the linear as well as nonlinear properties of
the Hopf bifurcation described by the model equations
presented in Sec. II. For the sake of simplicity, we re-
strict our analysis to one spatial dimension and we dis-
card orientational ordering effects of the filaments. The

threshold of the Hopf bifurcation is calculated by deriv-
ing linear equations of motion for small inhomogeneous
perturbations with respect to the stationary and homo-
geneous basic state which have solutions proportional to
∝ exp (σt + iqx). For an initial concentration c0 corre-
sponding to Re(σ) > 0, the perturbations grow expo-
nentially in time and the uniform solutions become un-
stable. Otherwise, i.e. Re(σ) < 0, the stationary reac-
tion cycle remains stable. The neutral stability condition

Re[σ(q)] = 0 determines for varying wave numbers q the
initial concentration c0(q) at the so–called neutral curve,
which separates the stable from the unstable parame-
ter range, while the expression Im[σ(q)] = ω0(q) pro-
vides the frequency along that curve. The minimum of
the neutral curve gives the critical initial concentration
c0c = c0(q = qc) = min[c0(q)] at the critical wave num-
ber qc and the corresponding Hopf frequency is given by
ωc = ω0(q = qc).

A. Model I

The stability of the stationary reaction cycle of model

I, as described by p
(0)
g,s, n(0) and c

(0)
t , with respect to small

deviations p
(1)
g,s, n(1) and c

(1)
t is determined. For this pur-

pose, the ansatz

pg,s = p(0)
g,s + p(1)

g,s(x, l, t), ct = c
(0)
t + c

(1)
t (x, t),

n = n(0) + n(1)(x, t) (25)

is chosen and a linearization of the governing equations
(1),(8) and (15) results in a set of linear equations with
constant coefficients describing the dynamics of the small
perturbations:

∂tp
(1)
g = −p(0)

g f
(1)
cat −

(
f

(0)
cat + vg∂l

)
p(1)

g

+Dp∂
2
xp(1)

g , (26a)

∂tp
(1)
s = p(0)

g f
(1)
cat + f

(0)
cat p(1)

g + vs∂lp
(1)
s

+Dp∂
2
xp(1)

s , (26b)

∂tc
(1)
t = −γ

∫
∞

0

dl [vgp
(1)
g + αl (p(1)

g + p(1)
s )]

+α(n(1) − c
(1)
t ) + Dc∂

2
xc

(1)
t , (26c)

∂tn
(1) = γ(Dp − Dc)∂

2
x

∫
∞

0

dl l (p(1)
g + p(1)

s )

+Dc∂
2
xn(1) . (26d)

Here, f
(1)
cat denotes the first-order correction of an expan-

sion of the catastrophe rate fcat = f
(0)
cat + f

(1)
cat + · · · with

respect to ct. It is given by

f
(1)
cat = −f

(0)
cat

c
(1)
t

cf
. (27)

We assume spatially periodic boundary conditions and
since Eqs. (26) are first-order differential equations with
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respect to time, we choose the following Fourier ansatz

for the two perturbations c
(1)
t and n(1):

c
(1)
t = Aeσt+iqx + c.c.,

n(1) = An eσt+iqx + c.c. ,
(28)

(c.c. stands for the complex conjugate). Here q denotes
the perturbation wave number and σ is a complex pa-
rameter, which is determined as outlined in the following.

After inserting the respective expressions for c
(1)
t and f

(1)
cat

in Eqs. (26a) and (26b), one may easily integrate the lat-
ter ones with respect to the length l of the microtubules.
After a few intermediate steps, the following expressions

for p
(1)
g and p

(1)
s are obtained:

p(1)
g = − νf

(0)
cat A

vgcf (σ + Dpq2)
exp

(
σt − f

(0)
cat

vg
l

)
(29a)

×
[
exp

(
− (σ + Dpq

2)

vg
l

)
− 1

]
exp (iqx) + c.c.,

p(1)
s = − νf

(0)
cat A

vscf (σ + Dpq2)
exp

(
σt − f

(0)
cat

vg
l

)
(29b)

×
[
c1 exp

(
− (σ + Dpq

2)

vg
l

)
+ c2

]
exp (iqx) + c.c.,

with the two complex coefficients

c1 =
f

(0)
cat

f
(0)
cat + (1 + β)(σ + Dpq2)

,

c2 =
σ + Dpq

2 − f
(0)
cat

f
(0)
cat + β(σ + Dpq2)

.

(30)

With the help of the expression for p
(1)
g in Eq. (29a), the

integrals
∫

dlp
(1)
g and

∫
dl lp

(1)
g occurring in Eqs. (26c)

and (26d) can be explicitly evaluated

∫
∞

0

dl p(1)
g =

νA

cf
k1 eσt+iqx + c.c. , (31a)

∫
∞

0

dl l p(1)
g =

νvgA

cf
k2 eσt+iqx + c.c. , (31b)

where the two abbreviations

k1 =
1

f
(0)
cat + σ + Dpq2

,

k2 =
σ + Dpq

2 + 2f
(0)
cat

f
(0)
cat

(
f

(0)
cat + σ + Dpq2

)2 , (32)

have been introduced. For the integral
∫

dl lp
(1)
s one ob-

tains

∫
∞

0

dl l p(1)
s = −

νv2
gA

vscf
b1 eσt+iqx + c.c. (33)

with the complex coefficient

b1 =
c1f

(0)
cat

2
+ c2

(
σ + Dpq

2 + f
(0)
cat

)2

f
(0)
cat(σ + Dpq2)

(
f

(0)
cat + σ + Dpq2

)2 . (34)

After inserting the respective integrals in Eqs. (26c) and
(26d), one obtains two coupled linear and homogeneous
equations for the amplitudes A and An, which may be
written in matrix form

Mue = 0 , (35)

with the coefficient matrix

M =

(
G(σ + α + Dcq

2) + k1 + ακ −Gα
(Dp − Dc)κq2 G(σ + Dcq

2)

)
,(36)

the vector ue = (A, An), as well the abbreviations
κ = k2−βb1 and G = cf/(γνvg). Equation (35) only ad-
mits nontrivial solutions if the determinant of the matrix
M vanishes, i.e. det(M) = 0. The latter condition leads
to a polynomial of fifth-order in σ with rather lengthy
coefficients, which are not given here. The solutions of
this polynomial provide the dispersion relation σ(q) for
model I, which depends on the kinetic parameters α, ν, β
as well as on the diffusion constants Dp and Dc, respec-
tively. Decomposing the dispersion relation into its real
and imaginary part yields the growth rate Re[σ(q)] and
the corresponding frequency ω(q) = Im[σ(q)] of the Hopf
bifurcation as functions of the wave number q. Assum-
ing neutral stability, Re[σ(q)] = 0, provides a condition
for the determination of the neutral curve, c0(q), which
separates as a function of the wave number q the expo-
nentially decaying perturbations from the growing ones.
The minimum of this neutral curve determines the criti-
cal initial concentration c0c.

B. Model II

Following model I, we analyze the dynamics of small
perturbations with respect to the stationary and homo-

geneous basic state p
(0)
g , c

(0)
t,d and n(0) of the reaction cycle

of model II. Using the separation ansatz

pg = p(0)
g + p(1)

g (x, l, t), ct,d = c
(0)
t,d + c

(1)
t,d(x, t),

n = n(0) + n(1)(x, t), (37)

and linearizing Eqs. (1), (10a) and (21) with respect to

the small perturbations p
(1)
g , c

(1)
t,d and n(1) gives the follow-

ing set of dynamical equations with constant coefficients
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for the perturbations:

∂tp
(1)
g = −p(0)

g f
(1)
cat −

(
f

(0)
cat + vg∂l

)
p(1)

g

+Dp∂
2
xp(1)

g , (38a)

∂tc
(1)
t = −ηλvg

∫
∞

0

dl p(1)
g + αc

(1)
d + Dc∂

2
xc

(1)
t , (38b)

∂tc
(1)
d = χ

(
n(1) − c

(1)
t − c

(1)
d − ηλ

∫
∞

0

dl l p(1)
g

)

+Dc∂
2
xc

(1)
d − αc

(1)
d , (38c)

∂tn
(1) = Doli∂

2
xn(1) + (Dc − Doli)∂

2
x

(
c
(1)
t + c

(1)
d

)

+(Dp − Doli)ηλ∂2
x

∫
∞

0

dl l p(1)
g . (38d)

f
(1)
cat denotes the first-order contribution of an expansion

of the catastrophe rate and it is also given by Eq. (27).

The solutions of Eqs. (38) depend exponentially on time
and, by assuming spatially periodic boundary conditions,
the following ansatz for the small perturbations is obvi-
ous:

c
(1)
t = Aeσt+iqx + c.c., c

(1)
d = Ad eσt+iqx + c.c.,

n(1) = An eσt+iqx + c.c. . (39)

Similar to model I, the complex parameter σ is de-
termined via a solvability condition as outlined below.
Equation (38a) is identical to Eq. (26a) and its solution
is therefore also given by Eq. (29a). Inserting this ex-

pression for p
(1)
g in Eqs. (38b)-(38d), the emerging in-

tegrals with respect to the length l are again given by
Eqs. (31), and one finally obtains three linear and homo-
geneous equations for the amplitudes ue = (A, Ad, An)




G(σ + Dcq

2) + k1 −Gα 0
χ(G + k2) G(σ + Dcq

2 + χ + α) −Gχ
G(Dc − Doli)q

2 + (Dp − Doli)q
2 k2 G(Dc − Doli)q

2 G(σ + Doliq
2)



ue = 0, (40)

with G = cf/(ηλνvg). The solvability condition for fi-
nite solutions ue 6= 0 requires that the determinant of
the coefficient matrix in Eq. (40) vanishes. This results
in a fifth-order complex polynomial in σ, which is rather
lengthy and is again not presented here. For a fixed set
of parameters of model II and after a decomposition of
σ into its real and imaginary part, we obtain two cou-
pled equations determining the growth rate Re[σ(q)] and
the frequency ω(q) = Im[σ(q)] of the Hopf bifurcation as
functions of the wave number q. Again, the critical values
c0c and ωc are obtained by applying the neutral stabil-
ity condition Re[σ(q)] = 0 and minimizing the resulting
neutral curve c0(q) with respect to q.

C. Results

Applying the neutral stability condition Re[σ(q =
0)] = 0 to Eq. (35) or to Eq. (40), one obtains for the
respective model the same parameter dependence of the
critical tubulin concentration

c0c = c0c(α, ν, vg, G, . . .) (41)

as well as the same frequency ωc of the homogeneous
Hopf bifurcation as discussed in detail in Ref. [20].

If the wave number q is finite then the critical concen-
tration c0(q), at which the Hopf bifurcation takes place, is
for both models larger than the value of the homogeneous
instability c0c in Eq. (41). The bottom part of Fig. 1 il-
lustrates the typical shape of the neutral curve c0(q) for

model I. Beyond this curve, i.e. for c0 > c0(q), the sta-
tionary solutions become linearly unstable with respect
to small oscillatory perturbations. The wave number de-
pendence of the Hopf frequency ω0(q) =Im[σ(q)] along
the neutral curve is shown in the upper part in Fig. 1.

In the vicinity of the critical density c0c, the neutral
curve may be approximated by the parabolic expression

c0(q) = c0c(1 + ξ2
0q2) , (42)

where the so-called coherence length ξ0 depends on the
kinetic parameters of the reaction cycle, but it is essen-
tially determined by the largest diffusion constant Dc.
Also the frequency dispersion ω0(q) along the neutral
curve has a parabolic shape near q = 0. Both aspects are
crucial for the solution behavior in the weakly nonlinear
regime as discussed in greater detail in Sec. V. The ±q
symmetry of both curves in Fig. 1 indicates the invari-
ance of the model equations with respect to reflections
x ↔ −x.

Since the neutral curve for model I as well as for model
II takes its minimum at q = 0, one always has a bifur-
cation from the stationary state into oscillatory but spa-
tially homogeneous solutions. Accordingly, density varia-
tions at the threshold c0c are not preferred and therefore,
one has ∂tn

(1) = 0 in Eqs. (26d) and (38d), respectively.
So the critical tubulin concentration c0c is the same as in
Ref. [20] and it is determined for model I by Eqs. (26a)-
(26c) and for model II by Eqs. (38a)-(38c) with n(1) = 0
and An ≡ 0.
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FIG. 1: The neutral curve c0(q) (lower part) and the Hopf
frequency ω0(q) (upper part) are shown for model I, where
the diffusion constant Dc = 0.01 of the tubulin dimers and
that of the microtubules Dp = 0 has been used. The other
parameters are G = 3000, α = ν = 0.01, β = 0.1, cf = 3,
and f = 0.1. The critical tubulin concentration corresponding
to the minimum of the neutral curve is c0c = 80.69.

For model II the critical tubulin concentration of the
Hopf bifurcation c0c(α, χ) is shown in Fig. 2 as a function
of the regeneration rate α and the oligomer decay rate χ.
Beyond this surface the stationary reaction cycle becomes
unstable and, moreover, c0c(α, χ) emphasizes that the
Hopf bifurcation is favored at intermediate values of both
parameters, whereas large or very small values of them
inhibit oscillatory solutions.

For a Hopf bifurcation the fifth-order polynomial ob-
tained from Eq. (35) or Eq. (40) always has two com-
plex conjugate solutions describing the dispersion rela-
tion σ(q) for the small perturbations. In the neutrally
stable case one has σ = ±iω0 and hence, apart from
q = 0, the linear solutions along the neutral curve are
superpositions of left and right traveling waves. For the
case of equal amplitudes this may lead to a standing wave
as given, for instance, for the tubulin-t density by

c
(1)
t = E cos (ωct + ϕ) cos (qx) , (43)

where E denotes a real amplitude and ϕ a phase shift.
The other densities may be represented in the same way.

V. AMPLITUDE EXPANSION

The threshold of the Hopf bifurcation is unchanged by
taking into account spatial degrees of freedom, as shown

α

χ

c
0c

FIG. 2: The critical tubulin concentration c0c is shown for
model II as a function of both the regeneration rate α and
the dissociation rate χ, leading to a critical surface for the
onset of the Hopf bifurcation. Solid lines indicate projections
of constant density onto the α − χ plane. The remaining
parameters are G = 3000, vg = 0.1 and ν = 0.01.

in the previous section. So the threshold of the homo-
geneous Hopf bifurcation, as determined in Ref. [20], is
lower than for the spatially-dependent, oscillatory solu-
tions. The homogeneous Hopf bifurcation is always su-
percritical for model I and for model II. Nevertheless,
slightly above this threshold, in the so–called weakly non-
linear regime, the spatiotemporal behavior may be sig-
nificantly changed by the spatial degrees of freedom as
shown in this section and in Sec. VI. We will expose
that the spatially homogeneous oscillations are unstable
in a large parameter range of model I and for all param-
eters in the case of model II. This remarkable result may
be attributed to the competition between the linear fre-
quency dispersion ω0(q) (see e.g. top part in Fig. 1) and
the nonlinear frequency dispersion and is known as the
Benjamin-Feir resonance [39, 47–49].

Close to the bifurcation point of a supercritical bifurca-
tion, there is an efficient method available, the amplitude
equation approach, in order to determine the stability of
the spatially homogeneous oscillatory solutions with re-
spect to inhomogeneous perturbations [39, 47, 49]. The
equation for the envelope A(x, t) of the oscillatory solu-
tion is obtained by a perturbation calculation of the basic
equations given in Sec. II with respect to small oscilla-
tion amplitudes. The linear and nonlinear coefficients of
the amplitude equation are determined as functions of
the rate constants of the reaction cycle and they deter-
mine the stability of the spatially homogeneous oscillat-
ing solutions as well as of traveling wave solutions of the
amplitude equation.

As a small parameter for the perturbation calculation,
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we use the relative distance to the threshold

ε =
c0 − c0c

c0c
. (44)

The complete perturbation scheme is described in detail
for the homogeneous model equations in Ref. [20] and fur-
ther information about the generic method of amplitude
equations is found, for instance, in Ref. [39].

According to the ± symmetry of the oscillatory behav-
ior, the oscillation amplitude increases with the power
law A ∼ √

ε and therefore close to threshold, the solu-
tions of the basic equations may be expanded with re-
spect to powers of

√
ε

u = u(0) + ε1/2u(1) + εu(2) + ε3/2u(3) + O(ε2) , (45)

where the vector notation u(j) = (p̃
(j)
g , p̃

(j)
s , c̃

(j)
t , ñ(j)) is

used for model I and u(j) = (p̃
(j)
g , c̃

(j)
t , c̃

(j)
d , ñ(j)) for model

II with j = 0, 1, 2, 3. It should be noticed that one has the

proportionality
√

ε c̃
(1)
t = c

(1)
t , etc. The components of

u(0) describe the stationary microtubule polymerization
as given in Sec. III and the components of u(1) describe
the linear oscillatory contribution that may be written at
threshold in the following form:

u(1) = B ue eiωct + c.c. , (46)

with a common amplitude B of the vector ue. The latter
one includes the amplitude ratios between the respective
fields, which are given for model I by Eq. (35) and for
model II by Eq. (40). Note that we used the relation
A =

√
εB.

Close to the threshold, one has Re(σ) ∼ ε ≪ 1 and
the linear solution u(1) ∼ eσt grows or decays only by a
very small amount during one oscillation period 2π/ωc.
These two disparate time scales near the threshold, which
is the oscillation period (∝ 2π/ωc) and the growth/decay
time (∝ 1/ε), may be separated within the perturbation
expansion by introducing a slow time scale T = εt [39,
49]. The fast time scale is covered by the exponential
function eiωct and the slow variations will be described
by a time–dependent amplitude B(T ).

The neutral curve of the Hopf bifurcation has its min-
imum always at the wave number q = 0. Therefore
close to the threshold, only long-wavelength modulations
with q <

√
ε/ξ0 [see Eq. (42)] may become supercritical

and, similar to the slow time scale, a slow spatial scale
X = ε1/2x is introduced, which is also described by the
envelope B(X, T ). Altogether, the linear solution near
threshold may be written as

u(1)(t, X, T ) = B(X, T )ue eiωct + c.c. , (47)

and the aim of the perturbation calculation is to derive
an equation of motion for B(X, T ). Instead of applying
the chain rule of differentiation in order to differentiate
the product of time–dependent functions in Eq. (47), one
may replace this operation by the following sum: ∂t →
∂t + ε ∂T . Here ∂t acts only on the fast time–dependence

occurring in the exponential function and ∂T acts only on
the amplitude B(T, X). The same holds for the spatial
derivative ∂x → ∂x +

√
ε ∂X [39].

Using these replacements for the derivatives as well as
the ε–expansion of u, the basic equations for both mod-
els given in Sec. II can be ordered with respect to powers
of

√
ε, leading to a hierarchy of partial differential equa-

tions. The whole procedure for the spatially independent
microtubule polymerization is described in greater detail
in Ref. [20] and may be canonically extended to the case
including slowly spatial variations.

The amplitude equation for B(X, T ) follows from a
solvability condition for the equations at order O(ε3/2)
and it has the following form [39]:

τ0∂T B = (1 + ia)B + ξ2
0(1 + ib)∂2

XB

−g (1 + ic) |B|2B . (48)

Here τ0 is the relaxation time, a is the linear and c the
nonlinear frequency shift, and ξ2

0b describes the linear
frequency dispersion of the oscillations. If the nonlinear
coefficient g is positive one has a supercritical bifurcation
and for negative values of g a subcritical bifurcation. As
shown in Ref. [20], the nonlinear coefficient g is positive
for all investigated parameters and the bifurcation to os-
cillatory solutions always takes place via a supercritical
bifurcation. For the coefficients τ0, a, ξ2

0 , b, g and c,
one obtains explicit expressions in terms of the reaction
constants of the basic model equations, which have been
calculated by using computer algebra. The respective
formulas are long and therefore they are not presented
here. Instead we have plotted the parameter dependence
of these coefficients in Fig. 3 for two sets of parameters
of model I.

Rescaling time T = εt, space X = ε1/2x and the ampli-
tude A(x, t) =

√
ε B(X, T ) back to their original units,

one obtains the common amplitude equation

τ0∂tA = ε (1 + ia)A + ξ2
0(1 + ib)∂2

xA

−g (1 + ic) |A|2A . (49)

The solution space of this universal equation for the en-
velope of oscillating fields of a Hopf bifurcation has been
intensively explored during the last two decades and an
overview of this activity is given by a recent review in [47].
Note that Eq. (49) cannot be derived from a Lyapunov
functional and it may exhibit spatiotemporal chaotic so-
lutions.

The linear coefficients in Eq. (49) may be determined
either by the perturbation procedure or directly from the
dispersion relation σ(q) of the basic reaction equations.
The connection between these two methods becomes ob-
vious by the following reasoning. The solution A = 0
of Eq. (49) corresponds to the stationary polymerization
(see Sec. III), which is stable in the range ε < 0 against
small perturbations of the form A ∝ eσt+iqx and unsta-
ble in the range ε > 0. Neglecting the cubic nonlinearity
in Eq. (49), one obtains with this ansatz for the pertur-
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FIG. 3: The linear and nonlinear coefficients of the ampli-
tude equation (49) are shown for model I as functions of the
regeneration rate and for two different ratios β between the
polymerization and depolymerization velocity: β = 0.1 (solid
line) and β = 0.05 (dashed line). The rest of parameters are
G = 3000, vg = 0.1, ν = 0.01, Dc = 0.01, andDp = 0.

bations the following dispersion relation:

σ = τ−1
0

[
ε (1 + ia) − ξ2

0(1 + ib)q2
]

. (50)

The complex parameter σ is given in terms of the linear
coefficients of the amplitude equation (49). All these lin-
ear coefficients may also be expressed in terms of deriva-
tives of σ and c0 with respect to q or ε (resp. c0) as
follows:

τ0 =
1

c0c∂Re(σ)/∂c0
, a = c0cτ0

∂ω

∂c0
, (51a)

ξ2
0 =

1

2c0c

∂2c0

∂q2
, b = − τ0

2ξ2
0

∂2ω

∂q2
, (51b)

with ω = Im(σ). The derivatives in Eq. (51a) are eval-
uated at c0c and the derivatives in Eq. (51b) at q = 0.
In the neighborhood of the threshold, the dispersion re-
lation σ(q) obtained from the amplitude equation (49)
agrees with the full dispersion relation given by evaluat-
ing the determinant of the matrix in Eq. (36) for model
I or in Eq. (40) for model II. Thus, one may determine
the linear coefficients τ0, a, ξ2

0 and b directly from the full
dispersion relation. However, in order to determine the
nonlinear coefficients g and c of the amplitude equation
(49) as functions of the rate constants of the polymeriza-
tion cycle, it is inevitable to carry out the perturbational
expansion explicitly.

For model I all coefficients of Eq. (49) are plotted in
Fig. 3 as functions of the regeneration rate α and for
model II the coefficients ξ2

0 , b and c are plotted in Fig. 6
as functions of the dissociate rate χ. In addition, in these
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FIG. 4: Neutral curve (dashed line) and Eckhaus stability
border (solid line) are shown for model I. The dotted line dis-
plays the neutral curve obtained by solving the fully linear sta-
bility problem in Eq. (35). The parameters are α = 0.1, β =
0.1, ν = 0.01, Dc = 0.01, Dp = 0 leading to the following coef-
ficients of the amplitude equation: b = −0.0895, c = 5.713 and
hence bc = −0.511. Inside the dark region given by q < qE ,
traveling waves are stable. The critical tubulin concentration
is c0c = 176.86 and, for comparison, to the value ε = 0.1, it
corresponds an absolute tubulin concentration of c0 = 194.55.

two figures the dependence of the product bc on the pa-
rameters α and χ, respectively, is also depicted and, as
we will see in the next section, the value of this product
determines the stability of the spatially homogeneous os-
cillations of Eq. (49) and therefore also of the basic equa-
tions.

A. Nonlinear wave solutions and their stability

The neutral stability condition Re[σ(q)] = 0 applied
to Eq. (50) yields the neutral curve εN = ξ2

0q2 of the
amplitude equation. Above this neutral curve, i.e. for
values of the wave number q

q2 < q2
N =

εN

ξ2
0

, (52)

Eq. (49) exhibits traveling wave solutions of the form

A = Fei(qx+Ωt) , (53)

where the two unknowns, namely the amplitude F and
the frequency Ω, are given as functions of the wave num-
ber q by the expressions:

F 2 = g−1
(
ε − ξ2

0q2
)
,

Ω = τ−1
0

(
εa − ξ2

0bq2 − gcF 2
)

.
(54)
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Note that the amplitude F tends to zero if the wave num-
ber q approaches the neutral curve q → qN .

However, these traveling wave solutions are only sta-
ble with respect to small, inhomogeneous perturbations
v(x, t) in a restricted range of the parameters b, c and q
[39, 47]. This wave number range may be calculated by
using the ansatz

A = ei(qx+Ωt) [F + v(x, t)] (55)

and linearizing Eq. (49) with respect to v(x, t). Choosing
the ansatz v(x, t) = G1e

σt+iKx + G∗

2e
σ∗t−iKx for the re-

sulting linear equation in v(x, t) leads then to two coupled
homogeneous equations for the amplitudes G1 and G2,
where K denotes the wave number of the perturbations.
The solubility condition for these two equations provides
a quadratic polynomial for σ(q, K, b, c) and from the neu-
tral stability condition Re(σ) = 0, the stability bound-
aries are determined. In the limit of long–wavelength
modulations K ≪ 1, traveling waves as given by Eq. (53)
together with Eq. (54) are stable for wave numbers q that
are smaller than the wave number at the Eckhaus stabil-
ity limit qE (see e.g. Ref. [47] and references therein)
given by

q2 < q2
E =

εE

ξ2
0

1 + bc

3 + bc + 2c2
. (56)

The neutral curve εN(q) and the Eckhaus stability
boundary εE(q) are shown in Fig. 4 for one set of pa-
rameters of model I. The dashed line in this figure de-
scribes the parabolic neutral curve εN = ξ2

0q2 as obtained
from the amplitude equation (49), whereas the dotted
line displays the neutral stability curve including higher
order contributions with respect to the wave number q
as obtained by solving the fully linear stability problem
in Eq. (35). According to this figure, the neutral curves
obtained by these two different approaches are in good
agreement even beyond the threshold c0c. Inside the dark
region delimited by qE , traveling wave solutions as given
by Eqs. (53) and (54) are stable. According to the ±q
symmetry of F and Ω, left or right traveling waves may
occur, as discussed in Sec. VI.

However, for values of the coefficients b and c that fulfill
the constraint [48, 49]

bc < −1 (Benjamin − Feir resonance), (57)

there is no range of wave numbers q where the nonlin-
ear solutions in Eq. (53) are stable. Instead of traveling
waves or other stable coherent structures, spatiotemporal
chaotic solutions of Eq. (49) are preferred in this case.

For model I and for two different velocity ratios β, the
dependence of b and c on the regeneration rate α is shown
in Fig. 3, while the product bc is shown in Fig. 5 for two
different nucleation rates ν. As indicated by this figure,
there exists a specific value αBF of the regeneration rate
α below which bc + 1 is negative. Traveling waves are
therefore unstable in this parameter range of model I.
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FIG. 5: The product bc as obtained from model I is shown
as a function of the regeneration rate and for two different
nucleation rates: ν = 0.01 (solid line) and ν = 0.05 (dashed
line). The rate αBF is determined by the condition bc = −1,
which is indicated by the dotted line. Above αBF there exists
a finite wave number band q < qE in which traveling waves
are stable, illustrated also as shaded area in Fig. 4. Rest of
parameters are vg = 0.1, β = 0.1, Dc = 0.01, and Dp = 0.

10

20

0 0.04 0.08 0.12

−30

−20

−10

0

0

6

12

18

0 0.04 0.08 0.12

−3

−2

−1

0

dissociate rate χ dissociate rate χ

ξ
0

2
c

bbc

FIG. 6: The linear coefficients ξ2

0 , b and the nonlinear co-
efficient c of the amplitude equation (49) as well as the
product bc are shown for model II as functions of the dis-
sociate rate χ and for α = 0.01 (solid line) and α = 0.1
(dashed line). For the rest of the parameters, the values
G = 3000, vg = 0.1, ν = 0.01, Dc = 0.1, Doli = 0.01, and
Dp = 0 have been chosen.

However, the product bc increases with increasing regen-
eration rates and above the specific value αBF homo-
geneous oscillations and traveling waves become stable.
This means that for α > αBF a finite range of wave
numbers 0 < |q| < qE arises, which is delimited by the
Eckhaus stability border described by the expression in
Eq. (56). This range is also illustrated as shadowed area
in Fig. 4. Unlike model I where we always find stable
traveling waves for larger values of α, traveling waves are
unstable for model II for all parameters we have investi-
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FIG. 7: The wave number ratio qE/qN is shown as a function
of the regeneration rate α and for two different nucleation
rates: ν = 0.01 (solid line) and ν = 0.05 (dashed line). The
other parameters are the same as in Fig. 5.

gated. That is, one always has bc + 1 < 0 as shown, for
instance, in Fig. 6 as a function of χ and for two different
regeneration rates α.

For α > αBF in Fig. 5 one has a finite wave number
band −qE < q < qE , where traveling wave solutions are
stable. The location of the neutral curve qN and of the
Eckhaus curve qE changes as a function of the parame-
ters, but the interesting quantity is the portion qE/qN of
the stable wave numbers within the neutral curve. Ac-
cordingly, the dependence of qE/qN on the regeneration
rate α is shown in Fig. 7 for model I. The width of stable
wave numbers is rather small and tends to even smaller
values for large values of α.

The expression bc + 1 changes according to Fig. 5 its
sign for different values of the nucleation rate at differ-
ent values of αBF . The border line in the α − ν plane
that separates the parameter range of stable traveling
waves from that of unstable ones is a further compressed
representation of stability, which is shown in Fig. 8 for
three different values of the ratio β = vg/vs between the
growth and shrinking velocity of model I. From this fig-
ure a few trends can be easily identified: large values of
the ratio β or rather small values of the nucleation rate ν
enlarge the range of stable traveling waves, whereas small
values of the regeneration rate α promote a chaotic solu-
tion behavior. Moreover, for parameter combinations of
α and ν, where the polymerization cycle nearly comes to
a standstill because a great number of tubulin dimers is
either incorporated into microtubules, i.e. for large val-
ues of ν, or captured in their inactive tubulin–d form, i.e.
for small values of α, the preferred solution of the micro-
tubule polymerization cycle is spatiotemporal chaos.
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FIG. 8: The border line separating the range where traveling
waves are unstable from the range where they are stable in
a finite wave number band q < qE is shown in the plane of
the nucleation and regeneration rate for three different val-
ues of β = vg/vs. The border lines are determined by the
constraint bc = −1. In the range of unstable traveling waves,
spatiotemporal chaotic solutions are favored. The parameters
vs = 1, Dc = 0.01, and Dp = 0 have been chosen.

VI. NUMERICAL SIMULATIONS OF

NONLINEAR SOLUTIONS

In this section the nonlinear solutions of the basic equa-
tions for model I and model II as well as of the respective
amplitude equation are explored. The validity range of
the amplitude equation is estimated by comparing its so-
lutions with those of the full basic equations. For the spa-
tially homogeneous case, we have determined the validity
range of the amplitude equation in Ref. [20] by comparing
just the oscillation amplitudes obtained from both ap-
proaches. For the more general case with spatial degrees
of freedom, an additional criterion is employed. Beyond
the Hopf bifurcation, we find a boundary in parameter
space that separates the range where regular solutions
are stable from that where they are linearly unstable. In
the linearly unstable range spatiotemporal chaotic solu-
tions are predicted by the amplitude equation approach.
However, it may happen that the regular solutions of the
basic model equations are still stable in this range, which
is then beyond the validity range of the amplitude equa-
tion.

The coupled differential equations for the reaction cy-
cle are solved by a numerical scheme proposed already in
Ref. [20]. Within this algorithm the dependence of the
densities pg and ps on the length variable l is approx-
imated, which reduces the computational time also in
spatially extended systems considerably, as outlined for
model II in the Appendix. For spatially periodic bound-
ary conditions, the partial differential equations are effi-
ciently solved by a pseudo-spectral code, where the con-
servation of the total amount of tubulin dimers is given
by a fixed value of the spatially homogeneous Fourier-
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FIG. 9: For model I the spatiotemporal evolution of ct(x, t) is
shown in part (a) and that of n(x, t) in part (b) at ε = 0.005
and for parameter values giving the product bc = −1.1082 of
the coefficients b and c of the amplitude equation (49). The
solutions are shown for a temporal range of t = 120000, where
the initial range of about t ≈ 106, after starting the simulation
with random initial conditions, has been discarded. Part (c)
displays the spatial Fourier spectrum of the final state of ct

given in (a). The system length is S = 512π and the further
parameters are β = 0.1, ν = 0.01, α = 0.05, Dc = 0.01 and
Dp = 0.

mode ñ(q = 0, t), as explained in the Appendix too.

A. Model I

In Fig. 9(a) we show the spatiotemporal behavior of
the tubulin-t concentration ct(x, t) and in Fig. 9(b) that
of the local tubulin concentration n(x, t). Both fields are
obtained from numerical simulations of the basic equa-
tions of model I for parameters which correspond to the
product bc = −1.1082 in terms of the two parameters
b and c in the amplitude equation (49). According to
Fig. 5, this value of the product bc corresponds to a re-
generation rate α < αBF and thus, one expects close to
the threshold, due to the stability analysis in terms of the

−1

0

1

0 400000 800000 0.12E7

0.4

0.5

−1

0

1

time t

A
(x

0,t)
n(

x
0,t)

c
t(x

0,t)

(a)

(b)

(c)

FIG. 10: The temporal evolution of ct(x0, t) and n(x0, t) at a
fixed point x0 is shown in part (a) and (b), respectively, for
the same set of parameters as in Fig. 9. The stationary and
spatially uniform contribution to ct and n is not depicted.
In part (c) the temporal evolution of the envelope A(x0, t)
of ct(x0, t) is shown as obtained by a numerical solution of
Eq. (49).

amplitude equation, unstable traveling waves and there-
fore spatiotemporal chaotic solutions. Indeed, the solu-
tions of the basic equations of model I show in the long
run also an irregular spatiotemporal behavior as shown
in Fig. 9(a). The time dependence of ct(x, t) is actually
proportional to the periodic function eiωct with the Hopf
frequency ωc. This rapid oscillation smears out the slow
temporal behavior of the envelope, as can be seen by
comparing the space-time plot in Fig. 9(a) with that of
the envelope Re[A(x, t)] shown in Fig. 11(a). The very
different time scale of the rapid variation proportional to
eiωct and that of the slow variation of the envelope of
ct(x0, t) can be seen in Fig. 10(a) at a fixed spatial site
x0, where the fast variation is not resolved anymore. For
the same parameters the temporal variation of the time
evolution of n(x0, t) and that of the amplitude A(x, t)
are shown in Fig. 10(b) and Fig. 10(c), respectively, and
they take place at a similar slow time scale. We should
like to point out that the stationary and spatially ho-
mogeneous portion of the fields ct and n is not included
in Fig. 10. This representation of the solutions allows
a direct comparison with the solutions of the amplitude
equation. The tubulin-d concentration, cd(x, t), as well as
the total amount of polymerized tubulin dimers γL(x, t),
cf. Eq. (13), are in a similar manner irregular as ct(x, t)
in Fig. 9(a).

Interestingly, at any site x0 the relative phase between
the densities L(x, t), ct(x, t) and cd(x, t) of model I is
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FIG. 11: The spatiotemporal evolution of the solution of the
amplitude equation is shown for the same parameters as in
Fig. 9. Part (a) displays the time evolution of Re[A(x, t)] and
part (b) that of Re[A(x, t) exp (iωct)], where the frequency ωc

is given at the threshold of the Hopf bifurcation of model I.
Part (c) displays the spatial power spectrum of the final state
in (a). The shown time window is the same as in Fig. 9.

approximately in accordance with the phase relation be-
tween them in the case of purely homogeneous oscilla-
tions as described in Ref. [20]. This is due to the under-
lying closed reaction cycle and the temporally irregular
behavior takes place on a time scale being much larger
than the time scale ω−1

c of the fast oscillations. These
slowly varying contributions are described by the enve-
lope of the oscillating solutions of the polymerization cy-
cle and are illustrated in Fig. 11(a). This figure displays
a space–time plot of the envelope of the tubulin-t density
ct(x, t), cf. Eq. (28), as obtained from a numerical simula-
tion of the amplitude equation (49) for the same param-
eters as in Fig. 9(a). The temporal evolution as shown in
Fig. 11(a) and in Fig. 9(a) differs optically due to the fast
temporal oscillations of the full solution, which have been
removed during the derivation of the amplitude equation.
For completeness, the temporal evolution Re[A(x, t)eiωct]
is displayed in Fig. 11(b) in order to show the similari-
ties with the full solution ct(x, t) in Fig. 9(a). At a fixed
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FIG. 12: Spatially anharmonic solutions of model I are shown
in part (a) for ct(x, t) and in part (b) for n(x, t) as they occur
at ε = 0.03. They evolve during a long transient period to
spatially homogeneous oscillations. By decreasing the control
parameter to ε = 0.005, this state terminates in a spatiotem-
poral chaotic one (see Fig. 9), as predicted on the basis of the
amplitude equation for the value bc = −1.1082. The shown
time interval is t = 800 and the other parameters are the same
as in Fig. 9.

spatial point x0, the envelope of the full solutions of the
reaction cycle and the solution of the amplitude equa-
tion have a similar complex behavior, which can be seen
by comparing the envelope of ct(x0, t) in Fig. 10(a) with
A(x0, t) in Fig. 10(c). The dynamics of A(x0, t) and that
of the envelope of ct(x0, t) takes place on a comparable
time scale that is nearly given by τ0/ε ≈ 30000. The
typical length scale ξ0/ε1/2 ≈ 14 of the variations of the
envelope A(x) in Fig. 11 is also roughly the same as for
ct(x) or n(x) in Fig. 9. Furthermore, taking for a system
of length S the Fourier decomposition of the full solution
ct(x, t) =

∑
j cj exp(i2πjx/S) and that of the solution of

the amplitude equation A(x, t) =
∑

j aj exp(i2πjx/S),
the similarities between both fields can be recognized by
comparing Fig. 9(c) with Fig. 11(c). The weights of the
Fourier modes are quite similar for both approaches, and
the spectra exhibit a rather broad distribution indicating
their spatiotemporal irregular character.

Surprisingly, one finds for increasing values of the con-
trol parameter ε in the parameter range bc < −1 (or
α < αBF ) instead of spatiotemporal chaotic solutions
rather regular solutions. A snapshot of such a regular so-
lution is shown for ct(x, t0) in the top part of Fig. 12(a)
(solid line) for ε = 0.03. The spatiotemporal behavior
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FIG. 13: The secondary threshold εs(α) is shown as it oc-
curs for model I in the range α < αBF . Below this curve
and beyond the threshold c0c (corresponding to ε = 0), one
has spatiotemporal chaos and above the curve homogeneous
oscillations. The data points are obtained by starting the sim-
ulations with random initial conditions. The dotted line is a
guide to the eye. The same parameters are used as in Fig. 5
and ν = 0.01.

of the tubulin-t concentration is described by a superpo-
sition of standing waves - ct(x, t) ∝ cos(ωct) cos(2qx) +
cos(ωct + ϕ) cos(4qx) + higher harmonics. The first con-
tribution of ct is in agreement with the linear solution at
threshold given in Eq. (43) and the second contribution
as well as higher harmonic terms are due to nonlinear
effects. Such solutions may be obtained with spatially
periodic starting solutions. However, after a long tran-
sient stage these surprising patterns decay to spatially
homogeneous oscillations, which are stable beyond a sec-
ondary threshold as indicated in Fig. 13. The transient

range lasts up to 20 − 30 diffusion times τ =
(
Dcq

2
)
−1

,
where q is the (smallest) wave number of the pattern.
Here τ is an appropriate time scale in order to estimate
the transient regime.

Starting the simulations directly with a homogeneously
oscillating polymerization as initial condition and reduc-
ing the control parameter below the secondary threshold,
the spatially homogeneous oscillations become unstable
and evolve into spatiotemporal chaotic solutions.

Another scenario for the determination of the sec-
ondary threshold εs is as follows. One may start the
simulations with small amplitude random functions and
at different values for ε. For bc < −1 and close to the
threshold of the Hopf bifurcation, the solutions evolve to
spatiotemporal chaotic states. However, increasing the
control parameter ε beyond the secondary threshold, the
simulations terminate after a long transient regime in
spatially homogeneous oscillations.

The behavior of n(x, t) in Fig. 12(b) is quite different
and nearly stationary. Here the oscillations take place
on a very small time scale ∼ 10−3, which is not resolved
in Fig. 12(b). Interestingly, the spatial profile of n(x, t)
has some localized dips where the left and right travel-

ing parts of ct collide. Such a spatially inhomogeneous
distribution of the local tubulin density n(x, t) is crucial
in order to observe a dynamical behavior for ct as shown
in part (a) or for the other densities cd and γL of the
reaction cycle.

During the transient regime the patterns in Fig. 12
become unstable against inhomogeneous perturbations,
when decreasing the control parameter to ε = 0.005 < εs.
Eventually they evolve to chaotic states similar to those
shown in Fig. 9. Such a destabilization of regular pat-
terns into spatiotemporal chaotic states by approaching
the threshold of the Hopf bifurcation from above is not
captured by the amplitude equation (49) and the phe-
nomenon is therefore beyond the validity range of the am-
plitude equation. Accordingly, εs marks an upper limit
of the validity range of the amplitude equation which de-
pends on the details of the system, such as rate constants,
etc.

The secondary threshold occurs in the parameter range
where spatiotemporal chaotic states are preferred imme-
diately above threshold. Therefore, one expects that this
secondary threshold tends to the threshold of the Hopf
bifurcation, when the product bc approaches as a func-
tion of α the stability boundary bc = −1 in Fig. 5, which
corresponds to αBF . Indeed, εs tends to the threshold
of the homogeneous Hopf bifurcation when bc → −1 and
hence α → αBF is approached from below as shown in
Fig. 13. This phase diagram subdivides for regeneration
rates α < αBF the ε–α plane into regions, where either
chaotic or regular structures may be expected beyond the
Hopf bifurcation.

If the simulations are started with random initial so-
lutions in the range ε > εs, one first obtains extremely
anharmonic patterns. In particular, the spatial profile of
the tubulin density n(x, t) has several pronounced dips
between them the other densities behave like a superpo-
sition of standing waves having great similarity with ct

in Fig. 12(a). Unlike Fig. 12(b), these dips are however
not stationary and a kind of coarsening to large scale
structures is found, where, for instance, two closely ad-
jacent dips of n(x, t) merge into each other in the course
of time. This coarsening process is rather fast and takes
place on the time scale 2-3τ , whereas the emerging long–
wavelength structures persist as long transients before
the simulations settle down to spatially homogeneous os-
cillations.

For regeneration rates α > αBF , one obtains either
spatially homogeneous oscillations or spatially anhar-
monic solutions looking like those in Fig. 12. Again, the
anharmonic structures are rather long living transients
(on the average 20-30τ) and one has in long time sim-
ulations a smooth transition to spatially homogeneous
oscillations. Close to the threshold, a direct transition
from the stationary reaction cycle into regularly oscillat-
ing solutions is found, being consistent with the stability
properties given on the basis of the amplitude equation
in Sec. V.

There is the remarkable point that we never found
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FIG. 14: The temporal behavior of the spatially averaged
quantity N(t) = 1
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dx n2(x, t) is plotted for two different
values of the control parameter ε. Random initial conditions
have been used. The regeneration rate is α = 0.01 (cf. also
Fig. 13) and the remaining parameters are given in the caption
of Fig. 9.

traveling wave solutions for the basic equations in the
range α > αBF , although we may expect them accord-
ing to the analysis of the amplitude equation. Whenever
we started with wave numbers q < qE , we always ob-
served a dynamical behavior as shown in Fig. 12, which
only occurs as a transient on the route to spatially ho-
mogeneous oscillations. Possibly the wave number band
of stable traveling waves in terms of the full equations is
smaller than that in terms of the amplitude equation.

Instead of studying the temporal dynamics of the solu-
tions at fixed points in space in order to characterize their
spatiotemporal behavior, one may also consider spatially
averaged quantities such as N(t) = 1/S

∫
dxn2(x, t). For

spatially homogeneous oscillations this quantity is con-
stant. In Fig. 14 the temporal evolution of N(t) is shown
for two different values ε = 0.01, 0.05 of the control pa-
rameter below the secondary threshold and for the regen-
eration rate α = 0.01 < αBF (cf. Fig. 13). Remaining pa-
rameters are the same as in Fig. 9. In both cases the sim-
ulations have been started with random functions as ini-
tial conditions. Beyond a transient of about t ≈ 400000,
N(t) fluctuates around a certain mean value, which cor-
responds to the initial concentration of tubulin dimers.
Two tendencies can be recognized for increasing values
of ε. Firstly, the amplitude of the contributions propor-
tional to exp (iωt) increases with the relative distance
ε to the threshold or, equivalent, with the initial tubu-
lin density c0 = c0c(1 + ε). Secondly, for ε = 0.05 the
time dependence of N(t) includes strong high frequency
contributions. This is due to the stronger excitation of
higher harmonics and due to the smaller coherence length
at larger values of ε. Because of the latter, the tempo-
ral dynamics is spatially less correlated than at smaller
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FIG. 15: Spatial profiles of the densities n, ct, coli and cd of
model II are shown in parts (a)–(d). Part (e) depicts the spa-
tial distribution of the total amount of polymerized tubulin,
described by L in Eq. (17). All solutions are obtained after
a simulation time of t ≈ 106. The length distribution of the
growing filaments pg(l, x0) is shown in part (f) at two fixed
space points, where ηλL in part (e) takes its maximum (solid
line) and minimum (dashed line) being located at x0 ≈ 337
and x0 ≈ 1040, respectively. In all parts the stationary, uni-
form portion of the respective field is not included (see Ap-
pendix). Parameters are vg = 0.1, ν = 0.01, α = 0.01, χ =
0.02, Dc = 0.1, Doli = 0.01, Dp = 0, ε = 0.04 and L = 512π.

values of ε leading to higher frequency contributions to
the spatially averaged quantity N(t). In contrast to this
is the behavior of N(t) at small ε. Here the dynamics is
extremely slow and the envelope of the basic oscillations
hardly varies within a time interval of some multiples of
ω−1

c .

B. Model II

For model II, where the dynamics of oligomers instead
of shrinking microtubules has been taken into account,
one obtains on the level of the amplitude equation for
all parameters the inequality bc + 1 < 0, as illustrated
in Fig. 6. Under this condition homogeneous oscillatory
solutions of the amplitude equation are always linearly
unstable and one obtains immediately above the Hopf
bifurcation spatiotemporal chaotic solutions. In order
to verify this prediction of unstable homogeneous solu-
tions also for the basic equations of model II, we per-
formed extensive simulations along the curves bc(χ) in
Fig. 6 by using random initial conditions. In fact, im-
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mediately above the threshold of the Hopf bifurcation,
one also finds spatiotemporal chaotic solutions. Similar
to model I, beyond a secondary threshold εs, either long
lived spatially anharmonic solutions resembling those in
Fig. 12 for model I or stable homogeneous oscillations are
found.

A few selected results of the simulations of model II
beyond the Hopf bifurcation and below the secondary
threshold are shown in Fig. 15(a)-(e). It displays snap-
shots of the spatial profiles of the different fields that
are obtained after a transient of about t ≈ 106 and for
random initial conditions. The stationary and spatially
homogeneous contributions of the densities n, ct, cd, coli

and L are subtracted. Unlike the other densities of the
reaction cycle, n(x, t) is always far from being zero and
strongly varies around the mean value c0cε, indicated as a
dotted line in part (a), which is conserved in the system.

At the threshold of the homogeneous Hopf bifurcation,
the time–dependent part of the length distribution of

the growing microtubules p
(1)
g (l, t) is given by Eq. (29a)

with σ = iωc. Beyond the threshold two snapshots of

the length distribution p
(1)
g (l, t0) are shown in Fig. 15(f),

which are obtained from numerical simulations. Both
are taken at two different spatial sites x0, where the to-
tal amount of polymerized tubulin ηλL(x, t) in Fig. 15(e)
takes its maximum [solid line in Fig. 15(f)] and its min-
imum (dashed line). The envelope of the length distri-

bution p
(1)
g (l) is exp (−f

(0)
cat/vgl) which is modulated by

a periodically varying function ∝ exp (−ikl) with the
wave number k = ωc/vg. The spatiotemporal behav-
ior of the associated amplitudes is in general complex.
In the case of uniform, regular oscillations the modula-
tion of the length distribution propagates as a traveling
wave ∝ exp [i(ωct − kl)] to larger lengths of the micro-
tubules. This may be seen from the analytical expression

for p
(1)
g in Eq. (29a). Note that negative (positive) values

of p
(1)
g (l) indicate a smaller (larger) density of the fila-

ments with respect to the stationary length distribution
as given in Eq. (22), being consistent with the minimum
(maximum) of ηλL in part (e).

The typical length and time scales of the solutions dis-
played in Fig. 15, on which their envelope varies, are well
described by ξ0/ε1/2 and τ0/ε, respectively. Both quanti-
ties are obtained in terms of the amplitude equation (49).

VII. SUMMARY AND CONCLUSION

Two models, which capture the major biochemical re-
action steps of microtubule polymerization and which
have been investigated previously for a spatially homo-
geneous polymerization [20], are extended in this work
by adding spatial degrees of freedom. During the reac-
tion cycle tubulin dimers are only transferred between
a few different states but not consumed. Therefore, we
have to ensure in the respective models with spatial de-
grees of freedom the overall conservation of the tubulin

dimers. This conservation is described by a generalized
continuity equation for the local density of tubulin, so
that the amount of tubulin dimers changes locally, be-
sides the transfer reactions, also via the local fluxes of mi-
crotubules, oligomers, or tubulin-t and tubulin-d dimers.

The spatial degrees of freedom do not change the
threshold of the Hopf bifurcation, beyond which the sta-
tionary reaction cycle becomes unstable against small os-
cillatory perturbations [20]. The supercriticality of the
Hopf bifurcation is not changed as well. However, spatial
degrees of freedom alter in a wide range of parameters the
stability properties of the homogeneous oscillatory poly-
merization with respect to inhomogeneous perturbations.

Close to the threshold of a supercritical bifurcation, the
weakly nonlinear behavior of the patterns is determined
efficiently in terms of the so-called amplitude expansion.
In this range the resulting amplitude equation describes
the relevant long-wavelength dynamics of the oscillations
and it governs also the stability properties with respect
to inhomogeneous perturbations, as shown by comparing
its solution behaviour with that of the basic equations.

We find for model I that homogeneous oscillatory so-
lutions are unstable immediately above the threshold in
a large parameter range via the well-known Benjamin–
Feir resonance, this process is terminating in spatiotem-
poral chaotic solutions. This is the case, for instance,
below some critical value αBF of the regeneration rate
α < αBF . On the other hand, there is for α > αBF a
finite range of wave numbers |q| < qE where traveling
waves are stable and the corresponding band of stable
wave numbers, the so-called Eckhaus stability band, is
given in Fig. 4. For model II we always found for arbi-
trary parameters immediately above the threshold of the
Hopf bifurcation spatiotemporal chaotic solutions.

By numerical simulations of the basic equations, we
have also checked, how far beyond the threshold the re-
sults of the stability analysis in terms of the amplitude
equations are valid. The parameter ranges where the sta-
bility results of the amplitude equation can be confirmed
have been identified as the validity range of the pertur-
bational approach.

For model I and II the spatiotemporal chaotic behav-
ior, occurring immediately above threshold, is only found
below a secondary threshold, beyond which regular os-
cillating solutions are obtained in numerical simulations
starting with random initial solutions. This secondary
threshold marks an upper limit of the validity range of
the amplitude equations for the presented models. In
addition, it may also limit the parameter range of spa-
tiotemporal chaotic solutions in experiments.

Similarily, starting the simulations for control parame-
ters beyond the secondary threshold, the resulting ho-
mogeneous oscillations become unstable by decreasing
the control parameter and they terminate in irregular,
spatiotemporal chaotic states. For model I this rough
upper limit of the validity range of the amplitude equa-
tion is shown as a function of the regeneration rate
in Fig. 13. In the limit α → αBF the spatiotempo-
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ral chaotic regime vanishes and simultaneously the sec-
ondary threshold tends to the primary threshold. Beyond
the secondary threshold, also interesting long living an-
harmonic and transient patterns occur as shown for in-
stance in Fig. 12.

The results concerning our stability analysis of the ho-
mogeneously oscillating polymerization hold for two di-
mensional extended systems as well. On the level of the
amplitude approximation, the solutions in two spatial di-
mensions are well known (see e.g. [47]). In order to ex-
plore the two dimensional solution behavior in terms of
the basic equations, for instance, beyond the secondary
threshold, the numerical scheme presented in the Ap-
pendix may be readily extended in future investigations
to two spatial dimensions. This also makes an even closer
contact to the experimentally observed inhomogeneous
oscillatory microtubule polymerization [12]. In our pre-
vious work [20] we have shown that for a tubulin concen-
tration below that at the Hopf bifurcation, the oscillatory
polymerization takes place only transiently similar as ob-
served in early experiments. Such a behavior corresponds
in our spatially extended system to transient patterns.

In a series of experiments surprising gravity-driven pat-
terns have been observed during the microtubule poly-
merization [21, 51, 52]. How gravity triggers such pat-
tern forming processes is unclear up to now. More recent
experiments show that the observed spatially periodic
patterns may be related to buckling phenomenon of mi-
crotubule bundles [24]. An appropriate extension of the
presented models seems to provide a promising approach
to these phenomena too.

By increasing the filament density, microtubules may
also undergo a transition to an orientational order [42],
the so–called nematic order. Such a transition is not
included in the present model equations. It has been
shown recently that the interplay between the transition
to orientational order and a stationary polymerization
kinetics may already lead to spatially periodic patterns
[31]. Accordingly, the interplay between a transition
to orientational order and an ongoing oscillatory poly-
merization/depolymerization dynamics rises interesting
questions as a starting point for inspiring future works.

This work has been supported by a grant from the
Deutsche Forschungsgemeinschaft via research unit FOR
608.

APPENDIX: NUMERICAL METHOD FOR

MODEL II

The numerical scheme proposed in Ref. [20] for the
model equations for a spatially homogeneous microtubule
polymerization is extended in this appendix to the mod-
els with spatial degrees of freedom as described in Sec. II.
For the initial concentration of tubulin dimers, we write
c0 = c0c(1+ ε) with the relative distance ε to the thresh-
old of the Hopf bifurcation and we present the main steps
of the numerical scheme by means of model II.

At first, we choose an ansatz separating the solution
of Eq. (1) into its stationary and non-stationary contri-
bution to microtubule polymerization as follows:

pg = p(0)
g (l) + p(1)

g (x, l, t)

= exp

(
−f

(0)
cat

vg
l

)(
ν

vg
+ Fg(x, l, t)

)
. (A.1)

The first and stationary contribution is given by Eq. (22)
and the second one covers the time-dependent part as
discussed for ε = 0 in Sec. IV B. The ansatz (A.1) leads
together with Eq. (1) to a dynamical equation for the
time-dependent real function Fg

∂tFg = −f
(1)
cat

(
ν

vg
+ Fg

)
− vg∂lFg + Dp∂

2
xFg, (A.2)

where the catastrophe rate is given by f
(1)
cat =

f
(0)
cat[exp (−c

(1)
t /cf ) − 1] and c

(1)
t (x, t) is the spatiotem-

poral contribution to ct(x, t) = c
(0)
t + c

(1)
t (x, t). A similar

separation may be chosen for the other fields cd(x, t) =

c
(0)
d +c

(1)
d (x, t) and n(x, t) = n(0)+n(1)(x, t) including the

stationary parts c
(0)
d and n(0). The stationary solutions

p
(0)
g , c

(0)
t , c

(0)
d are evaluated at the threshold of the Hopf

bifurcation with the associated tubulin density n(0) = c0c

while one has the constraint 1
S

∫ S

0
dxn(1) = c0cε beyond

the Hopf bifurcation.
The l-dependence of the solution Fg(x, l, t) of Eq. (A.2)

can be expanded in terms of the first two Fourier modes
as follows:

Fg = B(x, t) + 1
2

[
C(x, t)eikl + C∗(x, t)e−ikl

]
. (A.3)

The wave number k is chosen at its threshold value
k = ωc/vg. Imposing the boundary condition (3) for the
growing microtubules leads to Fg(x, l = 0, t) = 0 and,
therefore, the relation CR = −B with Re(C) = CR fol-
lows. The approach in Eq. (A.3) together with Eq. (A.2)
yields the relation

Im(C) = CI =
ν

kv2
g

f
(1)
cat , (A.4)

while the field B(x, t) obeys the following equation of
motion

∂tB = −f
(1)
cat

(
ν

vg
+ B

)
+ Dp∂

2
xB . (A.5)

Due to the periodically varying contribution to Fg in
Eq. (A.3) and due to the envelope of pg which is expo-
nentially decaying with l in Eq. (A.1), the integrals over
the length distribution of the microtubules in Eqs. (10a)
and (21) converge and may be readily evaluated in terms
of the fields B, CR and CI . As a result of these calcula-
tions, one obtains the following governing equations for
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the densities c
(1)
t , c

(1)
d and n(1)

∂tc
(1)
t = −ηλvg

k2B − δkCI

δ(δ2 + k2)
+ αc

(1)
d

+Dc∂
2
xc

(1)
t , (A.6a)

∂tc
(1)
d = χ

(
n(1) − c

(1)
t − c

(1)
d − ηλL(1)

)
− αc

(1)
d

+Dc∂
2
xc

(1)
d , (A.6b)

∂tn
(1) = (Dc − Doli)∂

2
x(c

(1)
t + c

(1)
d ) + Doli∂

2
xn(1)

+(Dp − Doli)ηλ∂2
xL(1) , (A.6c)

where the abbreviation δ = f
(0)
cat/vg has been introduced

and where the integrated length of growing microtubules
is given by

L(1)(x, t) =

∫
∞

0

dl l p(1)
g (x, l, t)

=
B(3δ2k2 + k4) − 2δ3kCI

δ2(δ2 + k2)2
. (A.7)

Assuming spatially periodic boundary conditions for
all fields, the set of four partial differential equations, as
given by Eq. (A.5) and Eqs. (A.6), may be transformed
into Fourier space. The resulting ordinary differential
equations with respect to time are integrated numerically
by a second–order Runge–Kutta method with a time step
∆t = 0.02.

For the spatially homogeneous part of n(1), one obtains
according to Eq. (A.6c) the relation ∂tñ

(1)(q = 0, t) = 0
for the Fourier transform of n(1)(x, t), which is in agree-
ment with Eq. (7). Therefore, n(1) is a conserved quan-
tity with respect to time and its value is fixed by the
initial condition ñ(1)(q = 0, t = 0) = c0cε, cf. Eq. (5).

For model I, a similar ansatz as given in Eqs. (A.1)
and (A.3) can be made for the shrinking microtubules
ps(x, l, t), which is presented without spatial degrees of
freedom in Ref. [20].
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