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Abstract. We study the alignment of polar biofilaments, such as microtubules and actin, subject to the
action of multiple molecular motors attached simultaneously to more than one filament. Focusing on
a paradigm model of only two filaments interacting with multiple motors, we were able to investigate
in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the
filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the
alignment time is governed by the number of bound motors and the magnitude of the motors’ stepping
fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that
reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by
multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment
of filaments, namely the cooperation between motors and passive crosslinks.

PACS. 87.16.-b Subcellular structure and processes – 05.65.+b Self-organized systems – 87.16.Nn Motor
proteins (myosin, kinesin dynein)

1 Introduction

The fascinating self-organizing behavior of polar biofila-
ments such as microtubules and F-actin, that form the
cytoskeleton of the majority of living cells, continues to
attract attention both among biologists and physicists.
Recent experimental studies revealed a variety of self-
organized structures like three-dimensional active gels,
two-dimensional networks occurring underneath the cell
membrane, aster-like patterns similar to that formed dur-
ing mitosis, as well as one-dimensional bundle structures
found e.g. in stress fibers. While in vivo these structures
are controlled by a plethora of proteins and signaling path-
ways [1], it has been established [2–6] that such structures
are also formed in vitro, in the absence of regulatory pro-
teins and signaling pathways. In turn, the structure for-
mation as well as the nonequilibrium response of motor-
activated gels composed of biofilaments has also become
an active field of theoretical research [7–9].

Bundles of polar biofilaments such as F-actin and mi-
crotubules play an important role in the cytoskeleton’s
functioning and elasticity. Bundle contraction has been
investigated [10–12] as well as bundle elasticity [13,14],
however the dynamics of bundle formation is not well un-
derstood. There are situations, e.g. when the filaments are
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growing from organizing centers in a specified direction,
where the regulation and the confined geometry lead to
bundling. On the other hand, in vitro experiments [15]
showed that passive crosslinks can induce bundling, and
such a transition for nearly parallel semiflexible filaments
has been discussed theoretically [16]. Crosslink-induced
bundling is rather slow, since this mechanism relies on dif-
fusion. However, it is generally believed that linear molec-
ular motors like kinesin or myosin, which convert chemical
energy from adenosine triphosphate (ATP) hydrolysis into
directed mechanical motion, play an important role in the
alignment of individual filaments, which can be considered
as a precursor of bundle formation. Practically nothing is
known about the dynamics of bundle organization due to
motor activity and about the relevant parameters (e.g.
motor concentration, processivity, etc.) determining the
characteristic time of the alignment.

In this work we predict analytically and demonstrate
by in vitro experiments that filaments become aligned
due to the collective action of multiple motors. Taking
advantage of a highly simplified yet nontrivial microme-
chanical model containing only two filaments interacting
with multiple motors, we were able to investigate in de-
tail the dynamics of the filaments’ alignment (or zipping
in the terminology of Ref. [17]). Both theory and experi-
ment revealed that the polar filaments become aligned on
a time scale of several seconds due to collective action of
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many motors. This scale is faster by two orders of magni-
tude than the alignment time by passive crosslinks (several
minutes) reported, e.g., in reference [15]. This fast align-
ment is a collective effect, since a single motor, even if it
is a highly processive one, is known to lead to practically
no alignment [8]. Our model also indicates that the align-
ment time is related to the number of attached motors and
the stochastic nature of motor motion: the alignment time
is directly related to the randomness in the motor step-
ping and force. A second important situation, discussed
theoretically in this work, is the cooperation between mo-
bile motors and stationary crosslinks. In this case, a single
motor-crosslink pair is sufficient for fast alignment.

The structure of the paper is the following. In Sec-
tion 2 we propose a simplified model for two rigid rods
interacting with multiple motors and discuss in detail the
assumptions made. Results of molecular dynamics simu-
lations for rigid and semiflexible filaments are presented
in Section 3. In Section 4 we present an analytical solu-
tion of our model in the continuum limit and estimates
for the corresponding alignment time. The case of a single
motor-crosslink pair is studied in Section 5. In Section 6
we present results of in vitro experiments on the align-
ment of microtubule pairs by kinesin-covered nanobeads.
Conclusions and a discussion are presented in Section 7.

2 Model

To investigate the alignment of polar filaments by multi-
ple motors, we focus on the simplest situation of a pair of
two perfectly rigid rods of fixed length L interacting with
molecular motors attached to both rods. We consider ei-
ther motor oligomers with multiple heads, as used in refer-
ences [4–6,18], or multiple motors attached to polystyrene
nanobeads as in reference [19]. The motors are modeled by
massless linear springs attached perpendicular to the bi-
sector, see Figure 1. Due to the great disparity in the sizes
of biofilaments and molecular motors (≃ 10–20µm vs.
≃ 100 nm), the marching of a motor attached to only one
filament produces no noticeable displacement of the fila-
ment. Thus we can restrict ourselves to motors attached
to both filaments. This remains true as long as one con-
siders motor-covered beads of small size (≃ 200 nm), as in
the experimental demonstration in Section 6.

The number of attached motors, N , is not fixed: the
motors can attach to both filaments, at the intersection
point of the two rods, with a probability pa, as well as
detach from any place with a fixed detachment rate pd. A
more detailed description of the kinetics, where motors at-
tach to a single microtubule first and then, upon marching
close to the intersection point, attach to the second micro-
tubule, only renormalizes the corresponding attachment
rate. As a further simplification, we focus on the symmet-
ric case, i.e. the distance S0 (with −L/2 < S0 < L/2)
of the intersection point from the center of mass of the
tubules is the same for both motor heads. Then the force
exerted on the filament pair by the motor is perpendicular
to the bisector of the angle between the tubules, i.e. paral-
lel to the Y -axis (see Fig. 1). It is easy to see that if motors
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Fig. 1. Sketch of two microtubules interacting with multiple
motors. Motors attach with a probability pa at the intersec-
tion point S0, move along the tubules (in +X direction) while
exerting a spring-like force, and detach with a rate pd.

attach asymmetrically to both rods, the latter will soon
assume a symmetric position, as discussed in [8]. Namely,
if the motor attaches asymmetrically, the leading motor
head (corresponding to larger distance S0 from the cen-
ter) is slowed down by the force due to extension of the
motor’s spring whereas the trailing head is accelerated,
leading to a fast relaxation towards a symmetric config-
uration. Finally, most experiments take place in a quasi-
two-dimensional geometry (e.g. shallow microchambers).
Moreover, if several motors are attached to the filaments,
the latter are kept approximately within a plane. Thus we
restrict ourselves to the two-dimensional case. However, in
view of the situation in biological cells, a generalization to
a full three-dimensional version of the model, with two in-
dependent angles and accounting for out-of-plane torque,
is rather straightforward.

The equations of motion for the rod-like filaments fol-
low from the balance of forces and torques exerted on the
rods by the motors and the environment (viscous drag).
The torque balance leads to an equation for the intersec-
tion angle φ, as defined in Figure 1

ηrφ̇ = τ, (1)

where ηr ≃ πηL3

3 ln(L/b) is the rotational friction coeffi-

cient [20], b is the rod diameter and η is the fluid vis-
cosity. Neglecting the motors’ bending rigidity, the force
of the n-th motor, Fn, acts exactly along the Y -axis, see
Figure 1. The total torque τ created by the motor forces
Fn and the drag force then reads τ =

∑

FnSn cos φ, with
Sn the position of the n-th motor. The motor force Fn is
described by a linear spring, Fn = −κl, where κ is the mo-
tor’s spring constant and l = (Sn − S0) sin φ is the spring
extension. S0 is the position of the intersection point of
the two tubules, see again Figure 1. Finally we arrive at
the torque balance

φ̇ =
κ

ηr
cos φ sin φ

N
∑

n=1

Sn(S0 − Sn). (2)

For the stepping dynamics of the n-th motor we write

Ṡn = V
[

1 − κ(Sn − S0) sin2 φ/Fst

]

+ ξn(t). (3)
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Here we have used a well-accepted linear force-velocity
relation [21,22] of the form

V (F ) = V (1 − F ‖
n/Fst). (4)

Therein V is the motor velocity without load and Fst is
the stall force (forward motion of the motor is impossible

above stall force). F
‖
n is the force Fn opposing the motor

motion projected on the direction of the rod. The stochas-
tic term ξn describes random fluctuations in the stepping
and force of the motor. We assume

〈ξn(t)〉 = 0

and
〈ξn(t)ξm(t′)〉 = 2Dδ(t − t′)δnm. (5)

The noise strength D resulting from the fluctuations in the
stepping dynamics of motors can be estimated from avail-
able experimental measurements of the so-called “random-
ness parameter” [23]. This parameter relates the motor’s
velocity V with the noise strength D (or the motor’s dif-
fusivity) and is defined as

r = lim
t→∞

〈x(t)2〉 − 〈x(t)〉2
d〈x(t)〉 =

2D

dV
. (6)

Here d = 8nm is the motor step size. From reference [23]
we deduce r ≃ 0.4, which results for V ≃ 0.2µm/s in the
estimate D ≃ 3 · 10−4 µm2/s.

Before proceeding, we would like to illustrate a non-
trivial effect: Equations (3) imply an effective attraction
between the motors. Indeed, in the absence of noise, any
difference in the attachment positions S = Si −Sj follows

dS/dt = −V κS sin2 φ/Fst. (7)

One sees immediately from equation (7) that the distance
S always decreases since dS/dt/S = −V κ sin2 φ/Fst ≤ 0.
This effect has a simple interpretation: the spring of the
leading motor (Si > Sj) is more stretched and thus experi-
ences a larger opposing force than the trailing one. Accord-
ing to the force-velocity relation, equation (4), the leading
motor will move slower than the trailing one, and the dis-
tance between them will decrease. Thus, equations (3) de-
scribe two competing processes: localization of the motor
distribution near the intersection point due to the effective
attractive interaction between the motors and spreading
of the distribution due to the random force ξ.

To close the description we need a dynamic equa-
tion for the intersection point of the rods. We denote
with x0, y0 the coordinates of the center of mass of the
upper microtubule in Figure 1 with respect to the in-
tersection point. Then an equation for the intersection
point can be achieved from the geometrical constraint
y0 = −S0 sin φ and the equation of motion for the cen-
ter of mass of the tubules, ηtẏ0 = Fd. Here Fd =

∑

Fn is

the viscous drag force and ηt ≃ η⊥ = 4πηL
ln(L/b) the transla-

tional friction coefficient [20]. For simplicity we have ne-
glected the anisotropy of the translational friction by let-
ting η‖ = η⊥ = ηt. This results in ∂tx0 = 0, i.e. there is

no overall translation of the center of mass. Finally, the
equation for the intersection point coordinate S0 is

Ṡ0 = −κ

N
∑

n=1

(

cos2 φS0

ηr
Sn(S0 − Sn) +

S0 − Sn

ηt

)

. (8)

Above we proposed a model with fixed rates pa and
pd for the attachment/detachment kinetics. It is how-
ever known that the detachment rate is in fact force-
dependent [24]. The approximate dependence, consistent
with experiments, reads [25,26]

pd = p0 exp

(

κal

kBT

)

. (9)

Here p0 is the detachment rate without opposing force, a
is a molecular length scale (a few nm) and l is again the
extension of the motor. The argument in the exponential
is the ratio of the stretching energy of the motor and the
thermal energy; the higher the force acting on the motor,
the higher the probability of detachment. For complete-
ness, this important feature of the motor’s kinetics has
also been included in the model.

3 Numerical results

Equations (2, 3) and (8) with both attachment/detach-
ment kinetics (with or without force dependence) can
be solved by a standard Langevin scheme. For this pur-
pose the noise terms in equations (3) were implemented
as ξn(ti) = ζ∆, where ζ ∈ (− 1

2 , 1
2 ) is a random num-

ber drawn for every attached motor and at every time
step ti from a uniform distribution. The amplitude of the
noise is ∆ =

√
24Ddt, with dt the time increment, to ful-

fill equations (5). At each time step, additional random
numbers were generated for the detachment of already
present motors and the attachment of new ones, according
to the rates defined above. Parameters have been chosen
in the ranges of the following known or estimated val-
ues: kinesin velocity V = 0.01–1µm/s (depending on the
ATP concentration) [23]; kinesin spring constant κ = 200–
400 pN/µm [27]; stall force of kinesin Fst = 5–8 pN [23];
attachment/detachment rates of order pa ∼ 10 s−1 and
pd ∼ 1 s−1 [28]; solvent viscosity η ∼ 0.005 pNs/µm2; mi-
crotubule length L = 10–15µm, and diameter b = 24nm.

Figure 2 shows select numerical results for the angle
φ between the tubules evolving in time due to the collec-
tive action of motors. The black line was obtained by the
model with a constant motor velocity V , i.e. without any
force dependence of the motor speed or the detachment
rate (limit of infinite stall force Fst). As one sees from Fig-
ure 2, alignment (zipping) occurs on a time scale of a few
seconds. For comparison, Figure 2 also shows results tak-
ing into account the force-dependent effects: the red line
has been obtained with the force-velocity relation, equa-
tion (4). For the green line a force-dependent detachment
rate, equation (9), has been implemented. Finally the blue
line displays the behavior for both force-dependent effects
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Fig. 2. (Color online) The angle φ vs. time t during the mo-
tion of multiple motors. Black line (◦): simplest model with-
out force-dependent effects. The angle decreases rapidly, i.e.

the motors zipper the microtubules. Red line (�): with force-
velocity dependence. Green line (△): with force-dependent de-
tachment rate. Blue line (♦): with both. Obtained by Langevin
simulations with D = 10−4 µm2/s, V ≃ 0.2 µm/s, pa =
10 µm/s, pd = 1/s; initial conditions φ(t = 0) = π/6, S0(t =
0) = 0, averaged over 500 runs.

together. As one can see, both force-dependent effects lead
to slower zipping and are approximately additive. How-
ever, for the relevant range of model parameters both ef-
fects lead only to quantitative changes in the alignment
behavior.

Thus, if we restrict ourselves to the simplest case (i.e.
without force-dependent effects), Figure 3 shows the nu-
merically obtained dependences of the characteristic align-
ment time τ0 on the motor’s detachment/attachment rates
and on the fluctuation strength D. As one sees, for not
too large angles (again φ(t = 0) = π/6 has been used for
this figure), apparently τ0 ∝ p2

d/pa and τ0 ∝ 1/D and
thus both an increase in the average number of motors
(∝ pa/pd) and in the fluctuation strength lead to faster
zipping.

We have also investigated the effect of filament flexi-
bility, i.e. finite bending stiffness, by Brownian dynamics
simulations similar to those in reference [29]. Two fila-
ments were represented by two-dimensional space curves
r(s) (parameterized by the arclength s) and then dis-
cretized. All the implications of equations (2, 3) and (8)
could be implemented for this generalized situation. In
addition, we included the bending force Fb = −β∂4

sr(s),
with β the bending stiffness.

Multiple motors induced fast and effective zipping for
both stiff and semiflexible filaments. To test the effect of
finite flexibility, we used a value of β = 0.073 pNµm2 as
reported for actin [30]. Figure 4 shows select results for
such actin-like bending stiffness. The alignment is only
slower by a factor of 2-3 as compared to perfectly stiff rods,
although some filament buckling similar to that reported
in reference [31] occurs. Thus, one can conclude that finite
flexibility does not lead to qualitative changes in the time
scales of alignment. Whether buckling occurs depends on
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Fig. 3. Dependence of the characteristic alignment time τ0 on
the motor kinetics, pa and pd (panel a), and on the inverse fluc-
tuation strength D−1 (panel b). The alignment time is linear
in both chosen parameter combinations, τ0 ∝ p2

d/pa and τ0 ∝
1/D. Obtained by Langevin simulations with V ≃ 0.2 µm/s;
D = 10−4 µm2/s for panel a) and pa = 10 µm/s, pd = 1/s for
panel b).

t=0.1 s t=5 s t=7.5 s

Fig. 4. Three snapshots illustrating the effect of actin-like flex-
ibility (bending stiffness β = 0.073 pN µm2) on the alignment
induced by multiple motors. The finite flexibility increases the
alignment time only by a factor of 2-3 compared to perfectly
rigid filaments, although some buckling occurs.

the stepping fluctuations D: it occurs for low randomness
values (as for the value D = 10−4 µm2/s used to obtain
Fig. 4), while it is suppressed for large randomness.

4 Continuum description and alignment time

To understand the time scale associated with the align-
ment process, it is useful to consider a continuum limit
that allows for an analytical treatment. From equation (3)
one can derive the Fokker-Planck equation [32] for the
probability distribution function P (S, t) to find a motor
at position S at time t, which reads

∂tP = D∂2
SP − ∂S(Ṽ P ) − pdP + paδ(S − S0(t)), (10)

with the drift velocity, cf. equation (4),

Ṽ = Ṽ (S − S0(t))

= V
[

1 − κ(S − S0(t)) sin2 φ/Fst

]

. (11)
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The different contributions on the right-hand side of equa-
tion (10) are diffusion by fluctuations in the motor steps,
drift by the motors’ marching with force-dependent veloc-
ity Ṽ , detachment of motors from any position, and finally
attachment of motors. In the last term, the δ-function en-
sures attachment at the intersection point S0 only.

Equations for the angle φ and the intersection point S0

can be obtained by taking the continuum limit of equa-
tions (2) and (8), resulting in [33]

φ̇ =
κ

ηr
cos φ sin φ

∫ L/2

−L/2

dSP (S)S(S0 − S), (12)

Ṡ0 = −κ

∫ L/2

−L/2

dSP (S)(S0−S)

(

cos2 φS0

ηr
S+

1

ηt

)

. (13)

Equations (10–13) can be solved analytically if one
assumes that the attachment/detachment kinetics is suf-
ficiently fast compared to the relative displacement of
the motors and the intersection point, i.e. pd ≫ V/L.
Then the motor distribution P (S) is slowly varying in
the frame moving along with the intersection point, i.e.
P (S, t) = P (S − S0(t)). Introducing S̃ = S − S0(t), one
obtains a quasi-stationary problem from equation (10),

0 = D∂2
S̃
P − (δV − αS̃)∂S̃P − (pd − α)P + paδ(S̃), (14)

with δV = V − Ṡ0 and α = V κ sin2 φ/Fst.
Equation (14) can be solved exactly in the absence of

the force-dependent effects described by equations (4, 9).
This is the case when the motor forces are much smaller
than the stall force, F/Fst → 0. One obtains exponential

solutions on both sides of the intersection point S̃ = 0,
that have to be matched at S̃ = 0. Details of the calcu-
lations can be found in Appendix A. In case of a load-
dependent motor speed, equation (4), the homogeneous
part of equation (14) has an analytical solution in terms of
confluent hypergeometric functions. Since this solution is
impractical to proceed with, we obtained approximate so-
lutions for not too high values of α, see Appendix A. Force-
dependent detachment leads to a solution in terms of
Bessel functions. Finally, since the motors are closely con-
centrated around the intersection point, the effects of both
force dependences are corrections to the force-independent
case and do not lead to changes in qualitative behavior.

Having obtained the distribution function P (S) of the
motors, the integrals in equations (12, 13) for the angle
and the intersection point can be evaluated analytically.
Keeping only terms in linear order in the small variable
δV , cf. Appendix A, the effect of the motion of multi-
ple motors on a pair of microtubules can be described by
a single equation for the mutual angle φ (as defined in
Fig. 1)

φ̇ = − cos φ sin φ
η̄(V S0 + 2D κ

ηt

f)

1 + η̄ cos2 φS2
0

. (15)

Here we used the abbreviation S0 = S0(t) = Si + V t for
the position of the intersection point, with initial position
Si = S0(t = 0). We also introduced the relative frictional
coefficient η̄ = ηt/ηr.

Remarkably, equation (15) captures both the single-
motor as well as the multiple-motor case: The case of a
single motor interacting with two rigid rods had been dis-
cussed already in reference [8]. As detailed there, the evo-
lution of the angle between the two filaments is described
by

φ̇ = − cos φ sin φ
η̄V S0

1 + η̄ cos2 φS2
0

. (16)

As one sees, the single-motor case is recovered from equa-
tion (15) by setting the parameter f = 0. This parame-
ter thus incorporates the collective effects of the motors:
For multiple motors, f = pa/p2

d holds in case of a force-
independent motor speed. If the force-velocity relation,
equation (4), is taken into account, f becomes a rather
complicated function of the angle [34], to leading order

f =
pa

p2
d

(

1 − 2
V κ sin2 φ

pdFst

)

. (17)

From this formula one can see that the force dependence
of the velocity reduces the collective effect (f < pa

p2

d

). This
correction is however small for small angles.

Let us discuss equation (15) in detail. For a single mo-
tor (f = 0) the change in the angle is totally due to the
motion of the intersection point —where the single motor
has to be located— and is governed by the term V S0 in
equation (15). In this case, the angle decreases only if the
intersection point is on the right side with respect to the
center of rod (S0 > 0), while increasing if at the oppo-
site side (S0 < 0). A global (averaged) reduction in the
mutual angles is thus a purely statistical effect, i.e. only
occurs upon averaging over many realizations of intersec-
tion points/motor positions [8]. In contrast, in the case
of multiple motors, there is the second term ∼ f , which
represents the collective effects and is proportional to the
average number of motors and the fluctuation strength.
This term always adds a negative contribution and thus
reduces the angle. If this term dominates, there is fast
alignment. For not too high mutual angles φ, this remains
true when load dependence and/or force-dependent de-
tachment rate, given by equations (4, 9), are considered.
These factors only slightly decrease the term ∼ f and thus
the overall zipping rate.

From equation (15), a simple expression for the char-
acteristic alignment time τ0 can be obtained. For this pur-
pose we assume small angles and linearize equation (15)
with respect to φ. Assuming that the collective effects are
dominating over the change in angle induced by the move-
ment of the intersection point S0, one obtains

τ0 =
ηr

2κD

p2
d

pa
. (18)

This estimate is in good agreement with the numerical re-
sults discussed in Section 3 and shown in Figure 3, namely
that τ0 ∝ p2

d/pa and τ0 ∝ 1/D. Making use of equation (6)
and introducing the average motor run length, lm = V/pd,
and the average number of motors attached to both fila-
ments, N = pa/pd, one can rewrite equation (18) as

τ0 ≃ ηr

rdκNlm
. (19)
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These parameters are more easily accessible experimen-
tally. For the parameter values given above (resulting in
N ≃ 5–10 and lm ≃ 1µm) one obtains τ0 ≃ 5–10 s. This
alignment time is faster by at least one order of magnitude
than the alignment by passive crosslinks, reported to be
in the order of several minutes [15].

5 Single motor cooperating with a static

crosslink

Our formalism also allows for the investigation of another
mode of fast alignment, namely by moving motors coop-
erating with a static crosslink [35]. When the crosslink is
attached to both filaments, the intersection point S0 will
not be displaced in the course of alignment and will act as
a hinge. In this case, a single motor (with coordinate S1)
leads to fast zipping. Thus, we will focus here only on this
simple situation. Equations (2, 3) and (8) then reduce to
two equations

∂tφ = − κ

ηr
S2

1 cos φ sin φ,

∂tS1 = V (1 − κS1 sin2 φ/Fm). (20)

They can be easily solved in two cases, in the limits of
either large or small stall forces. For the case of a large
stalling force, the motor proceeds with a constant speed
like S1 ≃ V t, and one obtains the characteristic alignment
time

τ cl
0 =

(

3ηr

V 2κ

)1/3

, (21)

which evaluates to ≃ 0.3 s for the parameters as given
above. In the limit of a small stall force, the motor is
nearly stalled, ∂tS1 ≈ 0, resulting in S1 = Fst/(κ sin2 φ).
The characteristic alignment time then reads

τ cl
0 =

κηr

4F 2
st

(22)

and amounts to ≃ 0.4–1 s.
In conclusion, zipping is very fast if both a crosslink

and a motor are involved. Thus, as will be discussed in
the experimental part and shown in Figure 6, in order
to distinguish experimentally the collective alignment by
motors, resulting in the alignment time given by equa-
tion (18), from the alignment by cooperation of crosslink-
motor pairs, resulting in equations (21, 22), it is important
to verify that both microtubule-motor contacts are indeed
mobile.

6 Experimental demonstration

To demonstrate fast collective alignment, we performed in
vitro experiments in a similar geometry: a bead assay was
investigated as described previously [19]. Taxol stabilized
microtubules were deposited onto poly-L-lysine incubated
glass slides. Freely floating microtubules were washed out

and the slides were subsequently blocked by casein buffer
to prevent nonspecific bead binding.

Carboxylated polystyrene beads (200 nm diameter;
Polysciences, Warrington, PA) were incubated with
kinesin-1 motors (0.9 nM) and then injected into the
flow cells. At this concentration, the beads spontaneously
bound to and moved along glass-bound microtubules
(> 15µm long). The beads had a very long (> 8µm) run
length. Since for individual motors the average travel dis-
tance is about 1µm, this suggests that the surface of the
beads was decorated with a high density of kinesin motors.

In this assay we observed frequent spontaneous bind-
ing of beads and microtubules and long-range movement
of these beads along microtubules. Most microtubules in
our assay are immobilized very tightly on the surface of
the glass slide. However, we occasionally found loose mi-
crotubules, some of which were linked to stationary ones
via the beads. In such cases we observed linear transport
of the loose microtubule along the immobilized one. On
occasions when the link between microtubules consisted
of more than one bead, we could observe zipping events.
The loose microtubule is not always easily resolvable in
our videos, however the case reported here is representa-
tive of the time scale for such events in our assay.

A select time series of such an alignment event is shown
in Figure 5A-C, where one microtubule is fixed to the sub-
strate and another, mobile one is connected to the former
by the multiple-motor-covered beads. The mutual angle
between the microtubules as a function of time is shown
in Figure 5D. The alignment time is found to be about
5 s, in qualtitative agreement with the prediction.

As discussed above in the context of the combined
action of motors and a crosslink, to make sure that we
are probing the collective effects of multiple motors, it is
important to verify that all the beads involved are mov-
ing. Our setup allows to detect the movements of different
beads independently, cf. Figure 6. There, initially the two
attachment points are almost at the same location, result-
ing in minimal zipping force. Due to limits of optical res-
olution, they cannot be imaged separately first. However,
as the process progresses, they move apart so that both
beads can be individually tracked. At that point, due to
their increased separation, the zipping force has increased,
resulting in the decrease in the angle between the micro-
tubules. By tracking each attachment point separately,
one clearly sees that both points are moving, though at
different speeds, proving that neither attachment point is
stationary.

7 Conclusions

In conclusion, we have shown that multiple motors may
work together in order to align polar filaments, thus con-
stituting an important precursor of bundle formation.
A micromechanical model has been proposed, exhibit-
ing that motors attached to both filaments are localized
around the intersection point of microtubules, propagate
with a velocity close to the single-motor velocity and result
in fast zipping. The average number of attached motors as
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Fig. 5. Two microtubules “zip” together due to multiple mo-
tor activity. (A-C): a sequence, showing one microtubule (black
dashed line) fixed on a glass slide with a second mobile micro-
tubule (white dashed line) bound to the fixed one via cargos
(200 nm diameter polystyrene beads) carrying multiple kinesin-
1 motors. Panel D shows the overall angle ψ = 2φ between the
microtubules as a function of time, starting at ≃ 60o. The mi-
crotubules become almost perfectly aligned within 6 seconds,
though the actual zipping took approximately 5 seconds. Times
are 0 s, 4 s, and 6 s for A-C, respectively. The scale bar is 1 µm.

well as the randomness of the motor stepping appear to
be the most important parameters determining the align-
ment time. The proposed model has been also used to ac-
count for the case of motors and crosslinks. It could also
be generalized to the possible case where two populations
of motors walking in opposite directions are present.

In the situation of multiple motors interacting with
a pair of filaments studied here, a force-velocity relation
has only quantitative effects, in contrast to, e.g., multiple
motors pulling a tube from a membrane [22]. Also a force
dependence in the detachment rate leads only to quantita-
tive changes. Both effects, as one would expect, slow down
the zipping, but only for appreciable initial angles and in
the limit of a small number of motors. Remarkably, the
motor clustering near the intersection point does not rely
on direct interaction between the motors (e.g., excluded
volume or effects of hydrodynamic coupling) and is thus
different from mechanisms based on asymmetric exclusion
processes [36]. It also differs from zipping by successive at-
tachment of nonprocessive motors to soft actin filaments
as reported in reference [17]. The effective attraction of
the motors is solely due to the fact that their extension is
coupled globally through the mutual angle of the micro-
tubules.
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Fig. 6. Verification of the simultaneous motion of both in-
volved beads attached to the microtubules. By tracking each
bead separately, possible after the arrow indicated with “1”,
one clearly sees that both attachment points are moving. The
decrease in the angle between the two microtubules is also in-
dicated and evaluates to ψ = 2φ = 37o, 25o, 17o and 3o for the
sample points indicated by the vertical bars, 1 to 4.

Together with the experimental demonstration of the
fast alignment process, our work suggests another interest-
ing example where motors efficiently achieve a desired goal
by working together. Clearly more detailed experiments
are needed to validate our predictions. The most convinc-
ing test would be to measure directly the temporal depen-
dence of the angle, however obtaining sufficient statistics
requires a large amount of experimental data which is not
easy to achieve. Several indirect aspects of the alignment
dynamics could be clarified more easily by using multi-
headed motors like Eg5 [18], kinesin-14 or artificial oligo-
mers as in reference [4] instead of motor-covered beads.
Labeling the motors should reveal an increased density
of motors near the intersection point. The predicted scal-
ing for the alignment time could be verified, for example,
by varying the ATP concentration, which in turn controls
the motor run length lm, the motor speed, and the average
number of motors attached to the tubules N .

Our theory is built on the assumption that all mo-
tors are mobile in the course of alignment. The presence
of a nonmoving motor (e.g., a defective one, not able to
convert ATP) —or of a crosslink— changes the scaling of
the alignment time, as discussed in Section 5. The need
to clearly separate these two modes of zipping constitutes
another example where in vitro experiments are of valu-
able use to clarify more complex situations in vivo. It
is quite likely that multiple motors align filaments much
faster than crosslinks alone, since the latter have to diffuse
towards the intersection point and to successively attach,
thereby causing gradual changes in the mutual orienta-
tion. Reference [15] seems to confirm that the time scale
of crosslink-induced alignment is of the order of minutes.
However, some crosslinks (e.g. fascin, which is associated
to actin) favor parallel orientation and might induce faster
alignment. To study in vitro the alignment by crosslinks
is a worthwhile study, as is the cooperation of crosslinks
and motors, that has been predicted here to lead to very
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fast alignment. Indeed, as this cooperation is the fastest
mode of alignment, suggested by our modeling, it might
be beneficial for the cell to make use of both crosslinks and
motors in order to efficiently align filaments.
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edge support by the US DOE, grant DE-AC02-06CH11357,
S.P.G. by the NIH Grant 1RO1GM070676 and M.V. by the
NIH Ruth L. Kirschstein National Research Service Award
postdoctoral fellowship.

Appendix A.

The quasi-stationary Fokker-Planck equation for the prob-
ability distribution function of the motors, equation (14),
in the absence of force-dependent effects reads

0 = D∂2
S̃
P − δV ∂S̃P − (pd − α)P + paδ(S̃), (A.1)

with δV = V − Ṡ0 and α = V κ sin2 φ/Fst. One obtains
exponential solutions Pl,r = al,re

V±S , where l, r refer to
the solutions to the left and right of the intersection point
S̃ = 0, with

V± =
1

2D

[

δV ±
√

δV 2 + 4pdD
]

. (A.2)

Here we have already used that the probablity to have
motors far from the intersection point should vanish. To
determine al and ar we need two conditions: first, the
continuity of the probability at the intersection point,
Pl(0) = Pr(0), and second a jump condition for the
derivative implied by the δ-function in equation (A.1),
VpPl(0) − VmPr(0) = pa/D.

Inserting the obtained solution into equations (12, 13)
and integration leads to two effective equations for the
angle of the microtubule pair and the intersection point

φ̇ =
κ

ηr
cos φ sin φ Φ(S0, δV ), (A.3)

Ṡ0 = − κ

ηr
cos2 φS0 Φ(S0, δV ) +

κ

ηt

pa

p2
d

δV, (A.4)

with

Φ(S0, δV )= −pa

p2
d

[

2D + S0δV +
2

pd
δV 2

]

. (A.5)

The right-hand sides of equations (A.3, A.4) contain Ṡ0

via δV . However, the quadratic term in δV occurring in
Φ(S0, δV ) can be safely neglected, since the speed of the

intersection point Ṡ0 is very close to V . This has been
verified numerically and it is also clear from the fact that
the intersection point remains close to the position of all
motors at any time. Then equation (A.4) can be solved
for δV , leading to

δV = V − Ṡ0 =
V − 2 κ

ηr

pa

p2

d

cos2 φ DS0

1 + κ
ηr

pa

p2

d

cos2 φS2
0 + κ

ηt

pa

p2

d

. (A.6)

Neglecting the 1 in the denominator (1 ≪ κ
ηt

pa

p2

d

≃ 5000

holds for the parameters given above), by insertion into
equation (A.3) one arrives at

φ̇ = − cos φ sin φ
η̃

(

V S0 + 2D κ
ηt

pa

p2

d

)

1 + η̃ cos2 φS2
0

, (A.7)

which is equation (15) with f = pa/p2
d.

In case the motors’ speed is load-dependent, although
the homogeneous part of equation (14) has an analytical
solution in terms of confluent hypergeometric functions,
this solution is impractical to proceed with. By the sub-
stitution P (S̃) = exp

(

δV
2D S̃ − α

4D S̃2
)

P̄ (S̃), we transform
equation (14) to the form without first derivative,

∂2
S̃
P̄−

(

pd − α/2

D
+

(δV − αS̃)2

4D2

)

P̄ +paδ(S̃) = 0. (A.8)

For not too high value of α, the second term in the bracket
can be dropped compared to the first one. To be more
specific, for α → 0 and pd ∼ O(1) this approximation in-

validates when (αS̃)2/D ≈ pd. However, due to the factor

exp[−αS̃2/4D], the function P (S̃) becomes exceedingly

small because αS̃2/D ≈ pd/α ≫ 1. Upon the neglection

of the second term in the bracket, the function P (S̃) can
be obtained again, and one can proceed in analogy to the
previous case.
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