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Phase separation under directional quenching has been studied in a Cahn-Hilliard model. In distinct contrast
to the disordered patterns which develop under a homogeneous quench, periodic stripe patterns are generated
behind the quench front. Their wavelength is uniquely defined by the velocity of the quench interface in a wide
range. Numerical simulations match perfectly analytical results obtained in the limit of small and large veloci-
ties of the quench interface. Additional periodic modulation of the quench interface may lead to cellular
patterns. The quenching protocols analyzed are expected to be an effective tool in technological applications to
design nanostructured materials.
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The dynamics of phase separation in multiphase systems
has been investigated intensively during the last decades
�1,2�. A main paradigm are the spontaneously arising spatial
concentration variations of a characteristic average domain
size when a homogeneous binary mixture is quenched into
the thermodynamically unstable region. With the progress of
time coarsening taking place, i.e., the average domain size
increases continuously. The order parameter, usually the rela-
tive concentration of the two species, obeys a conservation
law in contrast to the large number of hydrodynamic pattern-
forming systems �3�. For technological applications it is
highly desirable to run a phase separation process in a con-
trolled manner to create regular structures. This is important
to design nanostructured materials and nanodevices in di-
verse fields, ranging from bioactive patterns �4� to polymer
electronics �5�. The arrangement and the size of the domains
which form the functional elements have a crucial impact on
the device performance—e.g., in photovoltaics, light-
emitting diodes �LEDs�, and electronic circuits made of
polymer blends �5–7�. Previous attempts to manipulate the
phase separation in binary mixtures by various external fields
did not lead to a satisfactory control of the pattern morphol-
ogy �8–12�. A first breakthrough has been established re-
cently by introducing a persistent spatially periodic tempera-
ture modulation in a model of the phase separation in binary
mixtures �13�. In this case stripe patterns with the periodicity
slaved to the externally imposed one can be stabilized
against coarsening above some critical modulation ampli-
tude.

In this paper a new effective mechanism to create periodic
stripe patterns by directional quenching will be presented.
Their wavelength is uniquely selected by the velocity of
quench interface. If in addition a spatially periodic modula-
tion of the quench interface is introduced, also cellular pat-
terns can be generated.

The appropriate mean-field description of phase separa-
tion is commonly based on the generic Cahn-Hilliard �CH�
model �14� �model B �15��. It has been widely used to study
the dynamics of phase separation processes in a large variety
of systems, such as binary alloys, fluid mixtures, and poly-
mer blends �1,2�. In the one-dimensional �1D� case the CH
model is described by the following partial differential equa-
tion �PDE�:

�tu = �xx�− �u + u3 − �xxu� , �1�

where u�x , t� is a real order parameter—e.g., in a binary mix-
ture, the difference of concentration of one species from that
at the critical point—and � is the control parameter. Accord-
ing to Eq. �1�, the spatial average �u� of u�x , t� is conserved.

To keep the analysis most transparent, it is sufficient to
concentrate on the case of �u�=0 �the so-called critical
quench�. The homogeneous solution u=0 becomes unstable
for ��0 against linear perturbations �e�t+iqx with wave
number q� �0,��� and growth rate �=q2��−q2�. The most
unstable �fastest-growing� mode is characterized by qm

=�� /2 with �m=�2 /4. For ��0 a one-parameter family of
stationary periodic solutions up�x ,k� of Eq. �1�, the so-called
soliton-lattice solutions, exists which can be expressed in
terms of the Jacobian elliptic function sn as

up�x,k� =
�2k

�
sn	 x

�
,k
, � =�1 + k2

�
. �2�

The modulus k� �0,1� is related to the wave number q:

q =
�

2K�k��
, K�k� = �

0

�/2 d�

�1 − k2 sin2 �
, �3�

where K is the complete Jacobian elliptic integral of the first
kind. It is known, however, that any periodic solution of Eq.
�1� is unstable against period doubling—i.e., against coars-
ening �16�. In the limit q�qm, the growth rate of the corre-
sponding destabilizing mode is given as �13,16�

�p = �216 exp�− 2�qm/q�/��qm/q� . �4�

Note that � can be scaled out in Eq. �1�, which is reflected in
the � dependence of up, q, and �p. Coarsening becomes ex-
tremely slow, and the solutions of type �2� persist for a long
time 	tp�1 /�p at small q �k→1�. This situation is favor-
able to the general goal of controlling phase separation to
achieve long-lived periodic structures. However, with just a
homogeneous quench from negative to positive values � in
Eq. �1�, periodic structures with a single q can never be
obtained: Any random perturbations about u=0 will develop
initially into a superposition of the fastest-growing Fourier
modes with average wave number �q��qm. In the next stage
coarsening sets in; �q� decreases continuously in time and
follows a scaling law �q��1 / log t �16,17�.
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Consequently, the question arises as to how to control the
quenching process such that a quasistationary periodic solu-
tion of type �2� can be generated. It is well known that tem-
poral and/or spatial modulations of the control parameter
serve as a powerful tool to influence the pattern selection
processes �see, e.g., �18,19��. One of the simplest cases is
directional quenching where a jump of the control parameter
is introduced and the arising interface is dragged with a con-
stant velocity. This has motivated us to analyze systemati-
cally the impact of the directional quenching in the generic
CH model. Thus we have achieved a clear understanding of
controlling the generation of periodic structures. In fact, di-
rectional quenching has been used in earlier numerical simu-
lations of certain phase separation models and some kind of
regular patterns have been observed �20,21�, to which we
will return below. In the CH model �1�, directional quench-
ing is realized by changing � from a negative value at x

xq to a positive one for x�xq—i.e., dividing the system
into a stable and an unstable region. The quench interface
�QI� at xq is moving in the laboratory frame with a velocity
v—i.e.,

��x,t� = 
− � , x 
 − vt ,

+ � , x � − vt .
� �5�

Numerical simulations of the 1D CH model �1� with the
directional quenching �5� demonstrate that a periodic solu-
tion develops behind the QI in the unstable region. Typical
examples for large and small velocities v of the QI are shown
in Fig. 1: For v above some critical value v�, the periodic
solution detaches from the moving QI and the wavelength of
the solution becomes independent of v �Fig. 1�a��. In con-
trast, for v
v� the solution remains attached to the QI with
the wavelength uniquely determined by v. Decreasing v, the
solution develops into a periodic kink lattice �sharp changes
between u= ���� where new kinks are continuously gener-
ated at x=xq�t�=−vt �Fig. 1�b��. The period of the solution,
2�, turns out to be uniquely defined by velocity of the QI and
is shown in Fig. 2. For v→0 one has ��1 /v, whereas for
v�v� one finds �=� /q�. Although the periodic solutions far
away from the moving QI are in principle unstable against
period doubling, the coarsening is extremely slow for pat-
terns generated with q�qm �see Eq. �4��. Thus the extension
Lp of the �quasi-ideal� periodic solution behind the QI can be

estimated as Lp=v	tp�v /�p, where �p is the growth rate of
the unstable period-doubling mode given in Eq. �4�.

The two limiting cases of large and small velocity v of the
QI can be captured analytically. For large v we consider for
instance the initial condition u=0 everywhere except a hump
u�0 localized near x=0. Then the time evolution of this
initial perturbation is governed by the motion of wave fronts
to the left and to the right with a well-defined velocity v� and
wave number q�. These quantities can be calculated by a
linear stability analysis of the leading edge of the front in the
comoving frame. One arrives thus at the so-called marginal
stability criteria �18,22�

d�̃�q0,v��
dq

= 0, Re��̃�q0,v��� = 0, q� =
Im��̃�q0,v���

v� ,

�6�

where �̃�q ,v�=q2��−q2�+ iqv and q0 is a complex number
�saddle point�. Equations �6� lead to the solution

v� =
�7 + 2

3
	2

3
��7 − 1�
1/2

�3/2,

q� =
3��7 + 3�3/2

8�2��7 + 2�
�1/2. �7�

The phase velocity and the wave number of the propagating
periodic solutions obtained from the numerical simulations
of Eq. �1� for v�v�, which do not depend on v, agree per-
fectly with v� and q� given by Eq. �7� �Fig. 2�.

In the opposite limit v→0, our starting point is a particu-
lar stationary solution of Eq. �1� for v=0 interpolating be-
tween u=0 at x
0 and u=�� at x�0, which is characterized
by a sharp front at x�0. If the QI according to Eq. �5� starts
to move, the sharp front would initially follow. But since the
spatial average �u� is conserved regions with u
0 have to be
generated in the region x�xq, which leads to the formation
of a kink lattice �Fig. 1�b��. Its formation can be understood
in terms of a fast-switching stage and a slow-pulling stage:
first a new kink is generated in a short time at x�xq. During
the slow stage, this kink is pulled by the QI, whereby its
amplitude and the distance to the next kink behind, �0�t�,
increase until �0 exceeds some limiting value �0,max and then
a new kink is generated �Fig. 3�. Repeating this process, a
regular kink lattice develops in the wake of the QI with a
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FIG. 1. Solutions of Eq. �1� with the QI �5� for �=1 in the
comoving frame with the QI at x=0: v=2�v� �a� and v=0.02
�v� �b�. Only a part of the system of total length lx=4096 is
shown.
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FIG. 2. Kink separation length �=� /q multiplied by the veloc-
ity v of the QI as a function of v for �=1 �solid circles with a solid
line as a guide to the eye�; v�=1.622 from Eq. �7�. The dotted and
dashed lines correspond to Eqs. �7� and �12�, respectively.
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kink separation length � �i.e., with the period 2��, which is
uniquely determined by the velocity v of the moving QI �Fig.
2�.

During the slow stage, the solution of Eq. �1� in the inter-
val 0
x
�0�t� can be described in a comoving frame x
→x+vt by

vu = �x�− �u + u3 − �xxu� , �8�

which is obtained from Eq. �1� by an x integration with the
boundary conditions u=0 and zero flux �x�−�u+u3−�xxu�=0
for x=xq=0. In addition the explicit time dependence �tu can
be safely neglected since it is only relevant during the fast-
switching stage. The solution of Eq. �8� can be separated into
a strongly varying inner solution uin�x� �0
x
x0, first kink�
and to the almost flat outer solution uout�x� �x�x0� �Fig. 3�.
For calculating uin the term vu�0 in Eq. �8� and for uout the
term �xxu�0 can be neglected, which leads to

��xuin�2 + uin
2 	� −

uin
2

2

 = C + 2uinD ,

C = ���xuin�2�x=0, D = ���xxuin + uin�� − uin
2 ���x=x0

,

�xuout =
vuout

3uout
2 − �

. �9�

The inner and outer solutions are matched at the point x
=x0 chosen such that “flatness” conditions �xuin=�xxuin=0
hold. This gives for u0=uin�x0� the expression

u0
2 =

�

3
+�	 �

3

2

+
2

3
C . �10�

Starting from u=u0, the outer solution uout will grow until at
x=�0 �second kink� the maximal possible amplitude umax

=�� is reached. The maximal interval �0,max=xmax−xmin,
where the outer solution is supported, corresponds obviously
to the minimal value umin=�2� /3 of u0 �C=0 in Eq. �10��.
Let us now calculate the equilibrium distance between kinks
� �e.g., the distance between the third and fourth kinks in
Fig. 3�. During the slow-pulling stage, the distance between
the second and third kinks increases until it reaches its maxi-
mal value � when a new kink is generated at the QI. Inspec-
tion of Fig. 3 shows that then because of �u�=0, the area ���
under the curve between two neighboring kinks away from
the QI equals twice the area Smax under the curve between the
first and second kinks with

Smax � �
xmin

xmax

u dx = �
umin

umax

u	du

dx

−1

du . �11�

With the use of the outer solution �9�, one obtains from
���=2Smax

� = 2
�6

9

�

v
= 0.544

�

v
, �12�

in perfect agreement with the results of numerical simula-
tions in the limit v→0 �Fig. 2�.

The generalization of the analysis to the off-critical
quench, �u��0, is straightforward. The expressions �7� for
v� and q� hold except the replacement �→�−3�u�2. In the
limit v→0 the distances �+ between two kinks in the region
u�0 and �− for u
0, respectively, become different. We
find �+−�−= �u�� /��, and for the resulting period � of the
kink lattice,

� � �+ + �− =
2

v
�2

�6

9
� + 	8 − 25

�6

9

�u�2� . �13�

As in the case �u�=0, we found Eq. �13� confirmed in nu-
merical simulations of Eq. �1� for different values of �u� in
the limit v→0.

Let us now switch to the 2D case u�x ,y , t� where we study
first numerically the 2D version of the CH equation �1�:

�tu = �2�− �u + u3 − �2u� , �14�

with the moving QI �5�. Zero-flux boundary conditions have
been used at x=0, lx and periodic boundary conditions at y
=0, ly. Initially the QI is located at xq= lx moving from right
to left. The system size was lx=512, ly =256, and we start
with the homogeneous solution u= �u� with small superim-
posed noise of the strength �u where �u��� and �u� �u�.
Thus the well-known Ginzburg criterion, necessary for the
validity of a mean-field description of a phase separation
process �23�, is satisfied: in fact, the dynamics does not de-
pend on the particular choice of �u.

For the off-critical quench �u��0, when v
v� always
regular stripe patterns with domains parallel to the QI were
found �see, e.g., Fig. 4�a��. This situation is covered by an
1D analysis presented before where the period of the struc-
ture is uniquely determined by the velocity of the QI. In the
limit v→0, the period of the patterns found in our numerical
simulations agree with �13�. For v�v� irregular coarsening
patterns similar to the case of a spatially homogeneous
quench have been observed.

In contrast, in the case of the critical quench �u�=0, the
orientation of the domains depends on the velocity of the QI.
At small v periodic patterns with domains perpendicular to
the QI are formed �similar to Fig. 4�b��. Then, for v above
vc�0.45, the 1D stripe patterns parallel to the QI appear as
in the off-critical case described above. Finally v�v� leads
eventually to irregular patterns similar to the case of a spa-
tially homogeneous quench.

The earlier studies of a related model subjected to direc-
tional quenching in 2D �20,21�, which demonstrate the exis-
tence of regular patterns as well, were purely numerical and
do not give real insight into the pattern selection mecha-
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FIG. 3. Sketch of the solution of Eq. �1� with the QI �5� in the
comoving frame for x�xq during the slow stage at the time shortly
before the new kink will be generated at xq=0. The domain of
uout�x� connecting to uin at x=x0 is marked by the vertical dashes.
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nisms. In particular, for the relevant off-critical case a noise
strength �u� �u�, violating the Ginzburg criterion, was cho-
sen �21�. Consequently, for instance, the change of the do-
main orientation from perpendicular to parallel with increas-
ing v reported in �21� is considered as an artifact.

Finally we have studied the influence of a periodic modu-
lation of the QI which reads as follows:

��x,y,t� = 
− � , x 
 lx + a cos�py� − vt ,

+ � , x � lx + a cos�py� − vt .
� �15�

In the case of a critical quench, we found that the velocity vc
at which the transition from parallel stripe patterns �similar
to Fig. 4�a�� to perpendicular ones �Fig. 4�b�� occurs depends
on the modulation amplitude a. This dependence is very
strong for values a of the order of the typical domain size at
the initial stage of phase separation �a��m=� /qm�. Further-
more, vc decreases with decreasing modulation wave number
p. For p smaller than the wave number qm of the fastest-
growing mode, patterns with a cellular morphology forming
behind the moving QI have been found �Fig. 4�c��. In the
case of an off-critical quench, we found that �u��0 favors
the formation of regular cellular planforms �Fig. 4�d�� at in-
termediate QI velocities, in analogy to the transition from
parallel to perpendicular stripes for �u�=0.

As a main result of the paper, we have demonstrated that
directional quenching in the CH model leads to the formation

of periodic solutions with the wavelength uniquely selected
by the velocity of the quench interface. This is in contrast to
Ginzburg-Landau models with a nonconserved order param-
eter where a moving quench interface leaves no kinks behind
in the wake �24�.

The 1D CH model has recently found a new interesting
application in liquid crystals to describe Ising walls between
symmetry-degenerated director configurations �25,26�. It
should be possible to verify our predictions on wavelength
selection by dragging the liquid-crystal layer into a homoge-
neous magnetic field.

In conclusion, controlling phase separation by directional
quenching turns out to be a promising tool to create regular
structures in material science. Although slow coarsening can-
not be avoided by directional quenching in principle, long-
lived periodic patterns can be “frozen in”—e.g., by a deep
quench, induced polymerization, chemical treatment, etc. In
this respect it would be certainly rewarding to study in more
depth the 2D case where interesting cellular structures have
been detected and in particular the 3D case.
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