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Ultrathin polymer films that are produced, e.g., by spin coating are believed to be stressed since polymers are
“frozen in” into out-of-equilibrium configurations during this process. In the framework of a viscoelastic
thin-film model, we study the effects of lateral residual stresses on the dewetting dynamics of the film. The
temporal evolution of the height profiles and the velocity profiles inside the film as well as the dissipation
mechanisms are investigated in detail. Both the shape of the profiles and the importance of frictional dissipa-
tion vs viscous dissipation inside the film are found to change in the course of dewetting. The interplay of the
nonstationary profiles, the relaxing initial stress, and the changes in the dominance of the two dissipation
mechanisms caused by nonlinear friction with the substrate is responsible for the rich behavior of the system.
In particular, our analysis sheds a different light on the occurrence of the unexpected maximum in the rim
width obtained recently in experiments on polystyrene-polydimethylsiloxane systems.
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I. INTRODUCTION

Thin polymer films are not only of obvious technological
importance, e.g., for coatings and lubrification purposes but
also have attracted recently the attention of physicists be-
cause of their rich dynamical behavior �1–3�. On a nonwet-
table substrate, thin polymer films are unstable and start to
dewet. For usual purely viscous liquid films, this has been
known and studied already for some decades �see �4,5� for
review articles on this subject�; but for polymeric fluids the
dynamics and phenomenology is by far richer. As thinner
and thinner films became technologically feasible, films pro-
duced with thicknesses smaller than the equilibrium size of a
single polymer have been studied �6–9�. These experiments
revealed asymmetric rim shapes, several distinct regimes for
the temporal evolution of the dewetting velocity, and a non-
monotonous behavior of the width of the rim.

The asymmetric rim shapes could be reproduced by mod-
els assuming either a shear thinning fluid �10� or a viscoplas-
tic solid �11�. Such nonlinearities in the mechanical proper-
ties might well be present but seem to be less essential for
the formation of the rim than viscoelasticity and the friction
with the substrate �12–14�. This assertion is supported by the
absence of rim formation in recent experiments on the
dewetting of polystyrene �PS� films floating on a nonwet-
table liquid �14�, where friction is avoided, while linear vis-
coelasticity could be clearly detected. In the experiments on
supported films mentioned above �6,9�, the silicium substrate
is usually coated with polydimethylsiloxane �PDMS�, lead-
ing to a polymer-polymer interface at the substrate inducing
a strong slippage �15�. Indeed, in a viscoelastic model as-
suming slippage and friction with the substrate, the asym-
metric shapes could be reproduced �13�.

Even more striking than the rim shapes has been the oc-
currence of a maximum in the width of the rim in the course
of dewetting time as observed by Reiter et al. �9,16� and
Damman et al. �17� �for simple and for viscoelastic liquids,
one would expect a monotonous increase in the size of the
rim�. This feature could be understood qualitatively using
scaling arguments and modeled by assuming the friction with

the substrate to be nonlinear in the velocity �motivated by the
polymer-polymer interface at the substrate� and by adding
residual stresses inside the film that slowly relax during the
dewetting process �16–18�. These stresses are argued to
originate from the spin-coating process, where upon
evaporation of the solvent polymers are “frozen in” into
out-of-equilibrium configurations which induce an internal
lateral stress �16,19,20�. When the film is heated above the
glass temperature and starts to dewet, these residual stresses
are able to relax, at least partially, and hence influence
the dewetting dynamics. The existence of such stresses
�for rather thick films, where the occurrence of a shift of the
glass transition temperature could be excluded� has been
shown unambiguously �14� and they have been estimated to
be of the order of 105 Pa. The investigation of such stress-
driven dewetting dynamics is not only of importance for the
stability, the mechanical properties, and the dynamics of thin
films but has even broader implications for the understanding
of confined materials and their glass transition �21,22�. In-
deed, the dynamics of the dewetting has been shown to be
severely influenced by the age of the sample, both on solid
and liquid substrates �14,16�.

While there is, nowadays, a rather good understanding of
the instability mechanisms leading to the film rupture
�23,24�, of the rim morphologies in the mature regime �25�
and of the thin-film equations for viscoelastic fluids
�1,26–28�, the temporal evolution of the dewetting process is
still rather unexplored. In this work, we investigate numeri-
cally the model introduced by Vilmin et al. �13� with focus
on the stress-driven dewetting dynamics. Special interest is
led on how the nonmonotonous behavior of the width of the
rim arises—which could not be explained satisfactorily so
far by simple scaling laws �18,29� which assume that friction
is the only relevant dissipation mechanism and that the film
profiles during dewetting are self-affine. Therefore, we also
study the temporal evolution of the profiles, where the vis-
coelasticity shows to have important effects, as well as the
mutual importance of the two dissipation mechanisms—
dissipation by friction with the substrate and viscous dissipa-
tion inside the film—in the course of time.
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The model under investigation has been kept simple and
focuses on three main features: friction on slippery substrate,
viscoelasticity, and residual stress. It corresponds to the
strong slip lubrication model of Ref. �30� in the limit of zero
Reynolds number and without Laplace pressure. Since we
neglect the latter, the model only applies to the time window
before the roundup of the “mature rim” is appreciable, which
for the highly viscous polymer films under consideration
takes several reptation times. Also, instead of a hole geom-
etry, we focus here on the simpler case of an edge geometry,
i.e., a straight contact line. Then the system can be described
by a one-dimensional model. Experimentally, the dynamics
in the hole and the edge geometry have been compared in
Refs. �9,31� and a generalization of the model to the hole
geometry is possible �see Ref. �29��.

This work is organized as follows. In Sec. II, we briefly
review the model and the assumptions made in its derivation.
In Sec. III, we give analytical expressions for the short-time
behavior of the model; both as a benchmark for the subse-
quent numerical work and to present the characteristic length
and velocity scales. Section IV reformulates the problem in
dimensionless variables, the reduced parameters are dis-
cussed, and the numerical method is briefly described. Sec-
tion V shows numerical results for the physical observables:
the dewetted length, the velocity at the edge, the height of
the rim at the edge, and the width of the rim. In Sec. VI, we
have a closer look at the height, velocity, and stress profiles.
Section VII is devoted to the energy balance in the course of
dewetting that is used to extract the two relevant dissipation
mechanisms from the numerical results. Finally, we discuss
the interplay between viscoelasticity, friction, and residual
stress in Sec. VIII and conclusions are presented in Sec. IX.

II. MODEL

We consider dewetting from a straight edge to get an ef-
fective one-dimensional description. Figure 1 shows a sketch
of this geometry. Initially, the film is flat with a vertical front
at x=0 and the film extends infinitely in the direction x�0.

Since we are interested only in the dynamics of the rim for
times smaller than the time scale of the buildup of the mature
rim, we neglect the Laplace pressure arising from the film-air
interface curvature. The film thickness h�x , t� is assumed to
be small with respect to the hydrodynamic extrapolation
length or slippage length b=� /�, where � is the viscosity
and � is the friction coefficient with the substrate �15�. This
is the situation of interest for polymer films on polymer-
covered substrates and results in a plug flow in the film. In
the spirit of a lubrication approximation, it is then sufficient
to consider the horizontal velocity v�x , t�, i.e., in the direc-
tion perpendicular to the dewetting front. For details con-
cerning the derivation and the lubrication approximation, we
refer to Ref. �29�.

In brief, the horizontal momentum equation �integrated
over the thickness of the film� is the balance of the frictional
force at the film-substrate interface and the divergence of the
total stress inside the film. We allow for either linear friction
Fv=�v or nonlinear friction,

Fv = �v̄�v1−�, �1�

as motivated by recent experiments on polymer-polymer
friction �32�. Here v̄ is a characteristic velocity above which
the friction is nonlinear and � is the exponent characterizing
the nonlinear behavior of the friction. If not specified other-
wise, we use �=0.8: a value obtained recently from experi-
mental data on PS dewetting on PDMS-covered substrates
�18�, which is also in qualitative agreement with measure-
ments on rubber-brush friction �32�. The divergence of the
stresses in the film is Fs= ��h��

�x . Inertia is neglected due to the
high viscosity of the polymer film, implying overdamped
motion. Momentum balance then leads to

�v̄�v1−� =
��h��

�x
, �2�

with �=0 for linear friction and, in general, 0���1 for
nonlinear friction.

To connect stresses and velocity gradients, a constitutive
relation has to be specified. We account for the viscoelastic-
ity of the polymer film by using a standard Jeffrey model
�33�,

� + 	1�t� = G	1���xv� + 	0�t��xv�� . �3�

Here G is the elastic modulus and 	0 and 	1, with 	0
	1, are
the two characteristic time scales. By the use of these, one
can define two viscosities �34� �0=	0G=2� and �1=	1G.
The constitutive relation �3� describes viscous behavior with
viscosity �0 for times t�	0, elastic behavior for times 	0
� t�	1, and again viscous behavior with viscosity �1 for
times t�	1. The latter highly viscous behavior �since �1
��0� at long times is supposed to reflect the slow dynamics
by polymer reptation. The time scale 	1 may be substantially
smaller than the bulk relaxation time, due to the thin-film
geometry �35�, but has been recently proven to scale with
molecular weight like the reptation time �17�. The short-time
dynamics t�	0 involves intrachain motions and is domi-
nated by monomer friction resulting in a much lower viscos-
ity.

L(t)

x=0

z

xx=L(t)

W(t)

h(x,t)

v(x,t)
0

0σ (t)
h

FIG. 1. Sketch of the thin-film geometry. The height profile
h�x , t� is represented in gray. The dewetted length L�t� and the
width of the rim W�t� are defined. The velocity v�x , t� is shown as
black arrows; it decreases with the distance from the edge. The
residual stress �0�t� is indicated as a white arrow; it is assumed
homogeneous in space but relaxes in time �see text�.
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The change in the height profile of the film is given by
volume conservation,

�th = − �x�vh� . �4�

The position of the dewetting front is L�t�, starting from
L�t=0�=0. Its motion is governed by the velocity in the film
at the edge, i.e., by �tL=v�L�.

Now we have to specify boundary conditions. At the edge
of the film, the height-integrated stress has to equal the driv-
ing force, hence

h�L���L� = − �S� . �5�

Here S=�sv−�sl−� is the so-called spreading parameter and
�sv, �sl, and � are the surface energies for solid-vapor, solid-
liquid, and liquid-vapor interfaces, respectively. In our case,
we consider a nonwettable substrate, i.e., S�0. Additionally
we impose v�x=�=0, assuming that the dewetting front is
far away from other fronts or holes and that the film is un-
perturbed far away. As initial conditions, we prescribe
v�x , t=0�=0 and h�x , t=0�=h0, i.e., a quiescent film of
height h0. The initial stress ��x , t=0� is either zero, which we
refer to as the case without residual stress, or given by a
constant value throughout the film �0, which we refer to as
the case with residual stress.

III. ANALYTICAL SHORT-TIME SOLUTION

One now has to solve Eqs. �2�–�4� with the initial and
boundary conditions specified above. In general, this has to
be done numerically. For short times, however, one can
give insightful analytical expressions, due to the facts
that the height profile is initially only slightly perturbed
�h�x�−h0�
h0 and that the system is purely viscous at very
short times, i.e., ��2��xv.

A. Without residual stress

We first focus on the case without initial residual stress,
i.e., with ��x , t=0�=0. To the leading order, one has to solve

�v̄�v1−� = 2�h0�x
2v , �6�

which in the case of linear friction �=0 yields an exponen-
tial velocity profile,

v�x,t� = V0 exp�−
x − L
�2W0

	 for x � L . �7�

Here L=L�t� denotes the dewetted distance, with L�t=0�=0.
W0 is the characteristic rim width. By matching the boundary
condition �5�, one can identify the characteristic initial veloc-
ity V0. These two characteristic scales read

V0 =
�S�

�2��h0

, W0 =��h0

�
. �8�

The characteristic rim width can be rewritten as W0=�h0b,
where b is the extrapolation or slippage length; an expression
that has been proposed some time ago �36,37�.

In the case of nonlinear friction ��0, a velocity profile of
the following form is obtained:

v�x,t� = V0,��1 −
�

2

x − L
�2W0,�

	2/�
�9�

for 0�x−L�
2
�
�2W0,� and v�x�=0 elsewhere. The corre-

sponding characteristic scales now read

V0,� = 
�2 − �

2
	V0

2

v̄��1/�2−��

,

W0,� = W0
�2 − �

2
	V0

�

v̄��1/�2−��

, �10�

with V0 and W0 as defined in Eq. �8� above.
For the height profile at short times, one simply has to

solve �th=−h0�xv�x� which results in

h�x,t� = h0
1 +
V0t

�2W0

exp�−
x − L
�2W0

	� ,

h�x,t� = h0
1 +
V0,�t

�2W0,�
�1 −

�

2

x − L
�2W0,�

	�2−��/�� , �11�

for linear and nonlinear friction, respectively. In both cases,
the rim buildup is initially linear with time h�L�t� , t�� t. The
stress inside the film is given by ��x�=2��xv�x� and it can
be easily verified that at the edge h0��L�=−�S� holds and that
the stress vanishes for x→.

B. Effect of residual stress

We now consider the case of an initial residual stress
��x , t=0�=�0. Since the constitutive law is linear, the total
stress can be written as �tot�x�=�v�x�+�0 �see Secs. V and
VII B for a numerical validation�. Here �v represents the
stresses in the absence of the residual stress �the superscript
v stands for viscoelastic�. For the short-time response, we
can again use �v=2��xv and the stress balance at the edge
reads as

��L
tot = 2��xv�x��L + �0 = −

�S�
h�L�

. �12�

Far away from the edge, there are no flows and additionally
��x=�=�0 must hold. Using these boundary conditions,
one gets the same formulas for the velocity and height pro-
files, i.e., Eqs. �7�, �9�, and �11� for linear and nonlinear
frictions, respectively, but with the substitution

�S� → �S� + h0�0 �13�

entering the characteristic velocity scale V0, and in the case
of nonlinear friction entering both V0,� and W0,�.

This clearly indicates that, as expected, the residual stress
constitutes an additional driving force for the dewetting. For
both linear and nonlinear frictions, in the presence of a re-
sidual stress �0, the initial velocity of the dewetting process
is increased by a factor �1+h0�0 / �S�� and �1+h0�0 / �S��2/2−�,
respectively. The initial stress profiles in the presence of re-
sidual stress read as
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��x� = �0 −
�S�
h0
�1 +

h0�0

�S� 	exp�−
x − L
�2W0

	 ,

��x� = �0 −
�S�
h0
�1 +

h0�0

�S� 	�1 −
�

2

x − L
�2W0,�

	�2−��/�
�14�

for �=0 and 0���1, respectively.

IV. DIMENSIONLESS EQUATIONS, PARAMETERS, AND
NUMERICAL METHOD

To get access to the dynamics at longer times, one has to
solve Eqs. �2�–�4� numerically. For this purpose, it is conve-
nient to rescale these equations. Keeping in mind the typical
length and velocity scales obtained above, we define the fol-
lowing dimensionless quantities:

x� =
x

W0,�
, v� =

v
V0,�

, h� =
h

h0
, t� =

t

	0
. �15�

At short times, �=2��xv holds, so we rescale the stress as
��=� /�� with ��=2�

V0,�

W0,�
=�2 �S�

h0
.

Thus we arrive at the dimensionless equations

�2 − �

2
	v�1−� = 2�x��h���� , �16�

�� + 	1��t��� = 	1����x�v�� + �t���x�v��� , �17�

�t�h� = − ��x��v�h�� , �18�

with 	1�=	1 /	0. We also have introduced a reduced parameter

� =
	0V0

W0
= �2

�S�
Gh0

, �19�

which is a dimensionless number quantifying the coupling
strength of the flow field to the height field and which is
proportional to �S� /G.

The rescaled boundary and initial conditions read as

h��L����L� = −
1
�2

, �20�

v��x=�=0, v��x� , t�=0�=0, h��x� , t�=0�=1, and
���x� , t�=0�=0 or �0�, respectively. For the sake of simplic-
ity, in what follows we will suppress the primes.

Remarkably, we are left with only three effective param-
eters: first, the friction exponent � that governs whether one
deals with linear or nonlinear friction. Second, the time scale
	1� �in units of the short-time scale 	0� which governs the
viscoelastic crossover from the elastic behavior of the film
toward the highly viscous flow regime by reptation of chains
in the film. Finally, the parameter �, describing the coupling
between flow and height profiles.

We solved Eqs. �16�–�18� numerically, with the boundary
and initial conditions specified above. For this purpose, we
discretized time and space. At every time step, we applied a
shooting method to solve Eqs. �16� and �17� simultaneously:

i.e., at the edge we started with a trial velocity v��L� �e.g.,
the one of the last time step� and the stress value prescribed
by the boundary condition �20� and evolved both equations
in space. This was done iteratively adjusting v��L�, until the
boundary condition v�x�1�=0 was satisfied up to a pre-
scribed tolerance. Then we updated the height profile on a
moving grid and proceeded to the next time step.

In this work, we are not so much interested in the effects
of parameter variations but instead we want to focus on ge-
neric properties and the interplay between viscoelasticity, lin-
ear or nonlinear friction, and the relaxation of residual stress.
Hence we use throughout the paper the parameter values
	1=100, �=0.2, and �=0 or �=0.8 for linear and nonlinear
frictions, respectively. The initial residual stress was set ei-
ther to ��t=0�=0 or 1.

A difference of 2 orders of magnitude in the two time
scales 	0 and 	1 is enough to separate the two viscous re-
gimes and is a good compromise to avoid too time-
consuming simulations. The actual value of 	1 /	0 is yet un-
known because the short-time scale 	0 is hard to access
experimentally. The value for the nonlinear friction exponent
�=0.8 was used following the experimental results from
Ref. �18�. The value of the parameter � has been chosen for
numerical convenience. This parameter has only quantitative
effects on the dynamics, and modest variations are noticeable
only in the evolution of the height profile. However, we use
reduced variables—the elastic modulus G and the wetting
parameter �S� that enter � of course do have an important
influence. The former is connected to both viscosities and
thus both enter the scales of the velocity and the width �see
Eqs. �8� and �10��.

V. NUMERICAL RESULTS FOR PHYSICAL OBSERVABLES

In dewetting experiments, two observables are directly
accessible by optical microscopy �9�: the dewetted length
L�t� and the width of the rim W�t�. The velocity at the edge
is then obtained by taking the temporal derivative of the
dewetted length dL

dt =V�t�=v�L�t� , t�. The height of the film at
the rim is not that easily accessible �usually atomic force
microscopy has to be used� and a full picture of the temporal
evolution is hard to obtain.

In our simulations, we have direct access to these observ-
ables. Figure 2 shows the dewetted length L�t� in a double-
logarithmic scale �see the inset for linear scale�. Figure 3
displays the temporal evolution of the velocity at the edge,
V�t�=v�L�, again in double-logarithmic scale. In both fig-
ures, the black solid lines are the results without the initial
residual stress. Since we have rescaled the velocity by V0,�,
V�t� starts at one. Once the elastic regime is entered
�for t�	0=1�, the velocity decreases rapidly: the behavior is
roughly t−1 �see the dotted line in Fig. 3�, as is discussed in
detail in Ref. �29�. Upon reaching the long-time viscous re-
gime �t�	1=100�, the velocity still decreases, but only
slowly. The same behavior can be deduced from Fig. 2,
where the dewetted length is almost linear in time, actually
slowly decreasing, for t�1 and t�100.

The red dashed lines in both figures have been obtained
with an initial residual stress ��t=0�=�0=1. As expected,
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since the stress acts as an additional driving force �see Eq.
�13��, the initial velocity is much higher in the presence of
the residual stress. However, it also decays more rapidly due
to the relaxation of this extra driving, until after a time of
order 	1 both velocities are approximately the same.

Figure 4 shows the temporal evolution of the height of the
film at the edge H�t�=h�L�t� , t�. The black �solid� and red
�dashed� curves are obtained without the initial stress and
with ��t=0�=1 and correspond to the respective velocities
displayed in Fig. 3. One can clearly discern the two viscous
regimes at short and long times and the intermediate “elastic
plateau.” The residual stress leads to more pronounced rims,
i.e., higher values of h�L�. This could be expected from the
short-time analysis �11� and �13�. It remains true for all times
because there is no mechanism that could lead to a decrease

in the height, even if the residual stress has relaxed. This
figure remains unchanged if linear friction ��=0� is used
instead.

Figure 5 shows the temporal evolution of the width of the
rim W�t�. It has been obtained by introducing a cutoff as
proposed previously �29�: W�t� is defined as the distance
where h�x , t�= �1+1 /10�h0. For usual liquids, one would ex-
pect a monotonous increase in the width, even in the mature
regime. This is the case without the initial residual stress
�black solid curve� as well as with an initial stress that does
not relax �green dash-dotted curve; see below�. Only if the
residual stress relaxes, here with the time scale 	1 given by
the Jeffrey model, in the course of the dewetting process a
maximum in the rim width is obtained as shown by the red
dashed curve. This maximum is located close to the time

0.1 1 10 100
t

0.1

1

L(t)

0 100 200 300 400 500t
0

1

2

3

4
L(t)

FIG. 2. �Color online� The dewetted length L�t� is shown in
double-logarithmic scale. Nonlinear friction with �=0.8 was used.
The black solid line shows the dependence in the absence of initial
residual stress, while the red dashed curve has been obtained for
��t=0�=�0=1. The inset shows the curves in linear scale.

0.1 1 10 100 1000
t

0.01

0.1

1

V(t)

t-1

FIG. 3. �Color online� The velocity at the edge V�t�=v�L� is
shown as a function of time in double-logarithmic scale.
Corresponding to Fig. 2, the black solid line is in the absence of
residual stress and the red dashed curve has been obtained for
��t=0�=�0=1. The green dash-dotted curve shows a control simu-
lation with a residual stress that is not allowed to relax �see text for
details�.

0.01 0.1 1 10 100
t

1

1.2

1.4

1.6

1.8

2.0
H(t)

FIG. 4. �Color online� The height at the edge H�t�=h�L� is
shown as a function of time in double-logarithmic scale. The black
�solid� and red �dashed� curves correspond to the respective curves
displayed in Figs. 2 and 3. They are obtained with ��t=0�=0 and 1,
respectively. One can clearly perceive the elastic plateau.

1 10 100 1000
t

0

2

4

6

8

10
W(t)

FIG. 5. �Color online� The width of the rim W�t� as a function of
log�t� for the velocity evolutions shown in Fig. 3. The black solid
line obtained without initial residual stress and the green dash-
dotted line obtained with a nonrelaxing residual stress �see text for
details� display a monotonous growth of the width of the rim. Only
the red dashed curve obtained with a residual stress that relaxes
�here with time scale 	1� has a maximum that is located close to 	1.
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scale 	1. The value of the maximum increases with increas-
ing residual stress �0, as has been studied previously �29�.

We note that in this work, we implement the residual
stress as an initial bulk stress ��t=0�=�0 �see Sec. II�. This
implies that the dynamics of this stress is governed—as are
the viscoelastic stresses—by the constitutive law �17� and
hence it decays with the time scale 	1. The green dash-dotted
lines in Figs. 3 and 5 have been obtained by a simulation
where the residual stress was implemented differently: As
has been already proposed in Sec. III B, since the constitu-
tive law is linear one can separate the two stresses right from
the start by writing �tot�x�=�v�x�+�0. The residual stress,
i.e., the contribution �0, then appears as the additional
driving as described by Eq. �13�, and additionally as a ho-
mogeneous contribution in the momentum equation �16�.
One can use this separation, impose zero initial bulk stress,
and consider �0 as a parameter that explicitly decays like
�0�t�=�0�t=0�e−t/	1. Indeed, in doing so one exactly regains
the results obtained by implementing an initial value for the
stress in the bulk, i.e., the red dashed curves, confirming that
this separation in the stress is consistent. In contrast, the
green dash-dotted curves in Figs. 3 and 5 have been obtained
by imposing �0=1 for all t�0. This represents the case
where the residual stress does not relax �or only on time
scales much larger than the time scale 	1�. Initially, the ve-
locity at the edge and the width of the rim are the same for
this case and for relaxing stresses �see the green and red
curves�, hence again confirming the additional driving by the
stress. However, there is no maximum in the rim width but a
monotonous increase if the residual stress does not relax.

At this point, we can conclude that the model with re-
sidual stress reproduces most of the features of the experi-
ments in Refs. �6,9,16�, namely, the high initial velocity, the
fast decay of the dewetting velocity approximately like
v�L�� t−1, the elastic plateau in the height of the rim, and the
maximum in the rim width. It has been shown to be crucial
that this residual stress relaxes. This relaxation dynamics
then naturally influences the dynamics of the film. To get a
better understanding of the processes involved especially in
the nonmonotonous behavior in the rim width, in the follow-
ing sections, we focus on the temporal evolution of the pro-
files and the dissipation mechanisms involved.

VI. NUMERICAL RESULTS FOR THE PROFILES

For the system we are modeling, PS on PDMS-covered
substrate, the evolution of the height profiles of dewetting
films has been studied in the short-time regime by atomic
force microscopy �6�, revealing very asymmetric profiles. In
principle, the height profile could be extracted also by inves-
tigating the interference patterns in optical micrographs. Al-
though velocity fields have been made visible, e.g., in burst-
ing of suspended soap films �38�, the velocity profiles are
probably not obtainable by simple means for a highly vis-
coelastic polymer film.

In our simulations, we have direct access to the profiles
and their temporal evolution. Figure 6 shows the height pro-
files of the film for successive times. The upper panel dis-
plays the case without residual stress, while the lower panel

was obtained with ��t=0�=1. At short times, we get indeed
the profiles as described by Eq. �11�, in the case with residual
stress with the substitution �13�. At longer times, the form of
the profiles cannot be given by a simple function anymore. In
accordance with Fig. 5, in the case without residual stress,
the width of the profile is steadily increasing; while in the
presence of the residual stress, there is a regime where the
edge advances faster than the other end of the rim and the
width changes nonmonotonously.

In the course of the dewetting process, the velocity pro-
files change more severely than the height profiles. Figure 7
shows the velocity profiles inside the film for successive
times in the absence of initial residual stress and Fig. 8 for
the case of ��t=0�=1. In both figures, the velocities have
been renormalized to one at the edge, in order to make the
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FIG. 6. �Color online� The height profiles h�x� at successive
times: black �solid� curve t=0.1, red �dashed� t=1, green �dotted�
t=10, blue �dash-dotted� t=50, and orange �long dashes� t=200.
The upper panel shows the case without residual stress; the lower
panel has been obtained with an initial residual stress ��t=0�=1.
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FIG. 7. �Color online� The velocity profiles v�x�, without re-
sidual stress, at the successive times as in Fig. 6. The velocities at
the edge have been normalized to one to make the changes in the
profile visible. The inset shows the actual profiles, where the edge
velocity is rapidly decaying �cf. Fig. 3�.
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changes in the shape visible. The insets show the unrenor-
malized velocities that are rapidly decreasing in amplitude,
as can be seen from Fig. 3 for the �maximum� value at the
edge. The short-time profiles are in accordance with the pre-
dictions of Eqs. �9� and �13�. The velocity as a function of
the distance from the edge x−L is rapidly decaying. How-
ever, when the system is in the elastic regime �	0� t�	1�,
the profiles are severely perturbed and become concave �see
the green-dotted curves in both Figs. 7 and 8�. After the
system has left the elastic regime and has again become vis-
cous, for t�	1, the behavior is distinct for the two cases �see
the blue �dash-dotted� and orange �long-dashed� curves�:
without residual stress the shape of the profile becomes con-
vex again with similar �actually still slowly increasing�
widths. With residual stress, the profiles also regain a convex
shape, but first with a large characteristic width that then
retracts.

The concave rounded shape of the velocity profiles in the
elastic regime can be understood qualitatively from the gov-
erning equations. In the elastic regime, Eq. �3� states that the
dominating contribution to the stress is �t��G�xv. If we
assume linear friction for simplicity, for the velocity we have
�v=�x�h��, leading to

�tv � �−1G�x�hp�xv� . �21�

Here we have used the fact that the height is almost time
independent in the elastic plateau �see Fig. 4� and has an
almost stationary profile �in the frame moving with L� that
we call hp�x�. Equation �21� is a generalized diffusion equa-
tion for the velocity field. The initial condition to think of is
�upon entering the elastic regime� an exponential profile �cf.
Eq. �7��. Additionally, there is a boundary condition at the
edge, namely, that v�L� is decaying in time �cf. Fig. 3�. It is
easy to convince oneself that indeed the exponential evolves
toward a concave rounded shape in the course of time. This
happens the more severely the larger G /� is and the faster
v�L� decays—which is the reason for the shape being more
severely perturbed in the case of residual stress, where v�L�

decays much faster �see Figs. 7 and 8�. The spatially depen-
dent “diffusion coefficient” hp�x� that decreases with the dis-
tance from the edge is enhancing the rounding up close to the
edge. The same general argument holds in case of nonlinear
friction, although it is less obvious since Eq. �21� becomes a
nonlinear diffusion equation.

The profiles for the stress inside the film are shown in Fig.
9, in the presence of the residual stress. The short-time pro-
file is in accordance with Eq. �14�. At the edge, the stress is
determined by the boundary condition �20�. The relaxation of
the initial residual stress can be deduced from the value at
large x. Relaxation is complete after several relaxation times
	1.

VII. ENERGY BALANCE

Since the work described in Refs. �36,37�, it has been
proven successful to describe the temporal behavior of dew-
etting by an energy balance that accounts for the relevant
driving and dissipation mechanisms. This method has also
been recently used to study the dewetting in the present
model by means of scaling laws �29�. The energy balance
can be derived from Eq. �16� by multiplication by v�x� and
subsequent integration over space, which yields

2 − �

2


L



v�x�2−�dx = 2
L



�x�h�x���x��v�x�dx . �22�

For brevity, we have suppressed the temporal dependence in
the fields v, h, and �; but this equation has to hold for all
times t�0. The left-hand side is the rescaled dissipation by
friction. It is obviously positive, thus also the right-hand side
has to be so. Integration by parts of the right-hand side,
making use of the boundary conditions which imply
�h�v�L

=−h�L���L�v�L�=�2v�L�, and rearrangement of
terms results in

0 2 4 6 8 10
x

0

1

2

3

4v(x)

0 2 4 6 8 10 12 14x
0

0.2

0.4

0.6

0.8

1
v(x)

FIG. 8. �Color online� The velocity profiles v�x�, with an initial
residual stress of ��t=0�=1. The successive times are again as in
Figs. 6 and 7 and the inset shows the unrenormalized, rapidly de-
caying velocities.
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FIG. 9. �Color online� The stress profiles ��x�, with an initial
residual stress of ��t=0�=1. The successive times are: black �solid�
t=0.1, red �dashed� t=1, green �dotted� t=10, blue �dash-dotted�
t=50, orange �long dashes� t=500, and violet �dash-double dot�
t=1000.
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�2v�L� =
2 − �

2


L



v2−�dx + 2
L



h��xvdx . �23�

This formula has a simple interpretation: the left-hand side is
the work done by the rescaled driving force. In dimensional
form it is proportional to �S�v�L� and thus has units of force/
length times velocity. It naturally appeared as a boundary
term. On the right-hand side, the first term is the dissipation
by the �in general nonlinear� friction of the film with the
substrate, and the second term is the height averaged �hence
the weight factor h�x�� dissipation inside the film, which is of
the usual form ��xv.

A. Effect of residual stress

In the presence of residual stress, we again write
�tot�x�=�v�x�+�0. From Eq. �22� we thus obtain

0 =
2 − �

2


L



v2−�dx − �2v�L� + 2
L



h�v�xvdx

+ 2�0
L



h�xvdx , �24�

where we used that the residual stress is considered
homogeneous here. Both the second term �proportional to
−v�L��0� and the last term are negative �since in general
�xv�0, while h�0 and �0�0�. Thus these terms should be
interpreted as the work done by the increased driving force
due to the residual stress �39�. The remaining terms are posi-
tive �for the third term, one has to note that �v�0 and
�xv�0� and as before can be interpreted as the dissipation by
friction and the viscous dissipation inside the film, respec-
tively. In total, we get the balance

�2v�L� − 2�0
L



h�xvdx =
2 − �

2


L



v2−�dx + 2
L



h�v�xvdx .

�25�

It is of the same form as Eq. �23�, but with the additional
driving arising from the residual stress. A similar relation
was introduced empirically in Ref. �29�. Note that since the
dynamics of the residual stress is governed by the constitu-
tive relation �17�, �0 in Eq. �25� is time dependent and re-
laxes like �0�t�=�0�0�e−t/	1.

B. Numerical evaluation

It has been shown for viscous fluids �37� that if a rim has
already been formed on a slippery substrate, the viscous dis-
sipation should be negligible as compared to the dissipation
by friction with the substrate. Recently it has been shown
�13� that for a linear friction law and in the initial �viscous�
regime of dewetting, both mechanisms contribute equally to
the dissipation. What happens at intermediate times, in the
viscoelastic regime, and what are the effects of nonlinear
friction and residual stress are explored in this section.

Knowing all the relevant fields from the numerical solu-
tion, using Eq. �23� �or Eq. �25� in the presence of the re-
sidual stress�, we have access to the work done by the driv-

ing force �W=�2v�L�−2�0�L
h�xvdx, the dissipation by

friction TṠf =
2−�

2 �L
v2−�dx, and the dissipation inside the film

TṠv=2�L
h�v�xvdx. These three quantities are shown in Fig.

10: the upper panel �a� shows the case with linear friction
��=0� and without residual stress. The middle �b� and lower
�c� panels have been obtained with nonlinear friction, with-
out residual stress, and with ��t=0�=1, respectively. In all
panels the black �solid�, red �dash-dotted�, and blue �dashed�
lines correspond to �W, TṠv, and TṠf respectively. As it
should, the sum of the blue and the red curves, i.e., the total
dissipation, equals the black curve, which is the work done
by the driving force, confirming that the energy balance is
respected.

At short times and in the case of a linear friction law, Fig.
10�a� shows that the two dissipation mechanisms contribute
equally, in accordance with Ref. �13�. This can also be seen
by directly evaluating Eq. �23� with the analytical short-time
solutions obtained in Sec. III. In the elastic regime, for
	0� t�	1, the dissipation by friction is larger than the dissi-
pation in the film. Since the system is rather elastic than
viscous, the dissipation in the film is reduced, until it
becomes again comparable to the frictional dissipation for
t�	1. Thus the dissipation by friction is always more or at
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FIG. 10. �Color online� Numerical evaluations of the energy
balance �25�. The black solid curves show the work done by the
driving force �W, the red dash-dotted curves the dissipation in the

film TṠv, and the blue dashed curves the dissipation by friction with

the substrate TṠf. Panels �a� and �b� correspond to the case with
linear and nonlinear friction law , respectively, in the absence of
residual stress; while panel �c� shows the case of nonlinear friction
and an initial residual stress ��t=0�=1.
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least equally important than the dissipation inside the film.
This is in contrast to the case with nonlinear friction dis-
played in Figs. 10�b� and 10�c�. In this case, at short times
the viscous dissipation is dominating, since the sublinear
friction law reduces the friction. In the elastic regime, the
frictional dissipation becomes dominating by the same argu-
ment than in case of linear friction. For t�	1, where the
system becomes viscous again, the dissipation in the film is
dominating, especially in the case with residual stress shown
in Fig. 10�c�. This change in the importance of the two dis-
sipation mechanisms is clearly a combined effect of both
viscoelasticity and nonlinear friction.

VIII. DISCUSSION

We are now able to discuss the effects of the viscoelastic-
ity, the nonlinear friction, and the initial residual stress and
their mutual interplay in some detail. The viscoelasticity
clearly is responsible for the plateau in the height of the rim
�cf. Fig. 4� that is also experimentally observed. Concerning
the flow profiles, it leads to a rounded concave form of the
velocity profile �cf. Fig. 7� that can be explained by the elas-
ticity and the decrease in the driving force during the rim
buildup. When the system enters the second viscous
regime—around 	1—the elastic energy stored in the flow
profiles is dissipated in the film, leading to a relative increase
in the viscous dissipation with respect to frictional dissipa-
tion. In case of a linear friction law with the substrate both
dissipation mechanisms, the one by friction on the substrate
which was dominating in the elastic regime and the one by
viscous dissipation inside the film become approximately
equally important for t�	1 �cf. Fig. 10�a��. In case of non-
linear friction, the dissipation in the film becomes even more
important than the dissipation by friction �see Figs. 10�b� and
10�c��. Though, on even longer time scales �not captured by
the model presented here� where the mature regime is
reached and the profile becomes a half cylinder with a sta-
tionary flow profile while the rim is still growing, the dissi-
pation by friction will be dominating again �37�.

The nonlinear friction renders all the profiles steeper, i.e.,
those for the height of the film as well as those for the ve-
locity and the stress inside the film. Together with the vis-
coelasticity, the nonlinear friction leads to two crossovers
concerning the importance of the two dissipation mecha-
nisms: while in the two viscous regimes �for t�	0 and
t�	1�, the viscous dissipation in the film is more important,
since the friction is reduced due to the sublinear friction law,
in between 	0 and 	1 the dissipation by friction on the sub-
strate is dominating. This is due to the fact that the polymer
film is predominantly elastic in this regime and viscous dis-
sipation is reduced.

The residual stress leads—as expected—to an increase in
the driving force �cf. Eq. �13��, consequently resulting in a
faster initial dynamics. Concerning the velocity profiles, the
faster decrease in the driving force due to the relaxation of
the initial stress amplifies the roundup of the profiles �cf.
Figs. 7 and 8�. Hence, when the system changes from elastic
to viscous around 	1, the dissipation inside the film is larger

than without stress. This indicates that the occurrence of the
maximum in the rim width is due to the faster decrease in the
driving by stress relaxation coupled to the increased impor-
tance of dissipation inside the film that was caused by both
the viscoelasticity and the nonlinearity in the friction.

IX. CONCLUSIONS AND PERSPECTIVE

In conclusion, we have investigated numerically the tem-
poral evolution of a dewetting thin polymer film under ho-
mogenous lateral stress. The main properties of the poly-
meric system, namely, the viscoelasticity of the film, the
friction with the substrate, and the residual stress have been
shown to interplay in the course of dewetted time, leading to
complex behavior. Numerical evaluations of the energy bal-
ance derived from the underlying model equations revealed
that the dissipation during the dewetting is more complex
than expected. The viscous dissipation in the film and the
frictional dissipation at the substrate have different time de-
pendences and, in case of a nonlinear friction law, the fric-
tion is not always the most important dissipation mechanism.
Especially, the occurrence of a maximum in the rim width, as
observed experimentally in Refs. �16,17�, could be traced
back to the combined effect of a more rapid decrease in the
driving force due to the relaxation of stress and the viscous
dissipation of the elastic energy stored in the flow profile,
which is the dissipation mechanism with the largest contri-
bution at the time scale of the elastic-viscous crossover due
to the nonlinearity of the friction.

Our numerical treatment also sheds light on simple ap-
proaches based on scaling laws put forward
previously �18,29,37�. There one either assumes that the
dissipation by friction dominates over the viscous dissipation
or that both mechanisms have the same temporal depen-
dence. Additionally, in these approaches, one has to
assume a simple form of volume conservation, namely,
h0L�t�=C�H�t�−h0�W�t�, to connect the rim width W with
the dewetted length L and the height H at the edge, with a
fixed constant C depending on the shape of the rim. The
complex behavior concerning the dissipation and the non-
self-similarity of the profiles indicates that these simple scal-
ing arguments should be revisited. Indeed, if dissipation by
friction would be the only important dissipation mechanism,
by balancing the driving with the frictional dissipation, a
decrease in the width of the rim would result in a speedup of
the dewetting velocity, which is never observed.

The inclusion of a residual stress in the model proved to
be crucial for the occurrence of the maximum in the rim
width. This maximum has been already used to extract rel-
evant information from experiments, namely, the exponent of
the nonlinear friction law �18�. The inclusion of residual
stresses has also been put forward to analyze effects of film
aging. The dynamics of the dewetting has been shown to be
severely influenced by the age of the sample, both on solid
and liquid substrates �14,16�.

Clearly it would be desirable to extract more information
on these stresses both from the technological point of view
of film stability and for fundamental reasons to better under-
stand the aging of a confined glassy polymer film by means
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of dewetting experiments. Less is known so far on how these
stresses look like—what are the nonequilibrium configura-
tions and the relaxation dynamics of the polymer chains con-
fined in such a thin film? There is no special reason, a priori,
for the residual stress to relax with the same time scale that
governs the long-time flow behavior of the polymeric
liquid—as we have assumed here for simplicity. Indeed, it
has been recently observed experimentally �17� that there are
�at least� two time scales: the characteristic time of the maxi-
mum in the rim width, which does not scale like the reptation
with molecular weight, and the long-time crossover in the

dewetting velocity, which does. These issues will be investi-
gated in a forthcoming publication.
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