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The interaction of a magnetic vortex with a rotating magnetic field causes the nucleation of a vortex-
antivortex pair leading to a vortex polarity switching. The key point of this process is the creation of a dip,
which can be interpreted as a nonlinear resonance in the system of certain magnon modes with nonlinear
coupling. The usually observed single-dip structure is a particular case of a multidip structure. The dynamics
of the structure with n dips is described as the dynamics of nonlinearly coupled modes with azimuthal numbers
m=0, �n , �2n. The multidip structure with arbitrary number of vortex-antivortex pairs can be obtained in
vortex-state nanodisk using a space- and a time-varying magnetic fields. A scheme of a possible experimental
setup for multidip structure generation is proposed.
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I. INTRODUCTION

A magnetization curling occurs in magnetic particles of
nanoscale due to the dipole-dipole interaction. In particular,
the vortex state is realized in a disk shaped particle, where
the magnetization becomes circular lying in the disk plane in
the main part of the sample, which possesses a flux-closure
state. At the disk center there appears an out-of-plane mag-
netization structure �the vortex core, typically from 10 nm
�Ref. 1� to 23 nm �Ref. 2�� due to the dominant role of the
exchange interaction inside the core.3,4 The vortex state of
magnetic nanodots has drawn much attention because it
could be used for high-density magnetic storage and minia-
ture sensors.4,5 Apart from that, such nanodots are very at-
tractive objects for experimental investigation of the vortex
dynamics on a nanoscale.

An experimental discovery of a vortex core reversal pro-
cess by excitation with short bursts of an alternating field6

initiated a number of studies of the core switching process.
The mechanism of the vortex switching is of general nature;
it is essentially the same in all systems where the switching
was observed.6–15 There are two main stages of the switching
process: �i� at the first stage of the process the vortex struc-
ture is excited by the pumping, leading to the creation of an
out-of-plane dip with opposite sign nearby the vortex. The
appearance of such a deformation is confirmed
experimentally.14,15 �ii� At the second stage, when the dip
amplitude reaches the maximum possible value, there ap-
pears a vortex-antivortex pair from the dip structure. The
further dynamics is accompanied by the annihilation of the
original vortex with the new antivortex, leading effectively
to the switching of the vortex polarity; the dynamics of this
three-body problem can be described analytically.16,17 While
the second stage is well understood, the physical picture of
the first stage of the switching process, which is a dip cre-
ation, is still not clear.

The aim of the current study is to develop a theory of the
dip creation, which is a key moment in the vortex switching
process. The dip always appears as a nonlinear regime of one
of the magnon modes. In most studies the dip appears by

exciting a low-frequency gyromode, which corresponds to
the azimuthal quantum number m=−1; the frequency of this
mode �G lies in the subgigahertz range. Excitation of the
gyromode always leads to a macroscopic motion of the vor-
tex as a whole; moreover the vortex has to reach some criti-
cal velocity vcri of about 300 m/s in order to switch its
polarity.14,18

Recently we have reported about vortex core switching
under the action of a homogeneous rotating magnetic field
B=Bx+ iBy =B0 exp�i�t�.11 The theory of the dip creation
was constructed very recently in our previous paper,19 where
we found a dip as a nonlinear regime of the high-frequency
mode with m=1; the switching process for that case is not
accompanied by a vortex motion at all. In this paper we
show that the dip can be excited for any azimuthal mode m
by using a nonhomogeneous rotating magnetic field of form
�16�.

The paper is organized as follows. In Sec. II we formulate
the model and describe the approach of a rotating reference
frame �RRF�. Two kinds of numerical simulations are pre-
sented in Sec. III: micromagnetic OOMMF simulations �Sec.
III A� and spin-lattice SLASI simulations in the rotating frame
�Sec. III B�. An analytical approach is presented in Sec. IV.
We discuss our results in Sec. V. In Appendix A we prove the
conservation law for the total momentum Jz under the action
of the magnetostatic interaction. A possible experimental
setup for multidip structure generation is discussed in Ap-
pendix B.

II. MODEL AND CONTINUUM DESCRIPTION

The continuum dynamics of the spin system can be de-
scribed in terms of the magnetization unit vector m
=M /MS= �sin � cos � , sin � sin � , cos ��, where � and �
are functions of the coordinates and the time, and MS is the
saturation magnetization. In the subsequent text only disk-
shaped samples are discussed. Therefore it is convenient to
introduce dimensionless coordinates �= �x ,y� /L within the
disk plane and �=z /h along the disk axis, where L is the disk
radius and h is its thickness. The magnetization is assumed to
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be uniform along the z axis and so the corresponding angular
coordinates of the magnetization read ����=��L�� and
����=��L��. The energy functional of the system under
consideration consists of three terms,

E = 4	MS
2V�Eex + Ems + Ef� . �1�

Here V is volume of the sample. The dimensionless energy
terms are the following:

Eex =
1

2	

�2

L2� d2������2 + sin2 �����2� �2�

is the exchange energy with �=�A /4	MS
2 being the ex-

change length, A being the exchange constant. The magne-
tostatic energy Ems comes from the dipolar interaction, see
Appendix A, and in the continuum limit it can be presented
as a sum of three terms: Ems=Ev

ms+Es
ms+Ee

ms. Here

Ev
ms =




4	2�
V

dV�
V�

dV�
� · m��� � · m����

��� − ���2 + �� − ���2
�3�

is the energy of the interactions of volume magnetostatic
charges, where 
=h /L is the disk aspect ratio and �VdV
=�0

1d��0
1d���0

2	d� with �� ,�� being polar coordinates within
the disk plane,

Es
ms =

1

2	2

�

S
dS�

S�
dS� cos ����cos �����

� 1

	� − ��	
−

1
��� − ���2 + 
2
 �4�

is the energy of the interactions of charges on the upper and
bottom surfaces, where �SdS=�0

1d���0
2	d�,

Ee
ms = −




2	2�
V

dV�
��

d��
� · m���cos������ − ���
��� − ���2 + �� − ���2

�5�

is the energy of the interactions of edge surface charges with
the volume charges. Here � is the disk edge surface and
��d�=�0

1d��0
2	d�. Due to magnetization uniformity along

the z axis the distribution of upper and bottom surface
charges is antisymmetrical and the distributions of volume
and edge surface charges are uniform along the z axis. As a
result the interaction energy of upper and bottom surface
charges with volume charges as well as with edge surface
charges is equal to zero. The last term in Eq. �1� describes an
interaction with a nonhomogeneous rotating magnetic field,
see below.

The evolution of magnetization can be described by the
Landau-Lifshitz-Gilbert �LLG� equation

− sin ��̇ = − 	
�E
��

− ��̇ , �6a�

sin ��̇ = − 	
�E
��

− � sin2 ��̇ . �6b�

Here and below the overdot indicates derivative with respect
to the dimensionless time

� = �0t, �0 = 4	�MS, �7�

where � is the gyromagnetic ratio, � is the Gilbert damping
constant, and the factor 	 appears due to the disk volume
normalization. These equations can be derived from the fol-
lowing Lagrangian:

L =
1

	
� d2��1 − cos ���̇ − E �8�

and dissipation function

F =
�

2	
� d2���̇2 + sin2 ��̇2� . �9�

Let us start with the no-driving case Ef=0. The exchange
interaction �Eq. �2�� provides the conservation of the total
magnetization Mz along the cylindrical axis z and the con-
servation of the z component of the orbital momentum Lz

Mz =
1

	
� d2� cos �, Lz = −

1

	
� d2� cos ���� �10�

due to the invariance under rotation about the z axis in spin
space and physical space, respectively. It is well known20

that the magnetostatic interaction breaks both symmetries.
Nevertheless for thin cylindrical samples, when the magne-
tization distribution does not depend on the thickness coor-
dinate, the magnetostatic energy is invariant under two si-
multaneous rotations

� → � + �0, � → � + �0, �11�

leading to the conservation of the total momentum

Jz =
1

	
� d2��cos � − 1��1 − ���� , �12�

see the proof in Appendix A.

A. Planar vortex and magnon modes

The ground state of a small size nanodisk is uniform; it
depends on the particle aspect ratio 
: thin nanodisks are
magnetized in the plane �when 
�
c�1.812� and thick ones
along the axis �when 
�
c�. When the particle size exceeds
some critical value, the magnetization curling becomes ener-
getically preferable due to the competition between the ex-
change and dipolar interaction. For a disk-shape particle
there appears the vortex state.

Let us consider the static solutions of the Landau-Lifshitz
equation with in-plane magnetization ���	 /2�. The in-
plane magnetization angle � satisfies the Laplace equation
�2�=0. Typically for the Heisenberg magnets the boundary
is free, which corresponds to the Neumann boundary condi-
tions. However, the dipolar interaction orients the magneti-
zation tangentially to the boundary in order to decrease the
surface charges. Effectively this can be described by fixed
�Dirichlet� boundary conditions. The simplest topologically
nontrivial solution of this boundary-value problem is the pla-
nar vortex, situated at the disk center

GAIDIDEI et al. PHYSICAL REVIEW B 81, 094431 �2010�

094431-2



�v = � + C
	

2
, �13�

where C= �1 is the vortex chirality. Such planar vortices are
known for the Heisenberg magnets with strong enough easy-
plane anisotropy.21 Qualitatively, when the typical magnetic
length is smaller than the lattice constant, the pure planar
vortex can be realized. In the magnetically soft nanomagnets
like Permalloy, there exist out-of-plane vortices. The typical
out-of-plane vortex structure has a bell-shaped form with a
core size about the exchange length.3

Magnons on a vortex background can be described using
the partial-wave expansion,

cos � = cos �v��� +
1
�2


m,n

�m,n���f 	m	,n���eim�,

� = �v +
1
�2


m,n

�m,n���g	m	,n���eim�, �14�

where �m,n=�−m,n
� and �m,n=�−m,n

� . In the linear regime
�m,n���=exp�i�m,n�� and �m,n���=exp�i�m,n��. We consider
here the planar vortex, where the spectrum of eigenmodes is
degenerate with respect to the sign of m. Typical eigenfre-
quencies are presented in Fig. 1. The functions f and g obey
the following normalization rule:

�fm,ngm�,n�� � �
0

1

fm,n���gm�,n�����d� = �m,m��n,n�. �15�

Below we assume that for each azimuthal number m it is
sufficient to take into account only one radial wave with a
certain radial index n. Therefore the summation over n will
be omitted.

B. Interaction with a field

Let us consider the effects of a magnetic field. The role of
the field is to excite spin waves on a vortex background. It is
well known that the low-frequency gyroscopical mode can
be excited by applying a homogeneous ac field with a fre-
quency �G in the subgigahertz range. The strong pumping of
such a mode is known to cause the vortex polarity switching.

The vortex switching phenomenon was studied recently
by applying a homogeneous high-frequency rotating mag-
netic field.19 Such a field excites the azimuthal mode with
azimuthal number m= �1; the frequency �1 of such a mode
lies in the range of 10 GHz.11

In the present work we study the vortex switching process
by exciting higher magnon modes with higher azimuthal
numbers m. In order to excite such a mode we propose to
consider the influence of a nonhomogeneous rotating mag-
netic field

B = Bx + iBy = B0ei��+1��+i�t, � � Z . �16�

Such a field distribution is chosen because it directly pumps
the magnon mode with m=�. Using Ansatz �Eq. �14�� one
can easily calculate the Zeeman energy

Ef = −
b

	
� d2� sin � cos��� + 1�� + �� − ��

= be���e−i�� + ��
�ei��� , �17�

be =
bC

�2
�g�� .

Here and below we use the normalized field intensity b
=B0 /4	MS and field frequency �=� /�0. For the case ��
−1 the field with structure �Eq. �16�� can be created experi-
mentally, for details see Appendix B.

C. Rotating frame of reference

In the laboratory frame of reference the total energy E
depends explicitly on time because of the Zeeman term �Eq.
�17��, which contains the explicit time dependence. But us-
ing a transition into RRF by the way of

�̃ = � + �̃�, �̃ = � + �̃�, �̃ =
�

�
�18�

and using the invariance of the exchange and magnetostatic
energies with respect to the simultaneous rotations �Eq.
�11��, we obtain the time-independent energy in the RRF,

Ẽ = Eex + Ems + Ẽf − �̃Jz. �19�

Here the Zeeman term Ẽf does not contain time explicitly and
has the form

Ẽf = be��� + ��
�� . �20�

The dissipation function �Eq. �9�� in the RRF reads

F̃ = F + �̃F ,

FIG. 1. �Color online� Eigenfrequencies of the magnon waves in
a vortex-state Py disk �150 nm diameter and 20 nm thickness�. The
spectrum was obtained using micromagnetic modeling with a fixed
in-plane vortex core �for technical details see Sec. III�. The frequen-
cies are normalized by �0=4	�MS �30.3 GHz�. n denotes the
radial-wave number—the number of roots of the functions f��� and
g���. The separation of waves with different m and n was achieved
using spatiotemporal Fourier-transform technique.
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F =
�

	
� d2���̇��� + sin2 ����� − 1��̇� . �21�

III. NUMERICAL SIMULATIONS

To investigate the magnetization dynamics of a vortex-
state nanodisk under influence of the external magnetic field
�Eq. �16��, two kinds of simulations were used.

A. Micromagnetic simulations

The main part of the numerical results were obtained us-
ing the full scale OOMMF micromagnetic simulations with the
material parameters of Permalloy Ni81Fe19: exchange con-
stant A=1.310−11 J /m and saturation magnetization MS
=8.6105 A /m, damping constant �=0.01. The on-site an-
isotropy was neglected and the mesh cell was chosen to be
2 nm2 nmh. For all simulations the thickness h
=20 nm. An example of magnetization dynamics induced by
the field �Eq. �16�� with �=−3 is explored in Fig. 2.

Initially we have a nanodisk in a vortex state which is a
ground state. The vortex polarity was chosen to be negative.
During the first tens of picoseconds of the field influence the
generation of a magnon mode with azimuthal number m=
−3 is observed �see column a�. The Fourier amplitude which
corresponds to m=0 appears due to the out-of-plane core
component of the initial vortex. Due to the pumping the
mode with m=� goes to the nonlinear regime: areas with
sign�mz�=sign�−��� become localized which can be inter-
preted as dips formation �see column b�. The number of dips
is equal to 	�	. For small field amplitudes such a multidip
structure achieves some stationary regime and rotates around
the vortex center forever. This phenomenon is described in
detail below. Figure 2 demonstrates the example of the mag-
netization dynamics for larger field amplitudes: the vortex-
antivortex pairs are nucleated from the dips �see columns c
and d�. The subsequent dynamics of the vortex-antivortex
pairs is rather complicated: the trajectory of a pair motion is
not circular, pairs radiate magnons during the motion and
self-annihilate. Then the process repeats periodically. The
question about vortex-antivortex pair motion in the presence
of an immobile central vortex is an open problem. But in this

mxy
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0.5

0.0

-0.5

1.0

-1.0

mz a) b) c)

d)

e)
Fourier Amplitude F. A. F. A.

mz

24ps24ps 80ps 150ps

FIG. 2. �Color online� Vortex-state dynamics under influence of the field �Eq. �16�� with �=−3, B0=40 mT, and �=6 GHz. Disk radius
L=150 nm. Columns �a�–�c� correspond to the different moments of time after the field switching-on moment: 24, 80, and 150 ps,
respectively. The top row of these columns illustrates distribution of the out-of-plane magnetization component �mz�. The in-plane compo-
nent distribution is shown in the second row. Isolines mx=0 and my =0 are shown as dashed and solid lines, respectively. In the bottom row
the corresponding two-dimensional spatial Fourier transforms of the distribution mz�r ,�� are presented. Each bar of a certain color corre-
sponds to a Fourier amplitude Fmn, where the azimuthal wave number m is specified by the horizontal axis and the radial number n is
indicated on the bar. �d� demonstrates a vortex-antivortex pair in detail. The used magnetic field at t=0 is shown in �e�.

GAIDIDEI et al. PHYSICAL REVIEW B 81, 094431 �2010�

094431-4



paper we focus our attention on the dips creation mechanism
only. It should be also emphasized that the initial vortex in
Fig. 2 is not pinned but it remains immobile during the dy-
namics. Using the simulations we found that such a vortex
stability is observed only when the number of dips is greater
than 2. The theoretical explanation of this phenomenon is an
open problem.

Using external fields of form �16� with different � one
can obtain a multidip structure with an arbitrary number of
dips. This possibility is demonstrated in Fig. 3.

It is important to emphasize the following properties of
the multidip structure formation: �i� all dips have the same
polarity which is determined by the sign of m only and the
dip polarity does not depend neither on the polarity of the
central vortex �see the insets for �=+3 and �=+4� nor on
the existence of an out-of-plane vortex core at all �see the
insets for �=−2 and �=−1�. �ii� The multidip structure with
n dips is composed by modes with azimuthal numbers m
=n ,2n ,3n , . . . The contribution of a mode decreases when its
azimuthal number m increases. �iii� Contribution of the mode
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FIG. 3. �Color online� Multidip structures created by the field �Eq. �16�� with different �. To demonstrate the localized character of the
dips the distribution of the out-of-plane component mz was obtained along the circle and the line � which pass through the extremum points
of a multidip structure. The distributions along the circle and the line � are shown above Fourier spectra on the left and right plots,
respectively. The other notation is the same as in Fig. 2. For the cases �=−2 and �=−1 the central vortex core is planar and artificially fixed,
and for the cases �=+3 and �=+4 the central vortex has opposite polarity and is not fixed.
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m=0 is essential for a single-dip structure only �compare
insets for �=−2 and �=−1�.

If the strength of the applied field is sufficiently small to
prevent vortex-antivortex pair formation, the magnetization
dynamics reaches some steady-state regime. This is demon-
strated in Fig. 4�a� which is based on simulations with a �
=+3 field. Such a field creates potentially a structure with
three dips of negative polarity. The time dependence of the
minimal value of the mz component of the azimuthal mode
with m=� is shown. In case of multidip structures the plot-
ted quantity is the depth of the dips, therefore the notation
mz

dip will be used hereafter. One can see that the value mz
dip

reaches some steady-state level which depends on the fre-
quency of the applied field. This dependence has an unusual
resonance character, see Fig. 4�b�.

The transition from the regime of linear modes to the
multidip regime occurs sharply when the frequency of the
applied field reaches some value �res. Vertical steps on the
dependencies mz

dip��� in Fig. 4�b� correspond to the above
indicated transition. It should be noted that the critical fre-
quency depends on the field amplitude and is always smaller
than the eigenfrequency �� of the corresponding mode, see
Fig. 4�d�. This points to an inherently nonlinear nature of the
resonance which is discussed in Sec. IV. Similar resonances
are a feature of the multidip structures with different number
of dips, Fig. 4�c�.

B. Spin-lattice simulations

We have described above the micromagnetic study of the
nonlinear dynamics of the magnetization under the influence

of a time-dependent magnetic field. The main issue of this
study is the creation of a multidip structure, i.e., a stable
nonlinear state of the system, which rotates due to the field
rotation. Since the total energy of the system becomes time
independent in the RRF, see Eq. �19�, one can suppose that a
multidip structure forms a stationary state of the system in
the RRF.

In order to check the RRF approach, we used another kind
of simulations. Namely, we performed SLASI simulations, an
in-house-developed spin-lattice code.22 SLASI simulations are
based on the numerical solution of the discrete version of the
LLG equations �6�

dSn

dt
= − �Sn 

�H
�Sn


 −
�

S
�Sn 

dSn

dt

 , �22�

where the three-dimensional �3D� spin distribution is sup-
posed to be independent of the z coordinate. We consider Eq.
�22� on two-dimensional �2D� square lattices of size �2L�2;
the lattice is bounded by a circle of radius L on which the
spins are free. The Hamiltonian H=Hex+Hdip+Hf is given
by the Heisenberg exchange Hamiltonian �A1�, the dipolar
energy �Eq. �A3��, and the field interaction energy Hf, which
is the discrete version of Eq. �17�. The fourth-order Runge-
Kutta scheme with time step 0.01 /Nz was used for the nu-
merical integration of Eq. �22�.

First of all we performed SLASI simulations in the labora-
tory frame of reference. Here the spin-lattice simulations
agree with our micromagnetic results. In particular, the reso-
nance behavior of the multidip structure is well pronounced
in Fig. 5�a� �solid curves�, with a maximum dip amplitude
about the frequency �=0.3.

The total energy of the magnet in the continuum limit in
the RRF �Eq. �19�� has two main differences in comparison
with the laboratory reference frame. First of all, instead of
the time-dependent Zeeman energy �Eq. �17��, one has the
influence of a constant field with the same intensity. Apart of

this, there appears an additional rotation energy Erot=�̃Jz.
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FIG. 4. �Color online� Characteristics of the process of multidip
structure formation. The data were obtained from simulations with a
Py disk with radius L=76 nm and thickness h=20 nm. If the mul-
tidip structure is formed, then mz

dip denotes the depth of a dip, oth-
erwise it denotes the amplitude of the corresponding azimuthal
mode. �a�—the process of steady-state three-dip structure formation
for a certain field strength and for different frequencies. �b�—
resonant-type dependencies of the steady-state dips depth on the
field frequency for different field amplitudes and for a certain �.
�c�—the same as �b� but for a certain field amplitude and different
�. �d�—data extracted from the resonant curves �b�: resonant fre-
quency �left axis, solid line� and maximal dips depth �right axis,
dashed line� vs applied field amplitude.
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FIG. 5. �Color online� Multidip structure formation under the
influence of the field �Eq. �16�� with �=−3 and b=0.008. The data
were obtained from SLASI simulations for a disk with radius L
=50a, thickness h=5a, exchange length �=a, and damping coeffi-
cient �=0.1. �a� Solid curves correspond to the simulations in the
laboratory reference frame for the rotating magnetic field with dif-
ferent frequencies �. The dashed curve corresponds to the simula-
tions in the RRF with �rot=� under the influence of a static field.
�b� Out-of-plane spin distributions from simulations in the RRF
with �rot=0.3 at the moment ��24 �same color code as in Fig. 2�.
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For the discrete system one can perform a similar transfor-
mation, using the discrete Zeeman energy of the interaction
with a constant field. The discrete analogue of the rotation
energy is determined by the discrete version of the Jz mo-
mentum �Eq. �12��. Results of numerical simulations in the
rotating frame of reference are plotted by the dashed curve in
Fig. 5�a� for the rotational frequency �rot=−0.14; they are in
a good agreement with simulations in the laboratory refer-
ence frame for �=−0.14. Note that we presented on Fig.
5�a� simulations in the RRF for small enough rotational fre-
quencies. The reason is that Jz is not a good characteristics of
the discrete system: both exchange and dipolar interactions
break the conservation of Jz since there is no rotation invari-
ance of the discrete system. Therefore simulations in the
RRF works well when the contribution of the Jz term in the
discrete Hamiltonian is small enough and the discreteness
effects are small. This is valid for small enough frequencies
of the rotations, see Fig. 5�a�, or for high frequencies but
small enough times, see Fig. 5�b�.

IV. ANALYTICAL DESCRIPTION OF THE DIP CREATION

In order to describe the problem analytically, we consider
the problem in the RRF. As we have seen using SLASI simu-
lations, the dip can be considered as a stationary state of the
system in the RRF.

To gain some insight how the interaction with the mag-
netic field �which is static in the rotating frame� together
with the rotation provides the multidip creation we use the
Ansatz �Eq. �14��. In order to simplify the model we consider
the dip formation on a background of a pure in-plane vortex
with cos �v=0. This approximation is confirmed by our nu-
merical simulations, as well as by a previous study.19 The
field pumps directly only the mode with azimuthal number
m=�. This mode is coupled, first of all, to the mode with
m=−� ,0 , �2�. Thus we will consider modes with m
=0, �� , �2�. Taking into account only cubic nonlinear
terms in the magnetic energy, one can use the Ansatz �Eq.
�14�� to calculate the effective Lagrangian

Leff = − 
m=0;��;�2�

�m
� �̇m − Eeff �23�

and the effective dissipation function

Feff =
�

2 
m
�Am�̇m��̇m

� −
2im�

�
�m

��
+ Bm�̇m��̇m

� −
2im�

�
�m

��
 , �24�

where Am= �fm
2 � and Bm= �gm

2 �.
The effective energy consists of several parts Eeff=Eeff

osc

+Eeff
f +Eeff

rot+Eeff
int, where

Eeff
osc =

1

2
m

�	m	�	�m	2 + 	�m	2� �25�

describes the linear part of the modes oscillation, the energy

of the interaction with the field Eeff
f is equal to Ẽf in Eq. �20�,

the rotation energy

Eeff
rot = − i

�

�

m

m�m�m
� �26�

appears due to the transition into the noninertial frame of
reference and the energy of the nonlinear coupling between
the modes has the form

Eeff
int = i

m,n
m�km,n

� �m�n + km,n
� �m�n��m+n

� . �27�

For the explicit form of the magnon frequencies �m and the
nonlinearity coefficients ki,j

� see Appendix C.
Assuming that the nonlinear coefficients take approxi-

mately the same values ki,j
� �k one can obtain the equations

of motion for the amplitudes �m, �m in the form

�̇m = �m�m + be��m,� + �m,−�� − i�
m

�
�m − ik

m�

m��m�
� �m�+m

+ �Bm��̇m + i
m

�
��m� ,

�̇m = − �m�m − i�
m

�
�m + ik

m�

�m� + m��m�
� �m�+m

− �Am��̇m + i
m

�
��m� . �28�

In the infinite set of Eq. �28� we restrict ourselves to the
finite number of equations which do not contain any ampli-
tudes �i ,�i, with the exception of amplitudes with indices i
=0, �� , �2�. The obtained system was solved numerically
for the case �=3 and different field amplitudes. The values
of the corresponding eigenfrequencies �0,�,2� were chosen
to be equal to the ones obtained from extra micromagnetic
simulations of the magnon dynamics, these values are
marked by dashed circles in Fig. 1. The frequencies �0 and
�	�	 correspond to the lowest modes with radial number n
=0 while �	2�	 corresponds to the mode with n=1 because of
two reasons: �i� according to the Fourier spectra in Figs. 2
and 3 the mode with this radial number dominates among
modes with azimuthal number m=2�; �ii� as it will be shown
later the second resonance R2 �see Fig. 4�b�� appears at the
frequency �2� /2 which corresponds to the mode with n=1
�see Fig. 1�. According to the mentioned spectra the ampli-
tude of the dips in a multidip structure is determined mainly
by the value ��, i.e., the amplitude of the out-of-plane com-
ponent of the mode with m=�. The numerically obtained
dependencies 	���t�	 are shown in Fig. 6�a�. These dependen-
cies are in good agreement with the behavior of the dips
depth, obtained using simulations, see Fig. 4�a�. Moreover,
the steady-state value of �� has the same properties as the
steady-state dips depth mz

dip: �i� its frequency dependence has
a resonance character and �ii� the resonance frequency is
lower than the eigenfrequency, see Fig. 6�a�. Amplitude-
frequency characteristics obtained numerically from model
�28� �Figs. 6�b�–6�d�� let us conclude that the phenomenon
of an abrupt appearance of a dip �multidip� structure in a
vortex state is a nonlinear resonance in a system of nonlin-
early coupled modes with m=0, �� , �2�. The correspond-
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ing resonance transition is shown as R1 in Figs. 4�b� and
6�b�–6�d�.

In the no damping and weakly nonlinear limit �k�1� the

stationary values �̄m and �̄m can be represented approxi-
mately as follows:

�̄� = −
ibe�

�2 − ��
2 , �̄� = i�̄�

��

�
,

�̄0 = −
2k���	�̄�	2

��0
=

− 2k�be
2���

�0��2 − ��
2 �2 , �̄0 = 0,

�̄2� =
k��̄�

2

�

2�2 + ���2�

4�2 − �2�
2 , �̄2� = ik��̄�

2 2�� + �2�

4�2 − �2�
2 .

�29�

According to the last two equations an additional resonance
is expected for the frequency �=�2� /2. This resonance is
observed in the simulation results �see Fig. 4�b�� and it is
well recognized in Figs. 6�b�–6�e�, is denoted as R2.

V. CONCLUSIONS

We have presented a detailed study of the dip structure
generation, which always precedes the vortex polarity
switching phenomenon. The physical reason for the dip cre-
ation is softening of a magnon mode and consequently a
nonlinear resonance in the system of certain magnon modes
with nonlinear coupling. The usually observed single-dip

structure is a particular case of a multidip structure. The
dynamics of the structure with n dips can be strictly de-
scribed as the dynamics of nonlinearly coupled modes with
azimuthal numbers m=0, �n , �2n. The multidip structure
with an arbitrary number of dips �or vortex-antivortex pairs�
can be obtained in a vortex-state nanodisk using a space- and
a time-varying magnetic fields of form �16�. A scheme of a
possible experimental setup for multidip structure generation
is proposed in Appendix B.
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APPENDIX A: DIPOLAR INTERACTION AND THE
CONSERVATION OF THE TOTAL MOMENTUM

In this appendix we consider a ferromagnetic system de-
scribed by the classical Heisenberg isotropic exchange
Hamiltonian

Hex = −
J

2 
�n,��

Sn · Sn+� �A1�

and the dipolar interaction Hdip,

Hdip =
D

2 
n,n�

n�n�

Sn · Sn� − 3�Sn · enn���Sn� · enn��

	n − n�	3
. �A2�

Here Sn��Sn
x ,Sn

y ,Sn
z � is a classical spin vector with fixed

length S in units of action on the site n= �nx ,ny ,nz� of a
three-dimensional cubic lattice with integers nx, ny, and nz, J
is the exchange integral, the parameter D=�2 /a3 is the
strength of the long-range dipolar interaction, �
=g	e	 / �2mc� is the gyromagnetic ratio, g is the Landé factor,
a is the lattice constant; the vector � connects nearest neigh-
bors, and enn���n−n�� / 	n−n�	 is a unit vector.

Our main approximation is that Sn depends only on the x
and y coordinates. Such a plane-parallel spin distribution is
adequate for thin films with a constant thickness h=Nza and
nanoparticles with small aspect ratio. Using the above-
mentioned approximation the dipolar Hamiltonian can be
written as follows:22

Hdip = −
D

2 
�,��

�A����S� · S�� − 3S�
z S��

z � + B����S�
xS��

x − S�
yS��

y �

+ C����S�
xS��

y + S�
yS��

x �� . �A3�

Here the sum runs only over the 2D lattice. All the informa-

b)

d)c)

a)

0.3

0.35

0.4

0.8

R1

b=

0.001

0.004

0.01

R2

R1

R2

R2

R1

��

����

FIG. 6. �Color online� The nonlinear resonance in system �Eq.
�28��. �a� demonstrates time dependencies of the amplitude of the
out-of-plane component of the mode with m=�. The shown depen-
dencies were obtained numerically directly from Eq. �28� for differ-
ent field frequencies � �the values are in the oval frames�. The
values of the other parameters were the following: �=3, ��=0.4,
�0=0.47, �2�=0.92, b=0.01, �=0.02, k=0.1, and Ai=Bi=1.
Amplitude-frequency characteristics for different modes are pre-
sented in �b�–�d�. The numerical values of the parameters are the
same as in �a�. The upper curve is build for the field amplitude b
=0.01, thus it fully corresponds to �a�. The small insets shows the
mentioned curve in full scale.
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tion about the original 3D structure of our system is in the
coefficients A���, B���, and C���,

A��� =
1

2 
nz�,nz

rnn��0

rnn�
2 − 3znn�

2

rnn�
5 ,

B��� =
3

2 
nz�,nz

rnn��0

xnn�
2 − ynn�

2

rnn�
5 ,

C��� = 3 
nz�,nz

rnn��0

xnn�ynn�

rnn�
5 , �A4�

where we used the notations: xnn�=a�nx−nx��, ynn�=a�ny

−ny��, znn�=a�nz−nz��, and ����=�xnn�
2 +ynn�

2 , rnn�
=�����

2 +znn�
2 .

The continuum description of the system is based on
smoothing the lattice model, using the normalized magneti-
zation m�r�= �g�B /a3MS�nSn��r−rn�. Then the exchange
energy Eex �normalized by 4	MS

2�, the continuum version of
Eq. �A1�, takes form �2�. The normalized magnetostatic en-
ergy, which is the continuum version of Eq. �A3�, is

Ems = −
1

16	
� d3r� d3r�

W�m,m��
R5 ,

W�m,m�� = �R2 − 3	z − z�	2��sin � sin �� cos�� − ���

− 2 cos �cos ��� + 3 sin � sin ����2 cos�� + ��

− 2�� + ��2 cos�� + �� − 2��� − 2��� cos��

+ �� − � − ���� ,

R�r,r�� = ��2 + ��2 − 2��� cos�� − ��� + �z − z��2.

�A5�

The magnetostatic energy in form �A5� is invariant under to
simultaneous rotations of � and � with the same constant
angle �0, see Eq. �11�.

The consequence of such an invariance is the conserva-
tion of the total momentum �Eq. �12��. Let us show explicitly
that Jz is conserved. The time derivative of the total momen-
tum

dJz

dt
=� d3r���1 − cos �

sin �
·
�E
��
� +� d3r�cos � − 1����,�t�� ,

+� d3r� �E
��

−
�E
��

��� −
�E
��

���� , �A6�

where we used an explicit form of Eq. �6� in the case of
absence of magnetic field and damping. The first term in Eq.
�A6� vanishes due to the cylindrical symmetry of the sample.
The second term contains the commutator ��� ,�t��; it can

take nonvanishing values for the singular field distributions
like 2D solitons and vortices with �=q�+const, which re-
sults in ��x ,�y��=2	q��r�.20 Nevertheless this singularity
does not influence the last term in Eq. �A6� due to the van-
ishing factor �cos �−1� at the singularity point. This replace-
ment cos �→cos �−1 corresponds to the regularization of
the Lagrangian.23

Let us discuss the last term in Eq. �A6�. Since an isotropic
exchange interaction allows the conservation of Mz and Lz
separately, we need to discuss here the influence of the mag-
netostatic interaction only. Using the explicit form �A5�, one
can rewrite Eq. �A6� as follows:

dJz

dt
=

1

8	
� d3rd3r�

R5 � �W
��

��� +
�W
��

���� − 1�
 =
I1 + I2

8	
.

Here the contribution I1 takes the form

I1 =� d3rd3r�
R5

�W
��

=� d3rd3r�� �

��
�W

R5� − W �

��
� 1

R5�
 .

The first integral vanishes due to periodicity on � and cylin-
drical symmetry. The derivative in the last term

�

��
� 1

R5� = −
5���

R7 sin�� − ���

is asymmetric with respect to the replacement r↔r�, hence
this term vanishes after the integration and I1=0.

The integral I2=�d3rd3r�F�r ,r�� has the asymmetrical
kernel

F�r,r�� = sin � sin ����R2 − 3	z − z�	2�sin�� − ���

+ ��2 sin�� + �� − 2��� − �2 sin�� + �� − � − ����

= − F�r�,r� ,

therefore, I2=0.
Finally, one can state that the total momentum Jz is con-

served for a cylindrical sample under the action of magneto-
static interaction. One should note that the conservation of Jz
is known for the local model of the magnetostatic interaction
Eloc

ms =��d3r�� ·m�2.20

APPENDIX B: EXPERIMENTAL POSSIBILITY OF A
MULTIDIP STRUCTURE CREATION

Let us consider a set of long conductive wires orientated
perpendicular to the disk plane. Let all these wires be uni-
formly spaced along a circle which is concentric with the
disk and has radius a R�L. The described configuration is
shown in Fig. 7�a�.

Let the nth wire conduct the current In= I cos��t
+2	mn /N�, where N is the total number of the wires, m is
the azimuthal number of the mode we aim to excite, and �
should be close to the corresponding eigenfrequency �m.
The described set of wires produces a magnetic field of the
form
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B�r,�� =
1

c

n=0

N−1

In
�ez  �r − Rn��

�r − Rn�2 , �B1�

where Rn=R�cos�2	n /N� , sin�2	n /N� ,0� is the radius vec-
tor of the nth wire, �r ,� ,z� are coordinates of a cylindrical
frame of reference with ez being oriented directly to the
reader, and c denotes the speed of light. For the case N�m
one can proceed from the sum in Eq. �B1� to an integral. And
for the case L�R the obtained integral yields

Bx��,�� =
NI

2Rc
�sin��t − �m − 1�����	m−1	 − �	m	+1�

− sin��t − �m + 1�����	m+1	 − �	m	+1�� , �B2a�

By��,�� = −
NI

2Rc
�cos��t − �m − 1�����	m−1	 − �	m	+1�

+ cos��t − �m + 1�����	m+1	 − �	m	+1�� , �B2b�

where �=r /R�1. The field �Eq. �B2�� corresponds to the
field �Eq. �16�� with �=−	m	 and sgn���=sgn�m� but con-
trary to Eq. �16� it is radially dependent. The radial depen-
dence does not change the ability of the field �Eq. �B2�� for
the production of multidip structures. The radial-dependent
field results only in a small decreasing of the dips amplitude,
see Fig. 7�c�. The accuracy of conformity of Eq. �B2� with
Eq. �B1� strongly depends on N. Using the minimal number
of the wires N=2m one can excite the standing wave with
azimuthal number m. To obtain the multidip structure one
should take 2m�N�4m. It is senseless to take N�4m be-
cause it does not improve the accuracy significantly. Satis-
factory accuracy was achieved for L /R�1 /2.

APPENDIX C: MICROSCOPIC EXPRESSIONS FOR
MAGNON FREQUENCIES AND NONLINEARITY

COEFFICIENTS

Substitution of the Ansatz �Eq. �14�� into Eq. �2� and in-
tegration results in

Eex =
1

2

�2

h2
2
m
�	�m	2� fm�

2 + �m2 − 1�
fm

2

�2�
+ 	�m	2�gm�

2 + m2gm
2

�2�

+ �2i

�2

h2
2
m,n

�m�n�m+n
� m� fmfngm+n

�2 � + O��4,�4� .

�C1�

Using that for a weakly excited in-plane vortex state �=�
+C

	
2 + �̃, mz= m̃z the divergence has the form

� · m = −
C

�
��

��̃

��
+ m̃z

�m̃z

��
+ �̃�2 +

��̃

��
�
 + O�m̃z

3,�̃3� ,

�C2�

one can perform a similar action to obtain the corresponding
magnetostatic terms

Ems
v =




2
m

	�m	2��m����m�����m
ms�v�

+
i

�2


m,n

m��n�m�m+n
� ��m+n���

fn����fm����
��

�
m+n

ms�v�

+ �m�n�m+n
� ��m+n���

gn����gm����
��

�
m+n

ms�v�
 + O��4,�4� ,

�C3�

Ems
s =

1

2


m

	�m	2�fm���fm�����m
ms�s�, �C4�

Ems
e = − 


m

	�m	2��m���gm�1��m
ms�e�

−
i

�2


m,n

m��n�m�m+n
� � fn���fn���gm+n�1�

�
�

m+n

ms�e�

+ �n�m�m+n
� � gn���gm���gm+n�1�

�
�

m+n

ms�e�
 + O��4,�4� .

�C5�

The notation

�m��� =
�gm���

��
+ 2

gm���
�

�C6�

is used here and three different types of averaging are
defined,

mz
dip

Rn
r �

In
I

I

a) b)

c)

FIG. 7. �Color online� Possible implementation of an experi-
mental facility for pumping of a selected azimuthal magnon mode.
�a� demonstrates the utility assembling. �b� shows the magnetic field
�Eq. �B1�� within the disk area. The number of the wires is N=12
and the phase shift of the currents is ��=	 /2 �corresponds to m
=3, see text�. Blue and red lines in �c� illustrate dependencies
mz

dip�t� obtained using the field �Eq. �16�� with �=−3 �see Fig. 2�e��
and the field �Eq. �B2�� with m=3, respectively. In both cases the
field amplitude was 15 mT at the disk edge. L=76 nm and h
=20 nm.
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�F��,����k
ms�v� � �− 1�k�

0

1

d���
0

1

d����F��,����
0

�


e−
x − 1 + 
x


2x2 Jk��x�Jk���x�dx ,

�F��,����k
ms�s� � �− 1�k�

0

1

d���
0

1

d����F��,����
0

�

�1 − e−
x�Jk��x�Jk���x�dx ,

�F����k
ms�e� � �− 1�k�

0

1

d��F����
0

�


e−
x − 1 + 
x


2x2 Jk��x�Jk�x�dx . �C7�

Comparing Eqs. �C3�–�C5� with Eqs. �25� and �27� one can
conclude that the eigenfrequencies read

�m =
�2

h2
2� fm�
2 + �m2 − 1�

fm
2

�2� +
1



�fm���fm�����m

ms�s�

=
�2

h2
2�gm�
2 + m2gm

2

�2� + 
��m����m�����m
ms�v�

− 2
��m���gm�1��m
ms�e� �C8�

and the nonlinearity coefficients have form

km,n
� = �2

�2

h2
2� fmfngm+n

�2 �
+




�2
���m+n���

fn����fm����
��

�
m+n

ms�v�

− � fn���fn���gm+n�1�
�

�
m+n

ms�e�
 ,

km,n
� =




�2
���m+n���

gn����gm����
��

�
m+n

ms�v�

− � gn���gn���gm+n�1�
�

�
m+n

ms�e�
 . �C9�

It is interesting to emphasize the following properties of the
energy expansions: �i� the linear part of the magnetostatic
energy proportional to 	�	2 is produced by the volume
charges while the part proportional to 	�	2 is produced by
surface charges; �ii� the nonlinear terms of the magnetostatic
energy appear due to the volume charges only; and �iii� the
exchange produces nonlinear terms of the form ���. The
same is true for magnetostatics but additional terms in the
form ��� also appear.
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