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Longitudinal librations represent oscillations about the axis of a rotating axisymmetric
fluid-filled cavity. An analytical theory is developed for the case of a spherical cavity
in the limit when the libration frequency is small in comparison with the rotation
rate, but large in comparison with the inverse of the spin-up time. It is shown that
longitudinal librations create a steady zonal flow through the nonlinear advection in
the Ekman layers. The theory can be applied to laboratory experiments as well as to
solid planets and satellites with a liquid core.

1. Introduction
Longitudinal librations are of considerable interest in planetology since they

represent a major dynamical response of rotating solid planets and moons to an
applied gravitational field. Because these bodies are usually not entirely axisymmetric
and their orbits about a central source of gravitation exhibits a finite excentricity,
axial torques of alternating signs will be exerted on these bodies. Since the latter often
posses a liquid core which is assumed to be axisymmetric, the oscillations of the core
boundary are transmitted to the liquid only through thin viscous boundary layers
called Ekman layers. Because of the usually low viscosity of the liquid the spin-up
time of the core is typically much longer than the period of the applied torque with
the consequence that the liquid core only slightly participates in the librations of
the solid mantle. There is the possibility, however, that inertial modes are excited
at certain frequencies of libration as has been demonstrated in the experiments of
Aldridge & Toomre (1969). This subject will not be addressed in the analysis of
this paper in which the limit of low libration frequencies will be considered. In this
limit the possibility of a geostrophic response generated through nonlinear effects
of motions in the Ekman layers is of primary interest. This phenomenon will be
described by an analytical theory in the weakly nonlinear limit.

Only longitudinal librations will be studied, i.e. small sinusoidal variation of the ro-
tation of a spherical cavity about a fixed axis. For simplicity the attribute ‘longitudinal’
will be dropped in the following. The paper starts with the mathematical formulation
of the problem in § 2. In § 3 the linear analysis is described. Weakly nonlinear results are
presented in § 4. Concluding remarks and a discussion of applications are offered in § 5.

2. Mathematical formulation
We consider a fluid-filled spherical cavity of radius R that is rotating in the time

average with the constant angular velocity Ω . Using R as length scale and 1/Ω as
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time scale we can write the equations of motion in dimensionless form,

∂t u + u · ∇u + 2k × u = −∇π + E∇2u, (2.1a)

∇ · u = 0, (2.1b)

where k is the unit vector in the direction of the axis of rotation and the Ekman
number E is defined by

E = ν/ΩR2. (2.2)

Here ν denotes the kinematic viscosity of the fluid. The boundary condition is given
by

u = k × r ε cos ωt at |r| = 1, (2.3)

where r is the position vector with respect to the centre of the sphere and ω is the
angular frequency of libration.

In order to solve the problem posed by (2.1) and (2.3) in the limit of small values
of E we separate the velocity field u into two parts, the component U describing the
flow in the interior of the spherical cavity where viscous friction is negligible and the
boundary layer component ũ which assumes finite values in the Ekman layer near
the solid surface |r | =1, but decays exponentially towards the interior. The equations
for the two components are thus given by

∂t U + U · ∇U + 2k × U = −∇π, (2.4a)

∇ · U = 0, ∇ · ũ = 0, (2.4b)

∂t ũ + (U + ũ) · ∇ũ + ũ · ∇U + 2k × ũ = −∇π + E∇2ũ. (2.4c)

Because the Ekman layer thickness is in general of the order
√

E, the radial derivative
in the Laplace operator of (2.4c) by far exceeds the derivatives parallel to the
boundary. It is thus appropriate to introduce ξ = (1 − r)/

√
E as variable. Introducing

the ansatz

ũ = ε(û1 cos ωt + ǔ1 sinωt), (2.5)

we obtain as linearized version of (2.4c):

ωǔ1 + 2k × û1 =
∂2

∂ξ 2
û1, (2.6a)

−ωû1 + 2k × ǔ1 =
∂2

∂ξ 2
ǔ1, (2.6b)

where in addition to the nonlinear terms the pressure gradient has been dropped
according to the boundary layer assumption. By operating with n× and in × (n × . . .)
onto each of the equations (2.6a,b) where n is the normal unit vector of the boundary
we obtain

ω(n × ǔ1 + i ǔ1) + 2ik · n(n × û1 + i û1) =
∂2

∂ξ 2
(n × û1 + i û1), (2.7a)

−ω(n × û1 + i û1) + 2ik · n(n × ǔ1 + i ǔ1) =
∂2

∂ξ 2
(n × ǔ1 + i ǔ1), (2.7b)

where the normal component of the velocity has been neglected since it is of the
order

√
E smaller than the tangential components. Equations (2.7) together with the
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boundary condition (2.3) are solved by

n × û1 + i û1 =
1

2
(n × (k × r) + ik × r)(exp{λ+ξ} + exp{λ−ξ}), (2.8a)

n × ǔ1 + i ǔ1 =
i

2
(n × (k × r) + ik × r)(exp{λ+ξ} − exp{λ−ξ}), (2.8b)

where the coefficients λ± are the roots of the equation

λ2
± − 2ik · n = ±iω. (2.9)

Since roots with positive real parts satisfy the condition of decay towards the interior,
we find

λ± = −(1 + is±)
√

|k · n ± ω/2|, (2.10)

where s± denotes the sign of k · n ± ω/2.

Since the spin-up time of the interior is of the order 1/
√

E (Greenspan 1968),
hardly any spin-up occurs according to the linear theory as long as ω �

√
E holds.

The nonlinear terms of the equations of motion may give rise to a steady component
of the velocity field in the boundary layer and thus may induce a finite flow in the
interior. In order to study this situation we shall assume that ε � 1 holds such that
a weakly nonlinear analysis can be applied. To simplify the problem further we shall
focus on the limit of small ω such that the inequalities

√
E � ω � ε � 1 (2.11)

hold. The assumption of the limit of small ω allows us to neglect in first approximation
the ǔ1-component of the velocity field and to rewrite the û1-component in the form

n × û1 + i û1 =
(
n × (k × r) + ik × r

)
exp{λξ} (2.12)

with

λ = −(1 + is)
√

|k · n|, (2.13)

where s = ±1 denotes the sign of k · n.

3. Weakly nonlinear analysis
For the weakly nonlinear analysis we use the small parameter ε as expansion

parameter. Among the contributions to the velocity field of the order ε2 the time-
independent part ε2ū2 of ũ is of primary interest. It is governed by the equations

∇ · ū2 = 0, (3.1a)

û1 · ∇û1/2 − ε−2(U + ũ) · n
∂

∂ξ
ũ/

√
E + 2k × ū2 =

∂2

∂ξ 2
ū2, (3.1b)

where the bar indicates the time average and where it has been used that only
the normal component of the interior flow U contributes in this equation since it
is associated with the normal derivative which is of the order 1/

√
E. The normal

velocity close to the boundary, n · (U + ũ), is given by the eflux from the Ekman layer,
which in first approximation is determined by

∂

∂ξ
n · ũ = ε

√
En · ∇ × (n × û1) cos ωt. (3.2)
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As solution of this equation together with the boundary condition n · (U + ũ) = 0 at
ξ = 0 we obtain

n · ũ = ε
√

E cos ωt(n · ki(λ−1 exp{λξ} − λ∗−1 exp{λ∗ξ}) + |n × k|2

· ((ξλ−2 − λ−3) exp{λξ} + (ξλ∗−2 − λ∗−3) exp{λ∗ξ})/2), (3.3)

n · U = −ε
√

E cosωt
(
n · ki(λ−1 − λ∗−1) − 1

2
(1 − (n · k)2)(λ−3 + λ∗−3)

)
, (3.4)

where λ∗ indicates the complex conjugate of λ.
As Greenspan & Weinbaum (1965) have pointed out, expansions of the type we

are using here are not uniformly valid. For this reason we shall include the term
ε−2U · n ∂

∂ξ
ũ/

√
E of (3.1b) already in (2.7a). The latter equation thus assumes the

form

2ik · n(n × ˆ̂u1 + i ˆ̂u1) − n · U√
E

∂

∂ξ
(n × ˆ̂u1 + i ˆ̂u1) =

∂2

∂ξ 2
(n × ˆ̂u1 + i ˆ̂u1), (3.5a)

the solution of which is given by

n × ˆ̂u1 + i ˆ̂u1 = (n × (k × r) + ik × r)

· exp{λξ (

√
1 + (n · U/2

√
Eλ)2 − n · U/2

√
Eλ)}. (3.6)

According to this expression the solution ˆ̂u includes a term of the order ε cos ωt in
addition to û1 as given by expression (2.12):

n× ˆ̂u1+i ˆ̂u1 = n×
(
û1 + 2εūA

2 cos ωt
)
+i

(
û1 + 2εūA

2 cos ωt
)

= (n×(k×r)+ik×r)

· exp{λξ
}(

1 + ξε cos ωt

(
n · ki

2λ

(
1 − λ

λ∗

)
− |n × k|2(λ−3 + λ∗−3)/4

))
, (3.7)

where terms of the order ε2 have been neglected. Since we have dropped the time-
dependence ε cos ωt in formulating (3.5a), we conclude that ε2ūA

2 given by

n × ūA
2 = k × r

(
(exp{λξ} − exp{λ∗ξ})ξ 1

8i

√
|k · n|

(
1 +

|n × k|2
4|k · n|2

))
+ n × (k × r)(. . .)

(3.8)

represents a first contribution to the time-independent part ε2ū2 of ũ. The term
proportional to n × (k × r) has not been given explicitly in expression (3.8) since it
will not be needed in the following.

Without the term with n · U we are now able to solve equations (3.1). Introducing
j as new imaginary unit we write(

∂2

∂ξ 2
−j2k · n

)
(n×ū2+j ū2) = (n×−jn×(n×. . .))

(
û1 · ∇û1−ûn

∂

∂ξ
û1

)/
2, (3.9)

where the abbreviation ûn cos ωt = n · ũ/ε has been used. The solution ūB
2 of this

equation satisfying the boundary condition ūB
2 = 0 at ξ = 0 is derived in the Appendix.

The two imaginary units i and j are entirely independent and they have been
introduced only in order to obtain a compact notation.

The general solution Ū of (2.4a) describing steady flow in the interior and satisfying
the boundary condition n · Ū = 0 is given by

Ū = ε2k × rf (|k × r |2), (3.10)
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according to the Taylor–Proudman theorem (Greenspan 1968) where we have
anticipated that this axisymmetric zonal flow will be of the order ε2. Connected
with this differential rotation is an Ekman layer flow ε2ūC

2 which is determined by

n × ūC
2 + i ūC

2 = −
(
n × (k × r) + ik × r

)
f (|k × r |2) exp{λξ}. (3.11)

Since all three contributions ūA
2 , ūB

2 and ūC
2 are symmetric with respect to the

equatorial plane the corresponding suctions induced by these steady Ekman layer
flows are antisymmetric with respect to this plane and thus must vanish in the case
of a steady state,

n · ∇ ×
∫ ∞

0

n ×
(
ūA

2 + ūB
2 + ūC

2

)
dξ = 0, (3.12)

since otherwise a steady differential rotation of the form (3.10) will not be possible.
Condition (3.12) thus determines the so far unknown function f (|k × r |2).

4. The mean zonal flow
For the evaluation of condition (3.12) we first consider the simpler term involving

ūC
2 . The component proportional to n × (k × r) of n × ūC

2 does not contribute to the
left-hand side of (3.10). Accordingly we obtain

n · ∇ ×
∫ ∞

0

n × ūC
2 dξ = −

√
n · k

(
f (x2)

(
1 +

x2

4(1 − x2)

)
+ x2f ′(x2)

)
, (4.1)

where x ≡ |k × n| has been introduced as an abbreviation.
Using the expression

n · ∇ ×
∫ ∞

0

n × ūA
2 dξ = −

√
n · k

(
1 +

|n × k|2
2|k · n|2 +

|n × k|4
16|k · n|4 +

|n × k|2
4|k · n|4

)/
4 (4.2)

and expression (A 7) from the Appendix, condition (3.12) can now be written in the
form of a differential equation for f (x2),

f ′(x2) = −f (x2)

(
1 +

x2

4(1 − x2)

)/
x2 −

(
360

x2
+

663

4(1 − x2)
+

505

4(1 − x2)2

)/
2400, (4.3)

where the prime indicates the differentiation with respect to x2. Equation (4.3) has
the solution

f (x2) =
259x2 − 360

2400(1 − x2)
, (4.4)

where the constant of integration vanishes since it is determined by the condition that
f (x2) is finite at x = 0. Because only one constant of integration exists the singularity
at x = 1 can not be avoided. Such a singularity must expected in any case since the
Ekman boundary layer diverges at x =1.

The function f (x2) has been plotted in figure 1. Because of its negative sign
the fluid rotates in a retrograde fashion relative to the librating spherical cavity.
Since the absolute value of the angular momentum decreases with increasing x near
the equator a centrifugal instability in the form of small axisymmetric vortices can
be expected according to Rayleigh’s criterion. The divergence of f (x2) and of the
Ekman layer thickness at the equator requires the introduction of new scalings (see
e.g. Stewartson & Roberts 1963). But it is to be expected that the mean zonal flow
will be affected only close to the equator in the limit E → 0.
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Figure 1. The function f (x2) = f (|k × r|2) in dependence on x ≡ |k × r|.

5. Discussion
There do not seem to exist in the literature any measurements of the differential

rotation induced by low-frequency librations. In the reports on experimental
observations the occurrence of Taylor–Görtler type axisymmetric vortices is
mentioned (Aldridge 1967; Noir et al. 2009), but they are attributed to the centrifugal
instability during the retrograde phase of the libration. When this instability is
growing only weakly, however, positive growth rates during the retrograde phase are
compensated by corresponding negative growth rates during the prograde phase of
librations. In this case the unstable profile of the mean flow found in the analysis of
§ 4 may be essential for the generation of axisymmetric vortices even though it is only
of the order ε2, and thus small compared to the amplitude ε of the libration.

Because the differential rotation is essentially constant up to a distance of nearly
x = 0.6 from the axis of the cavity, the solution derived in the foregoing sections will
be affected only very little by the presence of a concentric solid spherical inner core
with a radius x � 0.6. The mean rotation rate of such an inner core will be slightly
less, of course, than that of the outer boundary.

For a discussion of planetary application we refer to the paper of Noir et al.
(2009). In this paper a distinction is made between molten cores such as those of
Earth’s moon and of Ganymede and of the subsurface ocean of Callisto and those
cores where the Reynolds number based on the Ekman flow is sufficiently large such
that a turbulent response must be expected. The latter situation would apply to the
molten cores of Io and Mercury and the subsurface oceans on Titan and Europa. Of
particular interest is the phenomenon of seasonal librations caused by the shifting
wind systems in an atmosphere above a solid mantle. In the case of Earth this effect
appears to be quite weak (Wahr 1988), but a much stronger seasonal torque can be
expected in the case of Titan (Van Hoolst, Rambaux & Karatekin 2009) which may
give rise to turbulence in its subsurface oceanic layer as mentioned above.

The author gratefully acknowledges the support he received from the Spanish
government through contract FIS2008-01126 and from NORDITA during a stay in
Stockholm. A discussion with Michael Calkins and Jerome Noir on problems of
libration has stimulated the author to find a mistake in the original version of the
paper.
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Appendix. Boundary layer solution
Using

û1 = n × (k × r)(exp{λξ} − exp{λ∗ξ})/2i + k × r(exp{λξ} + exp{λ∗ξ})/2, (A 1)

we find

û1 · ∇û1 = n × (k × r)(k · n(exp{λξ} − exp{λ∗ξ})2 − iξ |n × k|2(exp{λξ}
− exp{λ∗ξ})(λ−1 exp{λξ} + λ∗−1 exp{λ∗ξ}))/4 + k × r(2i(exp{2λξ}
− exp{2λ∗ξ})n · k + ξ |n × k|2(exp{λξ} − exp{λ∗ξ})(λ−1 exp{λξ}
− λ∗−1 exp{λ∗ξ}))/4 + k × (k × r)(exp{λξ} + exp{λ∗ξ})2/4. (A 2)

Since ûn is determined by

∂

∂ξ
ûn = k · ni(exp{λξ} − exp{λ∗ξ}) + |k × n|2ξ (exp{λξ}λ−1 + exp{λ∗ξ}λ∗−1)/2, (A 3)

we find that

−ûn

∂

∂ξ
û1 = n × (k × r)

(
− k · n(exp{2λξ} + exp{2λ∗ξ} −

(
λ

λ∗ +
λ∗

λ

)

× exp{(λ + λ∗)ξ})/2 +
i

4
|n × k|2

(
ξλ − 1

λ2
exp{2λξ} − ξλ∗ − 1

λ∗2
exp{2λ∗ξ}

−
(
λ∗ ξλ − 1

λ3
− λ

ξλ∗ − 1

λ∗3

)
exp{(λ + λ∗)ξ}

))
+ k × r

(
− i(exp{2λξ}

− exp{2λ∗ξ −
(

λ

λ∗ − λ∗

λ

)
exp{(λ+λ∗)ξ})n · k/2− |n × k|2

4

(
ξλ−1

λ2
exp{2λξ}

+
ξλ∗ − 1

λ∗2
exp{2λ∗ξ} +

λ∗4(ξλ − 1) + λ4(ξλ∗ − 1)

λ∗3λ3
exp{(λ + λ∗)ξ}

))
.

(A 4)

Fortunately a number of terms cancel when the expressions (A 2) and (A 4) are added.
Further simplifications result from relationships such as (λ/λ∗) + (λ∗/λ) = 0, (λ/λ∗3) −
(λ∗/λ3) = 0. The solution ūB

2 of (3.7) can thus be obtained in the form

n × ūB
2 + j ūB

2 = (n × (k × r) + j k × r)
(

− 1

4(2 − js)
(exp{(λ + λ∗)ξ} − exp{κξ})

+ |n × k|2
(

exp{2λξ} − exp{κξ}
16i|k · n|2(4i − j )

− exp{2λ∗ξ} − exp{κξ}
16i|k · n|2(−4i − j )

+
exp{(λ + λ∗)ξ} − exp{κξ}

16s|k · n|2(2s − j )

))
+

(
jn × (k × r) − k × r

) |n × k|2
16|k · n|2

×
(

−exp{2λξ} − exp{κξ}
2(4i − j )

−exp{2λ∗ξ} − exp{κξ}
2(−4i − j )

− 1

2s − j

(
2ξ

√
|k · n| exp{(λ+ λ∗)ξ}

+ 4(exp{(λ+ λ∗)ξ} − exp{κξ}) s

2s − j

))
, (A 5)

where the definition κ = − (1 + js)
√

|k · n| has been introduced. Only the component
proportional to k × r of n × ūB

2 will be needed in the further analysis which is thus
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given explicitly in the following expression:

n × ūB
2 = n × (k × r)(. . .) + k × r

|n × k|2
8|k · n|2

((
(exp{2λξ} − exp{2λ∗ξ})/i − (exp{κξ}

− exp{κ∗ξ})/j
)
/12 +

2ξ
√

|k · n|
5s

exp{(λ + λ∗)ξ}

+

(
17

5
+

4|k · n|2
|n × k|2

)
s

20
(2 exp{(λ + λ∗)ξ} − exp{κξ} − exp{κ∗ξ})

+

(
3

50
− 4|k · n|2

10|n × k|2

)
(exp{κξ} − exp{κ∗ξ})/j

)
. (A 6)

The integration of this expression over ξ yields∫ ∞

0

n × ūB
2 dξ = n × (k × r)G(k · n) + k × r

s√
|k · n|

(
49|n × k|2
4800|k · n|2 +

1

20

)
, (A 7)

where again the function G has not been given explicitly since it will not be needed
in the analysis of § 4.

REFERENCES

Aldridge, K. D. 1967 An experimental study of axisymmetric inertial oscillations of a rotating
liquid sphere. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.

Aldridge, K. D. & Toomre, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating
spherical container. J. Fluid Mech. 37, 307–323.

Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.

Greenspan, H. P. & Weinbaum, S. 1965 On nonlinear spin-up of a rotating Fluid. J. Math. Phys.
44, 66–85.

Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M. & Aurnou, J. M. 2009 An experimental and
numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys.
Earth Planet. Inter. 173, 141–152.

Stewartson, K. & Roberts, P. H. 1963 On the motion of a liquid in a spheroidal cavity of a
precessing rigid body. J. Fluid Mech. 17, 1–20.
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