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Nonlinear Cascades in Two-Dimensional Turbulent Magnetoconvection
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The dynamics of spectral transport in two-dimensional turbulent convection of electrically conducting
fluids is studied by means of direct numerical simulations in the frame of the magnetohydrodynamic
Boussinesq approximation. The system performs quasioscillations between two different regimes of
small-scale turbulence: one dominated by nonlinear magnetohydrodynamic interactions; the other
governed by buoyancy forces. The self-excited change of turbulent states is reported here for the first
time. The process is controlled by the ideal invariant cross helicity, HC = JdSv - b. The observations
are explained by the interplay of convective driving with the nonlinear spectral transfer of total

magnetohydrodynamic energy and cross helicity.
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Turbulent convection of an electrically conducting fluid
is of major importance for the dynamics of stellar convec-
tion zones and the evolution of magnetic fields in these
regions. It is thus necessary to better understand its non-
linear dynamics which can be strongly influenced by ad-
vected temperature fluctuations and self-organization
processes associated with the magnetic field. To this end
the two-dimensional (2D) magnetohydrodynamic (MHD)
Boussinesq approximation is applied as a simplified model
that asymptotically describes the behavior of plasmas
under the influence of a strong mean magnetic field di-
rected perpendicular to the direction of gravity—a con-
figuration, for example, realized in the filamentary sunspot
penumbra [1] where the magnetic field is nearly horizontal
and in laboratory plasma experiments. Additionally, con-
vection represents a natural and more realistic way of
sustaining turbulence when studying its inherent properties
by numerical simulations in contrast to the somewhat
artificial forcing mechanisms that are often applied in
such studies. Buoyancy can turn the temperature field
into an active scalar and, as a consequence, substantially
modify the nonlinear spectral transport of energy and other
ideal invariants by the respective turbulent cascade. Some
progress has been made with regard to the understanding of
homogeneous hydrodynamic turbulent convection, e.g.,
[2-10]. However, studies of convection in magnetofluids
(see, e.g., [11] for a recent review) which focus on the
small-scale properties of homogeneously turbulent states
remain scarce.

This Letter deals with an investigation of the inertial-
range dynamics of convectively driven two-dimensional
MHD turbulence by direct numerical simulation. The sys-
tem displays quasioscillatory changes between a state
where turbulence is dominated by buoyant forces and a
state governed by nonlinear MHD interactions. The con-
stantly changing cross helicity, HC = [¢dSv - b, is the
cause for this behavior since it regulates the importance
of MHD nonlinearities compared to buoyancy effects. The
nonlinear interaction of the turbulent cascades of energy
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and cross helicity which leads to the self-excited alterna-
tion of turbulent regimes is reported here for the first time
and yields further insight into the not yet fully understood
dynamics of turbulent flows.

The system is described by the Boussinesq MHD equa-
tions (see, for example, [11]). In two dimensions with x
denoting the horizontal and z the vertical direction they
read

aa—c;)—i-v-Va)—b-Vj=—8X0+VAw, (1
% +v-Vi¢ =nAy, )

Jat
i—f+v-V0=vx+KAO, 3)
V-v=V-b=0, )

where 6 denotes temperature fluctuations about a mean
gradient, v is the velocity of the flow, b is the magnetic
field, @ = e, - (V X v) stands for the vorticity, and ¢ for
the scalar magnetic potential, b = Vi X e,. The symbol
e, denotes the unit normal vector of the two-dimensional
plane. The current density is given by j = —Auw. The
dissipation coefficients v, 1, k are dimensionless kine-
matic viscosity, resistivity, and thermal diffusivity, respec-
tively. The equations are given in nondimensional form
using a normalization to the time characteristic of large-
scale buoyant motions 7, = (ag|VT,|)~'/2 and the tem-
perature gradient scale Ly = T./|VT,|. Here, a is the
coefficient of thermal expansion, g is the gravitational
acceleration acting in the negative z direction, and T(x)
is the mean linear temperature profile. The relevant defini-
tion for 7 is the root-mean-square (rms) value of tempera-
ture fluctuations (see, e.g., [12]). In contrast to the usual
setup, VT is in the horizontal direction in order to elimi-
nate the elevator instability [10]. It otherwise appears due
to periodic boundary conditions in the z direction and leads
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to the formation of coherent vertical jets that significantly
degrade the quality of turbulence statistics. A horizontal
VT, leads to a large-scale x-dependent buoyancy force that
cannot be balanced by the pressure gradient. Since this
Letter concentrates on the small-scale dynamics of turbu-
lence, the generation of large-scale vorticity by this effect
is neglected in Eq. (1). The mean temperature gradient
drives the turbulent flow [right-hand-side of Eq. (3), first
term] by temperature fluctuations which couple with ve-
locity fluctuations through the buoyancy force [right-hand-
side of Eq. (1), first term]. The absence of magnetic dy-
namo action in 2D MHD [13,14] would necessitate explicit
driving of magnetic field fluctuations. However, as the flow
is homogeneously turbulent and thus does not concentrate
the magnetic field on the boundaries of convection cells,
the decay of magnetic energy is a slow process on the
resistive time scale 77, = L3/n > t,,. Thus, this quantity is
quasistationary during the simulation which extends over
15 large-scale buoyancy times f?,,.

The set of Eqgs. (1)—(4) is solved on a 2m-biperiodic
square using a standard pseudospectral method with deal-
iasing according to the 2/3 rule [15]. A simulation of the
above-described setup is conducted with a resolution of
20482 collocation points. The initial state consists of ran-
domly generated fields. The parameters of the run are set to
v=mn=7X10"*%and k = 1.3 X 10~* which correspond
to a Prandtl number Pr= v/k = 5.4 and a magnetic
Prandtl number Pr,, = v/k = 1. The nominal Rayleigh
number is Ra = 2 X 10°. We note, however, that the value
of the Ra characteristic of Rayleigh-Bénard systems with
impermeable vertical boundaries is only of limited signifi-
cance for the present periodic setup. All parameters are
chosen such as to obtain comparable wave number inter-
vals for the inertial ranges of the turbulent fields. The
inherent anisotropy of the flow mainly affects the largest-
scale fluctuations with wave numbers k = 4, while at
smaller scales anisotropy becomes negligible. The total
energy is given by E = EMHD + F¢ with EMHD — EK 4
EM = 1/2 [¢dS(v?> + b?) and the temperature “energy”
EY = 1/2 [¢dS6>. Analogously, the symbol & = eypp +
g9 = [dS[(nw® + 1j2) + k(V6)?] denotes the sum of
dissipation rates of total magnetohydrodynamic energy
and temperature energy. The turbulent state which devel-
ops quickly after the onset of convective instability is
initially characterized by EX = 5.0, EM = 6.0, and E? =
1.9. The values increase slowly by about 40% over the
simulation period while staying in roughly constant ratios
to each other.

In the observed energy spectra the signatures of two
distinct turbulent regimes appear which quasiperiodically
alternate. This happens in a continuous transition where
either one or the other signature becomes more dominant.
The time characteristic of the alternations and the duration
of the clearest manifestation of the different states are of
the order of #,. The simulation period consists of two

groups of time intervals labeled BO (Bolgiano-Obukhov)
and IK (Iroshnikov-Kraichnan). Angle-integrated energy
spectra, E; = [d*k'S([k'| — k)E(k'), obtained by time
averaging over the group of IK intervals are shown in
Fig. 1. The spectrum of total MHD energy denoted by
the solid line exhibits IK behavior, EMHP ~ =3/
[16,17], in the inertial range of scales, 5 < k =< 20. The
spectrum is normalized by (eypbo)!/? with b, being the
rms magnetic field, and it displays a constant prefactor
Cik = 1.8 that agrees well with previous work on 2D
MHD turbulence (see, e.g., [18]). The spectra of EX and
EM (not shown) exhibit comparable amplitudes and scaling
consistent with the IK picture. Although the validity of this
2D MHD turbulence phenomenology is still a matter of
controversy due to its neglect of anisotropy caused by the
magnetic field, direct numerical simulation of two-
dimensional MHD turbulence [18,19] appears to agree
well with it.

The temperature energy spectrum Ez displays a some-
what shorter scaling range, 5 =< k < 12, with an exponent
of —5/3. The Obukhov-Corrsin scaling suggests that tem-
perature fluctuations are passively advected by the velocity
field. Note that this does not necessarily imply the same
scaling for kinetic energy, which in fact scales closer to
k=3/2. The spectrum of the mean square magnetic potential
(not shown) scales self-similarly over the same spectral
interval as EMHP with |4 |> ~ k~7/2, consistent with mag-
netic field fluctuations under the influence of large-scale
driving, | |> ~ EMHPk~2 [20]. Thus, during the IK
phases the effects of buoyancy on the flow are negligible
compared to the MHD nonlinearities which clearly domi-
nate nonlinear dynamics.

Angle-integrated energy spectra obtained by time aver-
aging over the BO intervals are depicted in Fig. 2.
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FIG. 1. Angle-integrated spectra of normalized MHD energy,
EMHD — EMAD /(e in)!/2, compensated by k*/? (solid line),
and temperature “‘energy,” EY, compensated by k>3 (dash-
dotted line), time averaged over the IK intervals. The dashed
line indicates k~5/3 scaling with regard to EMP; the dotted
horizontal lines mark scaling law prefactors.
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FIG. 2. Angle-integrated spectra of kinetic energy, EX, com-
pensated by k''/> (solid line), and temperature energy, EY,
compensated by k> (dash-dotted line). Both spectra are time
averaged over the BO intervals of the simulation. Same meaning
for dotted lines as in Fig. 1.

Although EkK (solid line) is not an ideal invariant of MHD
the spectrum scales with the exponent —11/5 for4 < k <
40, while for the temperature energy (dash-dotted line)
approximately E,‘? ~ k2 is obtained. No clear scaling be-
havior is exhibited by E}MP and EY. In the BO picture of
convective turbulence [21,22] the temperature field can
drive velocity fluctuations. As opposed to hydrodynamic
turbulence, spectral transfer is not characterized by the
turnover time at scale I, fy ~ [/v;, but by the scale-
dependent buoyancy time, #; ~ (//6,)!/?. Consequently,
E? ~ k75 and EX ~ k='1/5. The observed scaling of Ef
is in good agreement with the respective BO law, in con-
trast to the behavior of Eg. Hydrodynamic test runs with
similar parameters exhibit BO behavior for both fields. The
spectra shown in Fig. 2 suggest that the investigated system
operates in a modified buoyancy-dominated Bolgiano-
Obukhov-like regime. The buoyancy force dominates non-
linear MHD interactions in the inertial range; i.e., the
temperature is an active scalar significantly influencing
the energy transfer.

The time intervals of both turbulent regimes are corre-
lated with the evolution of total cross helicity HE as
depicted in Fig. 3. It is important to note that other physical
quantities, e.g., the energies or the turbulent heat flux,
fluctuate on different time scales and are not correlated
with the quasioscillations. A simulation run with lower
resolution 1024 confirms the stability of the phenomenon
for at least 100¢,. The dissipation coefficients of this test
runare setto v = 1.5 X 1073, p = 7.5 X 1074, k = 4 X
10~*. The impact of cross helicity in a strongly aligned
turbulent system like in this simulation with p =
{Iv-b|)/(4EXEM)!/2 € [0.8,0.95] on the nonlinear dy-
namics of MHD turbulence is known to lead to significant
modifications of spectral energy transfer [23,24]. The
limiting case p = 1 corresponds to an Alfvénic state where
the nonlinear dynamics is completely switched off. The
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FIG. 3. Time evolution of HS (lower solid line), H¢ (upper
solid line), the associated flux injected by convective driving 81%
(dashed line), and the negative dissipation rate —&€ (dash-dotted

line). The intervals of IK and BO states are indicated.

effect of weakening of nonlinear MHD interactions in high
cross-helicity states of turbulence is the key ingredient in
following considerations.

In contrast to plain MHD turbulence, cross helicity in
magnetoconvective turbulence is not an ideal invariant, as

can be seen from HC = [¢0b_dS — (v + 1) [ jwdS =
i
small scales due to the appearance of spatial derivatives,
whereas the term sf]j injects cross helicity predominantly

eC. — €. The dissipative term ¢ has a larger effect at

at large scales. The interplay between all three terms of the
cross-helicity balance in the performed simulation is
shown in Fig. 3. The time intervals of IK turbulence can
be identified with negative HC (upper solid line), whereas
the time intervals of BO-like turbulence are correlated with
positive HC. The term sglj (dashed line) is always negative,
permanently injecting negative cross helicity into the sys-
tem. Figure 3 shows that if the negative small-scale cross-
helicity dissipation —&€ (dash-dotted line) becomes larger
than the absolute amount of the injected cross helicity,
Isglj |, the system switches from the IK state to the BO state
and vice versa.

In the following, an explanation for the quasioscillations
is proposed. It is assumed that at the beginning the system
operates in the IK regime. This choice is not essential, but
provides a convenient starting point for the ensuing con-
siderations. The IK regime implies that inertial-range en-
ergies and energy fluxes associated with Elsdsser variables
* = v =* b are approximately equal [25]; i.e., E* = E~
with E* = 1/4 [¢dS(z*)* and for the corresponding di-
rect nonlinear spectral fluxes 7,” = T, . Consequently,
total cross helicity, HC = E* — E~, and the associated
nonlinear flux in the inertial range, ch =T —T, =
e™ — &7, are minimal. Nonlinear MHD interactions are

dominant in the inertial range (see Fig. 4). However, the
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FIG. 4. Ratio of nonlinear spectral energy fluxes of MHD
energy TMHD = flms gi/fy - [—v-Vv+b-Vb—VP]+b-
[V X (v X b)]}p (dashed line) and cross helicity T}:’C =T —
T =1/2 fﬁ‘“‘“ dk'{—z" [z~ -VzT +VP]+z [z -Vz~ +
V P} (solid line) time averaged over IK and BO intervals with
the total pressure P = p + b>/2 and {e}, denoting Fourier
transformation. Insets display the spectral fluxes with T,{"C >0
for k = 300 and negative beyond.

convective driving continuously generates negative cross
helicity at the rate siflj, predominantly at largest scales. The
apparently delayed adaption of the initially depleted direct
nonlinear transfer of cross helicity leads to an accumula-
tion of H¢ at large scales. The resulting growth of the |H€|
breaks the balance of E* and E~ and, consequently, weak-
ens nonlinear MHD interactions together with the resulting
spectral flux of EMHP as shown in Fig. 4. Thus, the process
gives rise to inertial-range dynamics dominated by buoy-
ancy forces. Therefore, simultaneously with the growth of
HC the dynamics of the system changes toward the buoy-
ancy dominated BO-like regime of turbulence.

In the BO-like regime, due to E™ # E, the correspond-
ing spectral fluxes T} and T, are different. Hence, the
spectral flux T,‘?C and cross-helicity dissipation € are
larger. Thus, the BO-like regime leads to efficient annihi-
lation of the accumulated cross helicity. As H¢ decreases,
the system approaches Elsisser energy equipartition,
E* = E~, and it returns to the IK regime of 2D magneto-
convective turbulence. Because of the continuous injection
of cross helicity by large-scale convection, the magnetic
and velocity field of the flow are highly aligned. The same
phenomenon could not be observed in topologically less
constrained three-dimensional simulations.

In summary, self-excited quasioscillations between an
Iroshnikov-Kraichnan regime and a Bolgiano-Obukhov-
like regime of turbulence are observed in two-dimensional
direct numerical simulation of homogeneous MHD
Boussinesq turbulence. The highly aligned turbulent fields,
a consequence of the convective large-scale driving, give
rise to a quasiperiodic weakening of nonlinear MHD in-

teractions in favor of buoyancy effects. The resulting
Bolgiano-Obukhov-like regime allows the removal of
cross helicity by nonlinear spectral transfer strengthening
the MHD nonlinearities again. The two distinct turbulent
states emerge due to the nonlinear interplay of the cascades
of energy and cross helicity, a situation of general impor-
tance to MHD systems constrained by the presence of a
strong mean magnetic field as found, e.g., on the Sun.

The authors thank M. Proctor for an important remark
regarding the simulation setup.

*Wolf.Mueller @ipp.mpg.de

[1] J.H. Thomas and N.O. Weiss, Annu. Rev. Astron.
Astrophys. 42, 517 (2004).

[2] I. Procaccia and R. Zeitak, Phys. Rev. Lett. 62, 2128
(1989).

[3] A. Brandenburg, Phys. Rev. Lett. 69, 605 (1992).

[4] S. Toh and E. Suzuki, Phys. Rev. Lett. 73, 1501 (1994).

[5] E. Suzuki and S. Toh, Phys. Rev. E 51, 5628 (1995).

[6] D. Biskamp and E. Schwarz, Europhys. Lett. 40, 637
(1997).

[71 V.S. L'vov, Phys. Rev. Lett. 67, 687 (1991).

[8] S. Grossmann and V.S. L'vov, Phys. Rev. E 47, 4161
(1993).

[9] A. Celani, T. Matsumoto, A. Mazzino, and M. Vergassola,
Phys. Rev. Lett. 88, 054503 (2002).

[10] E. Calzavarini, D. Lohse, F. Toschi, and R. Tripiccione,
Phys. Fluids 17, 055 107 (2005).

[11] M.R.E. Proctor, in Fluid Dynamics and Dynamos in
Astrophysics and Geophysics, edited by A.M. Soward,
C.A. Jones, D. W. Hughes, and N. O. Weiss (CRC Press,
Boca Raton, FL, 2005), p. 235.

[12] M. Gibert, H. Pabiou, F. Chilla, and B. Castaing, Phys.
Rev. Lett. 96, 084501 (20006).

[13] Y.B. Zeldovich, Sov. Phys. JETP 4, 460 (1957).

[14] T.G. Cowling, Vistas Astron. 1, 313 (1955).

[15] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,
Spectral Methods in Fluid Dynamics (Springer-Verlag,
New York, 1988).

[16] P.S. Iroshnikov, Astron. Zh. 40, 742 (1963) [Sov. Astron.
7, 566 (1964)].

[17] R.H. Kraichnan, Phys. Fluids 8, 1385 (1965).

[18] D. Biskamp and E. Schwarz, Phys. Plasmas 8, 3282
(2001).

[19] D. Biskamp and H. Welter, Phys. Fluids B 1, 1964 (1989).

[20] A. Pouquet, J. Fluid Mech. 88, 1 (1978).

[21] R. Bolgiano, J. Geophys. Res. 67, 3015 (1959).

[22] A.M. Obukhov, Dokl. Akad. Nauk SSSR 125, 1246
(1959).

[23] R. Grappin, U. Frisch, J. Léorat, and A. Pouquet, Astron.
Astrophys. 105, 6 (1982).

[24] R. Grappin, A. Pouquet, and J. Léorat, Astron. Astrophys.
126, 51 (1983).

[25] M. Dobrowolny, A. Mangeney, and P. Veltri, Phys. Rev.
Lett. 45, 144 (1980).

224501-4



